1
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Dissecting the immune response of CD4 + T cells in Alzheimer's disease. Rev Neurosci 2025; 36:139-168. [PMID: 39238424 DOI: 10.1515/revneuro-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ana Cvetanovic
- Department of Oncology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Jelena Basic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| |
Collapse
|
2
|
Nasme F, Behera J, Tyagi P, Debnath N, Falcone JC, Tyagi N. The potential link between the development of Alzheimer's disease and osteoporosis. Biogerontology 2025; 26:43. [PMID: 39832071 DOI: 10.1007/s10522-024-10181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Alzheimer's disease (AD) and osteoporosis (OP) pose distinct but interconnected health challenges, both significantly impacting the aging population. AD, a neurodegenerative disorder characterized by memory impairment and cognitive decline, is primarily associated with the accumulation of abnormally folded amyloid beta (Aβ) peptides and neurofibrillary tangles in the brain. OP, a skeletal disorder marked by low bone mineral density, involves dysregulation of bone remodeling and is associated with an increased risk of fractures. Recent studies have revealed an intriguing link between AD and OP, highlighting shared pathological features indicative of common regulatory pathophysiological pathways. In this article, we elucidate the signaling mechanisms that regulate the pathology of AD and OP and offer insights into the intricate network of factors contributing to these conditions. We also examine the role of bone-derived factors in the progression of AD, underscoring the plausibility of bidirectional communication between the brain and the skeletal system. The presence of amyloid plaques in the brain of individuals with AD is akin to the accumulation of brain Aβ in vascular dementia, pointing towards the need for further investigation of shared molecular mechanisms. Moreover, we discuss the role of bone-derived microRNAs that may regulate the pathological progression of AD, providing a novel perspective on the role of skeletal factors in neurodegenerative diseases. The insights presented here should help researchers engaged in exploring innovative therapeutic approaches targeting both neurodegenerative and skeletal disorders in aging populations.
Collapse
Affiliation(s)
- Fariha Nasme
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Jyotirmaya Behera
- Division of Immunology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Prisha Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Rahya-Suchani (Bagla) Samba, Jammu, Jammu & Kashmir, 181143, India
| | - Jeff C Falcone
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Neetu Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
3
|
Yang S, Ye Z, He P, Zhang Y, Liu M, Zhou C, Zhang Y, Gan X, Huang Y, Xiang H, Qin X. Plasma proteomics for risk prediction of Alzheimer's disease in the general population. Aging Cell 2024; 23:e14330. [PMID: 39252463 PMCID: PMC11634738 DOI: 10.1111/acel.14330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
We aimed to develop and validate a protein risk score for predicting Alzheimer's disease (AD) and compare its performance with a validated clinical risk model (Cognitive Health and Dementia Risk Index for AD [CogDrisk-AD]) and apolipoprotein E (APOE) genotypes. The development cohort, consisting of 35,547 participants from England in the UK Biobank, was randomly divided into a 7:3 training-testing ratio. The validation cohort included 4667 participants from Scotland and Wales in the UK Biobank. In the training set, an AD protein risk score was constructed using 31 proteins out of 2911 proteins. In the testing set, the AD protein risk score had a C-index of 0.867 (95% CI, 0.828, 0.906) for AD prediction, followed by CogDrisk-AD risk factors (C-index, 0.856; 95% CI, 0.823, 0.889), and APOE genotypes (C-index, 0.705; 95% CI, 0.660, 0.750). Adding the AD protein risk score to CogDrisk-AD risk factors (C-index increase, 0.050; 95% CI, 0.008, 0.093) significantly improved the predictive performance for AD. However, adding CogDrisk-AD risk factors (C-index increase, 0.040; 95% CI, -0.007, 0.086) or APOE genotypes (C-index increase, 0.000; 95% CI, -0.054, 0.055) to the AD protein risk score did not significantly improve the predictive performance for AD. The top 10 proteins with the highest coefficients in the AD protein risk score contributed most of the predictive power for AD risk. These results were verified in the external validation cohort. EGFR, GFAP, and CHGA were identified as key proteins within the protein network. Our result suggests that the AD protein risk score demonstrated a good predictive performance for AD risk.
Collapse
Affiliation(s)
- Sisi Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center for Kidney Disease, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
- Guangdong Provincial Institute of Nephrology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Ziliang Ye
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center for Kidney Disease, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
- Guangdong Provincial Institute of Nephrology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Panpan He
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center for Kidney Disease, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
- Guangdong Provincial Institute of Nephrology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Yuanyuan Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center for Kidney Disease, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
- Guangdong Provincial Institute of Nephrology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Mengyi Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center for Kidney Disease, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
- Guangdong Provincial Institute of Nephrology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Chun Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center for Kidney Disease, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
- Guangdong Provincial Institute of Nephrology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Yanjun Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center for Kidney Disease, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
- Guangdong Provincial Institute of Nephrology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Xiaoqin Gan
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center for Kidney Disease, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
- Guangdong Provincial Institute of Nephrology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Yu Huang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center for Kidney Disease, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
- Guangdong Provincial Institute of Nephrology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Hao Xiang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center for Kidney Disease, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
- Guangdong Provincial Institute of Nephrology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center for Kidney Disease, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
- Guangdong Provincial Institute of Nephrology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| |
Collapse
|
4
|
von Bernhardi R, Eugenín J. Aging Microglia and Their Impact in the Nervous System. ADVANCES IN NEUROBIOLOGY 2024; 37:379-395. [PMID: 39207703 DOI: 10.1007/978-3-031-55529-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aging is the greatest risk factor for neurodegenerative diseases. Microglia are the resident immune cells in the central nervous system (CNS), playing key roles in its normal functioning, and as mediators for age-dependent changes of the CNS, condition at which they generate a hostile environment for neurons. Transforming Growth Factor β1 (TGFβ1) is a regulatory cytokine involved in immuneregulation and neuroprotection, affecting glial cell inflammatory activation, neuronal survival, and function. TGFβ1 signaling undergoes age-dependent changes affecting the regulation of microglial cells and can contribute to the pathophysiology of neurodegenerative diseases. This chapter focuses on assessing the role of age-related changes on the regulation of microglial cells and their impact on neuroinflammation and neuronal function, for understanding age-dependent changes of the nervous system.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Faculty of Odontology and Rehabilitation Sciences, Universidad San Sebastian, Santiago, Chile.
| | - Jaime Eugenín
- Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
5
|
Su C, Miao J, Guo J. The relationship between TGF-β1 and cognitive function in the brain. Brain Res Bull 2023; 205:110820. [PMID: 37979810 DOI: 10.1016/j.brainresbull.2023.110820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Transforming growth factor-β1 (TGF-β1), a multifunctional cytokine, plays a pivotal role in synaptic formation, plasticity, and neurovascular unit regulation. This review highlights TGF-β1's potential impact on cognitive function, particularly in the context of neurodegenerative disorders. However, despite the growing body of evidence, a comprehensive understanding of TGF-β1's precise role remains elusive. Further research is essential to unravel the complex mechanisms through which TGF-β1 influences cognitive function and to explore therapeutic avenues for targeting TGF-β1 in neurodegenerative conditions. This investigation sheds light on TGF-β1's contribution to cognitive function and offers prospects for innovative treatments and interventions. This review delves into the intricate relationship between TGF-β1 and cognitive function.
Collapse
Affiliation(s)
- Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China.
| |
Collapse
|
6
|
Ge Z, Zhang Q, Lin W, Jiang X, Zhang Y. The role of angiogenic growth factors in the immune microenvironment of glioma. Front Oncol 2023; 13:1254694. [PMID: 37790751 PMCID: PMC10542410 DOI: 10.3389/fonc.2023.1254694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Angiogenic growth factors (AGFs) are a class of secreted cytokines related to angiogenesis that mainly include vascular endothelial growth factors (VEGFs), stromal-derived factor-1 (SDF-1), platelet-derived growth factors (PDGFs), fibroblast growth factors (FGFs), transforming growth factor-beta (TGF-β) and angiopoietins (ANGs). Accumulating evidence indicates that the role of AGFs is not only limited to tumor angiogenesis but also participating in tumor progression by other mechanisms that go beyond their angiogenic role. AGFs were shown to be upregulated in the glioma microenvironment characterized by extensive angiogenesis and high immunosuppression. AGFs produced by tumor and stromal cells can exert an immunomodulatory role in the glioma microenvironment by interacting with immune cells. This review aims to sum up the interactions among AGFs, immune cells and cancer cells with a particular emphasis on glioma and tries to provide new perspectives for understanding the glioma immune microenvironment and in-depth explorations for anti-glioma therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
7
|
Ullah R, Lee EJ. Advances in Amyloid-β Clearance in the Brain and Periphery: Implications for Neurodegenerative Diseases. Exp Neurobiol 2023; 32:216-246. [PMID: 37749925 PMCID: PMC10569141 DOI: 10.5607/en23014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/25/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
This review examines the role of impaired amyloid-β clearance in the accumulation of amyloid-β in the brain and the periphery, which is closely associated with Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). The molecular mechanism underlying amyloid-β accumulation is largely unknown, but recent evidence suggests that impaired amyloid-β clearance plays a critical role in its accumulation. The review provides an overview of recent research and proposes strategies for efficient amyloid-β clearance in both the brain and periphery. The clearance of amyloid-β can occur through enzymatic or non-enzymatic pathways in the brain, including neuronal and glial cells, blood-brain barrier, interstitial fluid bulk flow, perivascular drainage, and cerebrospinal fluid absorption-mediated pathways. In the periphery, various mechanisms, including peripheral organs, immunomodulation/immune cells, enzymes, amyloid-β-binding proteins, and amyloid-β-binding cells, are involved in amyloid-β clearance. Although recent findings have shed light on amyloid-β clearance in both regions, opportunities remain in areas where limited data is available. Therefore, future strategies that enhance amyloid-β clearance in the brain and/or periphery, either through central or peripheral clearance approaches or in combination, are highly encouraged. These strategies will provide new insight into the disease pathogenesis at the molecular level and explore new targets for inhibiting amyloid-β deposition, which is central to the pathogenesis of sporadic AD (amyloid-β in parenchyma) and CAA (amyloid-β in blood vessels).
Collapse
Affiliation(s)
- Rahat Ullah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
8
|
Alidoust L, Akhoondian M, Atefi AH, Keivanlou MH, Hedayati Ch M, Jafari A. Stem cell-conditioned medium is a promising treatment for Alzheimer's disease. Behav Brain Res 2023; 452:114543. [PMID: 37311523 DOI: 10.1016/j.bbr.2023.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIM Alzheimer's disease (AD), a prevalent progressive neurodegenerative disease, is mainly characterized by dementia, memory loss, and cognitive disorder. Rising research was performed to develop pharmacological or non-pharmacological approaches to treat or improve AD complications. Mesenchymal stem cells (MSCs) are stromal cells that can self-renew and exhibit multilineage differentiation. Recent evidence suggested that some of the therapeutic effects of MSCs are mediated by the secreted paracrine factors. These paracrine factors, called MSC- conditioned medium (MSC-CM), may stimulate endogenous repair, promote angio- and artery genesis, and reduce apoptosis through paracrine mechanisms. The current study aims to systematically review the advantages of MSC-CM to the development of research and therapeutic concepts for AD management. MATERIAL AND METHODS The present systematic review was performed using PubMed, Web of Science, and Scopus from April 2020 to May 2022 following the "Preferred Reporting Items for Systematic Reviews" (PRISMA) guidelines. The keywords, including "Conditioned medium OR Conditioned media OR Stem cell therapy" AND "Alzheimer's," was searched, and finally, 13 papers were extracted. RESULTS The obtained data revealed that MSC-CMs might positively affect neurodegenerative diseases prognosis, especially AD, through various mechanisms, including a decrease in neuro-inflammation, reduction of oxidative stress and Aβ formation, modulation of Microglia function and count, reduction of apoptosis, induction of synaptogenesis and neurogenesis. Also, the results showed that MSC-CM administration could significantly improve cognitive and memory function, increase the expression of neurotrophic factors, decrease the production of pro-inflammatory cytokines, improve mitochondrial function, reduce cytotoxicity, and increase neurotransmitter levels. CONCLUSION While inhibiting the induction of neuroinflammation could be considered the first therapeutic effect of CMs, the prevention of apoptosis could be regarded as the most crucial effect of CMs on AD improvement.
Collapse
Affiliation(s)
- Leila Alidoust
- Department of Genetics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Akhoondian
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amir Homayoun Atefi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Mojtaba Hedayati Ch
- Department of Microbiology, Virology and Microbial Toxins, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Microbial Toxins Physiology Group (MTPG), Universal Scientific Education Research Network (USERN), Rasht, Iran
| | - Adele Jafari
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
9
|
Jiang S, Liang J, Li W, Wang L, Song M, Xu S, Liu G, Du Q, Zhai D, Tang L, Yang Y, Zhang L, Zhang B. The role of CXCL1/CXCR2 axis in neurological diseases. Int Immunopharmacol 2023; 120:110330. [PMID: 37247498 DOI: 10.1016/j.intimp.2023.110330] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
The C-X-C chemokine ligand (CXCL) 1 and its receptor C-X-C chemokine receptor (CXCR) 2 are widely expressed in the peripheral nervous systems (PNS) and central nervous systems (CNS) and are involved in the development of inflammation and pain after various nerve injuries. Once a nerve is damaged, it affects not only the neuron itself but also lesions elsewhere in its dominant site. After the CXCL1/CXCR2 axis is activated, multiple downstream pathways can be activated, such as c-Raf/MAPK/AP-1, p-PKC-μ/p-ILK/NLRP3, JAK2/STAT3, TAK1/NF-κB, etc. These pathways in turn mediate cellular motility state or cell migration. CXCR2 is expressed on the surface of neutrophils and monocytes/macrophages. These cells can be recruited to the lesion through the CXCL1/CXCR2 axis to participate in the inflammatory response. The expression of CXCR2 in neurons can activate some pathways in neurons through the CXCL1/CXCR2 axis, thereby causing damage to neurons. CXCR2 is also expressed in astrocytes, and when CXCR2 activated, it increases the number of astrocytes but impairs their function. Since inflammation can occur at almost any site of injury, elucidating the mechanism of CXCL1/CXCR2 axis' influence on inflammation may provide a favorable target for clinical treatment. Therefore, this article reviews the research progress of the CXCL1/CXCR2 axis in neurological diseases, aiming to provide a more meaningful theoretical basis for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Dongchang Zhai
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
10
|
Kapoor M, Chinnathambi S. TGF-β1 signalling in Alzheimer's pathology and cytoskeletal reorganization: a specialized Tau perspective. J Neuroinflammation 2023; 20:72. [PMID: 36915196 PMCID: PMC10012507 DOI: 10.1186/s12974-023-02751-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Microtubule-associated protein, Tau has been implicated in Alzheimer's disease for its detachment from microtubules and formation of insoluble intracellular aggregates within the neurons. Recent findings have suggested the expulsion of Tau seeds in the extracellular domain and their prion-like propagation between neurons. Transforming Growth Factor-β1 (TGF-β1) is a ubiquitously occurring cytokine reported to carry out immunomodulation and neuroprotection in the brain. TGF-β-mediated regulation occurs at the level of neuronal survival and differentiation, glial activation (astrocyte and microglia), amyloid production-distribution-clearance and neurofibrillary tangle formation, all of which contributes to Alzheimer's pathophysiology. Its role in the reorganization of cytoskeletal architecture and remodelling of extracellular matrix to facilitate cellular migration has been well-documented. Microglia are the resident immune sentinels of the brain responsible for surveying the local microenvironment, migrating towards the beacon of pertinent damage and phagocytosing the cellular debris or patho-protein deposits at the site of insult. Channelizing microglia to target extracellular Tau could be a good strategy to combat the prion-like transmission and seeding problem in Alzheimer's disease. The current review focuses on reaffirming the role of TGF-β1 signalling in Alzheimer's pathology and cytoskeletal reorganization and considers utilizing the approach of TGF-β-triggered microglia-mediated targeting of extracellular patho-protein, Tau, as a possible potential strategy to combat Alzheimer's disease.
Collapse
Affiliation(s)
- Mahima Kapoor
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, 411008, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, 411008, Pune, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. .,Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Hosur Road, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
11
|
Var SR, Strell P, Johnson ST, Roman A, Vasilakos Z, Low WC. Transplanting Microglia for Treating CNS Injuries and Neurological Diseases and Disorders, and Prospects for Generating Exogenic Microglia. Cell Transplant 2023; 32:9636897231171001. [PMID: 37254858 PMCID: PMC10236244 DOI: 10.1177/09636897231171001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023] Open
Abstract
Microglia are associated with a wide range of both neuroprotective and neuroinflammatory functions in the central nervous system (CNS) during development and throughout lifespan. Chronically activated and dysfunctional microglia are found in many diseases and disorders, such as Alzheimer's disease, Parkinson's disease, and CNS-related injuries, and can accelerate or worsen the condition. Transplantation studies designed to replace and supplement dysfunctional microglia with healthy microglia offer a promising strategy for addressing microglia-mediated neuroinflammation and pathologies. This review will cover microglial involvement in neurological diseases and disorders and CNS-related injuries, current microglial transplantation strategies, and different approaches and considerations for generating exogenic microglia.
Collapse
Affiliation(s)
- Susanna R. Var
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Phoebe Strell
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sether T. Johnson
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Alex Roman
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Zoey Vasilakos
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Smith BC, Tinkey RA, Shaw BC, Williams JL. Targetability of the neurovascular unit in inflammatory diseases of the central nervous system. Immunol Rev 2022; 311:39-49. [PMID: 35909222 PMCID: PMC9489669 DOI: 10.1111/imr.13121] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The blood-brain barrier (BBB) is a selectively permeable barrier separating the periphery from the central nervous system (CNS). The BBB restricts the flow of most material into and out of the CNS, including many drugs that could be used as potent therapies. BBB permeability is modulated by several cells that are collectively called the neurovascular unit (NVU). The NVU consists of specialized CNS endothelial cells (ECs), pericytes, astrocytes, microglia, and neurons. CNS ECs maintain a complex "seal" via tight junctions, forming the BBB; breakdown of these tight junctions leads to BBB disruption. Pericytes control the vascular flow within capillaries and help maintain the basal lamina. Astrocytes control much of the flow of material that has moved beyond the CNS EC layer and can form a secondary barrier under inflammatory conditions. Microglia survey the border of the NVU for noxious material. Neuronal activity also plays a role in the maintenance of the BBB. Since astrocytes, pericytes, microglia, and neurons are all able to modulate the permeability of the BBB, understating the complex contributions of each member of the NVU will potentially uncover novel and effective methods for delivery of neurotherapies to the CNS.
Collapse
Affiliation(s)
- Brandon C. Smith
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA,Department of Biological, Geological, and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Rachel A. Tinkey
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA,School of Biomedical SciencesKent State UniversityKentOhioUSA
| | - Benjamin C. Shaw
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Jessica L. Williams
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA,Brain Health Research Institute, Kent State UniversityKentOhioUSA
| |
Collapse
|
13
|
Ullah R, Park TJ, Huang X, Kim MO. Abnormal amyloid beta metabolism in systemic abnormalities and Alzheimer's pathology: Insights and therapeutic approaches from periphery. Ageing Res Rev 2021; 71:101451. [PMID: 34450351 DOI: 10.1016/j.arr.2021.101451] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated, multifactorial neurodegenerative disorder that is incurable. Despite recent success in treatments that partially improve symptomatic relief, they have failed in most clinical trials. Re-holding AD for accurate diagnosis and treatment is widely known as a challenging task. Lack of knowledge of basic molecular pathogenesis might be a possible reason for ineffective AD treatment. Historically, a majority of therapy-based studies have investigated the role of amyloid-β (Aβ peptide) in the central nervous system (CNS), whereas less is known about Aβ peptide in the periphery in AD. In this review, we provide a comprehensive summary of the current understanding of Aβ peptide metabolism (anabolism and catabolism) in the brain and periphery. We show that the abnormal metabolism of Aβ peptide is significantly linked with central-brain and peripheral abnormalities; the interaction between peripheral Aβ peptide metabolism and peripheral abnormalities affects central-brain Aβ peptide metabolism, suggesting the existence of significant communication between these two pathways of Aβ peptide metabolism. This close interaction between the central brain and periphery in abnormal Aβ peptide metabolism plays a key role in the development and progression of AD. In conclusion, we need to obtain a full understanding of the dynamic roles of Aβ peptide at the molecular level in both the brain and periphery in relation to the pathology of AD. This will not only provide new information regarding the complex disease pathology, but also offer potential new clues to improve therapeutic strategies and diagnostic biomarkers for the successful treatment of AD.
Collapse
|
14
|
Zhao Y, Suo Y, Yang Z, Hao Y, Li W, Su Y, Shi Y, Gao Y, Song L, Yin X, Shi H. Inspiration for the prevention and treatment of neuropsychiatric disorders: New insight from the bone-brain-axis. Brain Res Bull 2021; 177:263-272. [PMID: 34678443 DOI: 10.1016/j.brainresbull.2021.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022]
Abstract
Bone is the main supporting structure of the body and the main organ involved in body movement and calcium and phosphorus metabolism. Recent studies have shown that bone is also a potential new endocrine organ that participates in the physiological and pathophysiological processes of the cardiovascular, digestive, and endocrine systems through various bioactive cytokines secreted by bone cells and bone marrow. Bone-derived active cytokines can also directly act on the central nervous system and regulate brain function and individual behavior. The bidirectional regulation of the bone-brain axis has gradually attracted attention in the field of neuroscience. This paper reviews the regulatory effects of bone-derived active cytokines and bone-derived cells on individual brain function and brain diseases, as well as the occurrence and development of related neuropsychiatric diseases. The central regulatory mechanism function is briefly introduced, which will broaden the scope for mechanistic research and help establish prevention and treatment strategies for neuropsychiatric diseases based on the bone-brain axis.
Collapse
Affiliation(s)
- Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yining Suo
- Child Health Department, Hebei Children's Hospital, Shijiazhuang 050031, China
| | - Zhenbang Yang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Ying Hao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Wenshuya Li
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yujiao Su
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Xi Yin
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China.
| |
Collapse
|
15
|
Ghosh P, Singh R, Ganeshpurkar A, Pokle AV, Singh RB, Singh SK, Kumar A. Cellular and molecular influencers of neuroinflammation in Alzheimer's disease: Recent concepts & roles. Neurochem Int 2021; 151:105212. [PMID: 34656693 DOI: 10.1016/j.neuint.2021.105212] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/22/2021] [Accepted: 10/10/2021] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD), an extremely common neurodegenerative disorder of the older generation, is one of the leading causes of death globally. Besides the conventional hallmarks i.e. Amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), neuroinflammation also serves as a major contributing factor in the pathogenesis of AD. There are mounting evidences to support the fundamental role of cellular (microglia, astrocytes, mast cells, and T-cells) and molecular (cytokines, chemokines, caspases, and complement proteins) influencers of neuroinflammation in producing/promoting neurodegeneration and dementia in AD. Genome-wide association studies (GWAS) have revealed the involvement of various single nucleotide polymorphisms (SNPs) of genes related to neuroinflammation with the risk of developing AD. Modulating the release of the neuroinflammatory molecules and targeting their relevant mechanisms may have beneficial effects on the onset, progress and severity of the disease. Here, we review the distinct role of various mediators and modulators of neuroinflammation that impact the pathogenesis and progression of AD as well as incite further research efforts for the treatment of AD through a neuroinflammatory approach.
Collapse
Affiliation(s)
- Powsali Ghosh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Vyankatrao Pokle
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Bhushan Singh
- Institute of Pharmacy Harischandra PG College, Bawanbigha, Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
16
|
Engrafted stem cell therapy for Alzheimer's disease: A promising treatment strategy with clinical outcome. J Control Release 2021; 338:837-857. [PMID: 34509587 DOI: 10.1016/j.jconrel.2021.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022]
Abstract
To date, although the microscopic alterations present in Alzheimer's disease (AD) have been well known for over a century only a handful of symptomatic treatments have been developed which are a far cry from a full cure providing volatile benefits. In this context, the intervention of stem cell therapy (SCT) has been proposed as an auxiliary treatment for AD as suggested by the rising number of pre-clinical studies that stem cell engraftment could provide an exciting future treatment regimen against neurodegeneration. Although, most of the primary enthusiasm about this approach was based on replacing deteriorating neurons, the latest studies have implied that the positive modulations fostered by stem cells are fuelled by bystander effects. Present review provides a detailed update on stem cell therapy for AD along with meticulous discussion regarding challenges in developing different stem cells from an aspect of experiment to clinical research and their potential in the milieu of AD hallmarks. Specifically, we focus and provide in depth view on recent advancements in the discipline of SCT aiming to repopulate or regenerate the degenerating neuronal circuitry in AD using stem-cell-on-a-chip and 3D bioprinting techniques. The focus is specifically on the successful restoration of cognitive functions upon engraftment of stem cells on in vivo models for the benefit of the current researchers and their understanding about the status of SCT in AD and finally summarizing on what future holds for SCT in the treatment of AD.
Collapse
|
17
|
Yu Z, Ling Z, Lu L, Zhao J, Chen X, Xu P, Zou X. Regulatory Roles of Bone in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:610581. [PMID: 33408628 PMCID: PMC7779400 DOI: 10.3389/fnagi.2020.610581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis and neurodegenerative diseases are two kinds of common disorders of the elderly, which often co-occur. Previous studies have shown the skeletal and central nervous systems are closely related to pathophysiology. As the main structural scaffold of the body, the bone is also a reservoir for stem cells, a primary lymphoid organ, and an important endocrine organ. It can interact with the brain through various bone-derived cells, mostly the mesenchymal and hematopoietic stem cells (HSCs). The bone marrow is also a place for generating immune cells, which could greatly influence brain functions. Finally, the proteins secreted by bones (osteokines) also play important roles in the growth and function of the brain. This article reviews the latest research studying the impact of bone-derived cells, bone-controlled immune system, and bone-secreted proteins on the brain, and evaluates how these factors are implicated in the progress of neurodegenerative diseases and their potential use in the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhengran Yu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Zhao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Avila J. The Role of TGF-β1 in Promoting Microglial Aβ Phagocytosis. Neuroscience 2020; 438:215-216. [PMID: 32311409 DOI: 10.1016/j.neuroscience.2020.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Jesús Avila
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC-UAM, 28049 Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain..
| |
Collapse
|