1
|
Kakizawa S. Involvement of ROS signal in aging and regulation of brain functions. J Physiol Sci 2025; 75:100003. [PMID: 39823967 PMCID: PMC11979664 DOI: 10.1016/j.jphyss.2024.100003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/23/2024] [Accepted: 12/17/2024] [Indexed: 01/20/2025]
Abstract
Reactive oxygen species (ROS) are redox-signaling molecules involved in aging and lifestyle-related diseases. In the brain, in addition to the production of ROS as byproducts of metabolism, expression of ROS synthases has recently been demonstrated, suggesting possible involvement of ROS in various brain functions. This review highlights current knowledge on the relationship between ROS and brain functions, including their contribution to age-related decline in synaptic plasticity and cognitive function. While most studies demonstrate either the positive or negative effects of ROS on synaptic plasticity, the dual effects of ROS at individual synapses have been demonstrated recently in the mouse cerebellum. Furthermore, the cooperative interaction between these two effects determines the direction of synaptic plasticity. It is anticipated that further elucidation of both the positive and negative effects of ROS on brain function will lead to the development of more effective therapeutic strategies with fewer side effects for ROS-related brain dysfunction.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Memory Neuroscience, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto-city, Kyoto 606-8501, Japan.
| |
Collapse
|
2
|
Kakizawa S. Assessment of retention and attenuation of motor-learning memory by repeated rotor-rod analyses. Sci Rep 2024; 14:31003. [PMID: 39730861 DOI: 10.1038/s41598-024-82108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
Retention of acquired learning memory is essential for reasonable behavior and crisis avoidance of individuals. Therefore, establishment of a system suitable for analysis of the retention/attenuation of acquired memory is desired. In the present study, mice were conducted on the repeated rotor-rod test, consisting of two series of experiments (Series 1 and 2) of 10 trials each. When rotating speed was 9 rpm, retention time on the rod was gradually increased and reached the maximum value within 10 trials in Series 1. When Series 2 was performed 1 or 3 days after Series 1, retention time of trials 1-3 in Series 2 was not significantly different from that of trials 8-10 in Series 1. On the other hand, retention time of trials 1-3 in Series 2 was significantly declined from that of trials 8-10 in Series 1 when Series 2 was conducted day 7, and returned to the initial level, the same level with trials 1-3 in Series 1, when Series 2 was conducted on days 14 or 30. These results indicate that acquired motor-learning memory is retained for 3 days at least, began to decline by day 7 and returned to the initial level by day 14. In older mice of 10-11 months old, there was a delay in the acquisition of motor learning in Day 0, whereas the retention was not impaired in Day 7. The repeated rotor-rod analyses may useful for research on factors affecting retention/attenuation and acquisition of motor-learning memory and proceed our understanding of motor-learning memory.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Memory Neuroscience, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan.
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
3
|
Feng T, Zhang L, Wu Y, Tang L, Chen X, Li Y, Shan C. Exploring the Therapeutic Effects and Mechanisms of Transcranial Alternating Current Stimulation on Improving Walking Ability in Stroke Patients via Modulating Cerebellar Gamma Frequency Band-a Narrative Review. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1593-1603. [PMID: 37962773 PMCID: PMC11269344 DOI: 10.1007/s12311-023-01632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
The cerebellum plays an important role in maintaining balance, posture control, muscle tone, and lower limb coordination in healthy individuals and stroke patients. At the same time, the relationship between cerebellum and motor learning has been widely concerned in recent years. Due to the relatively intact structure preservation and high plasticity after supratentorial stroke, non-invasive neuromodulation targeting the cerebellum is increasingly used to treat abnormal gait in stroke patients. The gamma frequency of transcranial alternating current stimulation (tACS) is commonly used to improve motor learning. It is an essential endogenous EEG oscillation in the gamma range during the swing phase, and rhythmic movement changes in the gait cycle. However, the effect of cerebellar tACS in the gamma frequency band on balance and walking after stroke remains unknown and requires further investigation.
Collapse
Affiliation(s)
- Tingyi Feng
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lichao Zhang
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwei Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Tang
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xixi Chen
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanli Li
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunlei Shan
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Kakizawa S, Arasaki T, Yoshida A, Sato A, Takino Y, Ishigami A, Akaike T, Yanai S, Endo S. Essential role of ROS - 8-Nitro-cGMP signaling in long-term memory of motor learning and cerebellar synaptic plasticity. Redox Biol 2024; 70:103053. [PMID: 38340634 PMCID: PMC10869263 DOI: 10.1016/j.redox.2024.103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Although reactive oxygen species (ROS) are known to have harmful effects in organisms, recent studies have demonstrated expression of ROS synthases at various parts of the organisms and the controlled ROS generation, suggesting possible involvement of ROS signaling in physiological events of individuals. However, physiological roles of ROS in the CNS, including functional roles in higher brain functions or neuronal activity-dependent ROS production, remain to be elucidated. Here, we demonstrated involvement of ROS - 8-NO2-cGMP signaling in motor learning and synaptic plasticity in the cerebellum. In the presence of inhibitors of ROS signal or ROS synthases, cerebellar motor learning was impaired, and the stimulus inducing long-term depression (LTD), cellular basis for the motor learning, failed to induce LTD but induced long-term potentiation (LTP)-like change at cerebellar synapses. Furthermore, ROS was produced by LTD-inducing stimulus in enzyme-dependent manner, and excess administration of the antioxidant vitamin E impaired cerebellar motor learning, suggesting beneficial roles of endogenous ROS in the learning. As a downstream signal, involvement of 8-NO2-cGMP in motor learning and cerebellar LTD were also revealed. These findings indicate that ROS - 8-NO2-cGMP signal is activated by neuronal activity and is essential for cerebellum-dependent motor learning and synaptic plasticity, demonstrating involvement of the signal in physiological function of brain systems.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Biological Chemistry, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| | - Tomoko Arasaki
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Ayano Yoshida
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Ayami Sato
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Yuka Takino
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan.
| |
Collapse
|
5
|
Mitoma H, Kakei S, Tanaka H, Manto M. Morphological and Functional Principles Governing the Plasticity Reserve in the Cerebellum: The Cortico-Deep Cerebellar Nuclei Loop Model. BIOLOGY 2023; 12:1435. [PMID: 37998034 PMCID: PMC10669841 DOI: 10.3390/biology12111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Cerebellar reserve compensates for and restores functions lost through cerebellar damage. This is a fundamental property of cerebellar circuitry. Clinical studies suggest (1) the involvement of synaptic plasticity in the cerebellar cortex for functional compensation and restoration, and (2) that the integrity of the cerebellar reserve requires the survival and functioning of cerebellar nuclei. On the other hand, recent physiological studies have shown that the internal forward model, embedded within the cerebellum, controls motor accuracy in a predictive fashion, and that maintaining predictive control to achieve accurate motion ultimately promotes learning and compensatory processes. Furthermore, within the proposed framework of the Kalman filter, the current status is transformed into a predictive state in the cerebellar cortex (prediction step), whereas the predictive state and sensory feedback from the periphery are integrated into a filtered state at the cerebellar nuclei (filtering step). Based on the abovementioned clinical and physiological studies, we propose that the cerebellar reserve consists of two elementary mechanisms which are critical for cerebellar functions: the first is involved in updating predictions in the residual or affected cerebellar cortex, while the second acts by adjusting its updated forecasts with the current status in the cerebellar nuclei. Cerebellar cortical lesions would impair predictive behavior, whereas cerebellar nuclear lesions would impact on adjustments of neuronal commands. We postulate that the multiple forms of distributed plasticity at the cerebellar cortex and cerebellar nuclei are the neuronal events which allow the cerebellar reserve to operate in vivo. This cortico-deep cerebellar nuclei loop model attributes two complementary functions as the underpinnings behind cerebellar reserve.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shinji Kakei
- Department of Anatomy and Physiology, Jissen Women’s University, Tokyo 191-8510, Japan;
| | - Hirokazu Tanaka
- Faculty of Information Technology, Tokyo City University, Tokyo 158-8557, Japan;
| | - Mario Manto
- Cerebellar Ataxias Unit, Department of Neurology, Médiathèque Jean Jacquy, CHU-Charleroi, 6042 Charleroi, Belgium;
- Service des Neurosciences, University of Mons, 7000 Mons, Belgium
| |
Collapse
|
6
|
Cullen KE. Internal models of self-motion: neural computations by the vestibular cerebellum. Trends Neurosci 2023; 46:986-1002. [PMID: 37739815 PMCID: PMC10591839 DOI: 10.1016/j.tins.2023.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/15/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
The vestibular cerebellum plays an essential role in maintaining our balance and ensuring perceptual stability during activities of daily living. Here I examine three key regions of the vestibular cerebellum: the floccular lobe, anterior vermis (lobules I-V), and nodulus and ventral uvula (lobules X-IX of the posterior vermis). These cerebellar regions encode vestibular information and combine it with extravestibular signals to create internal models of eye, head, and body movements, as well as their spatial orientation with respect to gravity. To account for changes in the external environment and/or biomechanics during self-motion, the neural mechanisms underlying these computations are continually updated to ensure accurate motor behavior. To date, studies on the vestibular cerebellum have predominately focused on passive vestibular stimulation, whereas in actuality most stimulation is the result of voluntary movement. Accordingly, I also consider recent research exploring these computations during active self-motion and emerging evidence establishing the cerebellum's role in building predictive models of self-generated movement.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Pham NC, Kim YG, Kim SJ, Kim CH. Effect of a differential training paradigm with varying frequencies and amplitudes on adaptation of vestibulo-ocular reflex in mice. Exp Brain Res 2023; 241:1299-1308. [PMID: 37000203 DOI: 10.1007/s00221-023-06601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
The vestibulo-ocular reflex (VOR) functions to maintain eye stability during head movement, and VOR gain can be dynamically increased or decreased by gain-up or gain-down adaptation. In this study, we investigated the impact of a differential training paradigm with varying frequencies and amplitudes on the level of VOR adaptation in mice. Training for gain-up (out of phase) or gain-down (in phase) VOR adaptation was applied for 60 min using two protocols: (1) oscillation of a drum and turntable with fixed frequency and differing amplitudes (0.5 Hz/2.5°, 0.5 Hz/5° and 0.5 Hz/10°). (2) Oscillation of a drum and turntable with fixed amplitude and a differing frequency (0.25 Hz/5°, 0.5 Hz/5° and 1 Hz/5°). VOR adaptation occurred distinctively in gain-up and gain-down learning. In gain-up VOR adaptation, the learned increase in VOR gain was greatest when trained with the same frequency and amplitude as the test stimulation, and VOR gain decreased after gain-up training with too high a frequency or amplitude. In gain-down VOR adaptation, the decrease in VOR gain increased as the training frequency or amplitude increased. These results suggest that different mechanisms are, at least in part, involved in gain-up and gain-down VOR adaptation.
Collapse
Affiliation(s)
- Ngoc Chien Pham
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea
| | - Yong Gyu Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Memory Network Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Memory Network Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang-Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea.
| |
Collapse
|
8
|
Uemura M, Furuse T, Yamada I, Kushida T, Abe T, Imai K, Nagao S, Kudoh M, Yoshizawa K, Tamura M, Kiyonari H, Wakana S, Hirano S. Deficiency of protocadherin 9 leads to reduction in positive emotional behaviour. Sci Rep 2022; 12:11933. [PMID: 35831353 PMCID: PMC9279467 DOI: 10.1038/s41598-022-16106-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/05/2022] [Indexed: 11/08/2022] Open
Abstract
Protocadherin 9 (Pcdh9) is a member of the cadherin superfamily and is uniquely expressed in the vestibular and limbic systems; however, its physiological role remains unclear. Here, we studied the expression of Pcdh9 in the limbic system and phenotypes of Pcdh9-knock-out mice (Pcdh9 KO mice). Pcdh9 mRNA was expressed in the fear extinction neurons that express protein phosphatase 1 regulatory subunit 1 B (Ppp1r1b) in the posterior part of the basolateral amygdala (pBLA), as well as in the Cornu Ammonis (CA) and Dentate Gyrus (DG) neurons of the hippocampus. We show that the Pcdh9 protein was often localised at synapses. Phenotypic analysis of Pcdh9 KO mice revealed no apparent morphological abnormalities in the pBLA but a decrease in the spine number of CA neurons. Further, the Pcdh9 KO mice were related to features such as the abnormal optokinetic response, less approach to novel objects, and reduced fear extinction during recovery from the fear. These results suggest that Pcdh9 is involved in eliciting positive emotional behaviours, possibly via fear extinction neurons in the pBLA and/or synaptic activity in the hippocampal neurons, and normal optokinetic eye movement in brainstem optokinetic system-related neurons.
Collapse
Affiliation(s)
- Masato Uemura
- Laboratory of Cell Biology, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata City, Osaka, 573-1010, Japan
| | - Tamio Furuse
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 3050074, Japan
| | - Ikuko Yamada
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 3050074, Japan
| | - Tomoko Kushida
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 3050074, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Keiko Imai
- Laboratory of Cell Biology, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata City, Osaka, 573-1010, Japan
| | - Soichi Nagao
- Laboratory for Motor Learning Control, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Laboratory for Integrative Brain Function, Nozomi Hospital, Komuro 3170, Ina, Saitama, 362-0806, Japan
| | - Moeko Kudoh
- Laboratory for Motor Learning Control, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Katsuhiko Yoshizawa
- Laboratory of Environmental Science, Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, 663-8558, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 3050074, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 3050074, Japan
- Department of Animal Experimentation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, 650-0047, Japan
| | - Shinji Hirano
- Laboratory of Cell Biology, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata City, Osaka, 573-1010, Japan.
| |
Collapse
|
9
|
Plasticity and repair of the vestibulo-ocular reflex. PROGRESS IN BRAIN RESEARCH 2022; 267:183-214. [PMID: 35074054 DOI: 10.1016/bs.pbr.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is self-evident, once one thinks about it, that the vestibulo-ocular reflex must have caretaker systems that keep it operating correctly over the span of a lifetime. When a movement is not correct (e.g., in position, speed, direction) it is said to be dysmetric. For the vestibulo-ocular reflex (VOR), if eye velocity is not equal and opposite to head velocity within reasonable limits, one has vestibulo-ocular dysmetria. Consequently, the function of the caretaker systems is to eliminate vestibulo-ocular dysmetria. These systems are first required to act just after birth when the gain of the reflex is usually not normal, and must be initially calibrated; and then maintained as the animal grows older; and then in adult life an important function of the caretaker systems is the compensation required after damage. The mechanisms of this caretaker system and ensuring motor learning is the focus of this chapter.
Collapse
|
10
|
Nagao S, Hirai H, Kano M, Yuzaki M. Masao Ito-A Visionary Neuroscientist with a Passion for the Cerebellum. Neuroscience 2021; 462:1-3. [PMID: 33892899 DOI: 10.1016/j.neuroscience.2021.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Soichi Nagao
- Laboratory for Integrative Brain Function, Nozomi Hospital, Saitama 362-0806, Japan; Laboratory for Memory Neuroscience, Tokyo Metropolitan Institute for Gerontology, Tokyo 173-0015, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Masanobu Kano
- Depertment of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan
| | - Michisuke Yuzaki
- Department of Neurophysiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|