1
|
Koh N, Ma Z, Sarup A, Kristl AC, Agrios M, Young M, Miri A. Selective direct motor cortical influence during naturalistic climbing in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.18.545509. [PMID: 39229015 PMCID: PMC11370436 DOI: 10.1101/2023.06.18.545509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
It remains poorly resolved when and how motor cortical output directly influences limb muscle activity through descending projections, which impedes mechanistic understanding of motor control. Here we addressed this in mice performing an ethologically inspired climbing behavior. We quantified the direct influence of forelimb primary motor cortex (caudal forelimb area, CFA) on muscles across the muscle activity states expressed during climbing. We found that CFA instructs muscle activity pattern by selectively activating certain muscles, while less frequently activating or suppressing their antagonists. From Neuropixels recordings, we identified linear combinations (components) of motor cortical activity that covary with these effects. These components differ partially from those that covary with muscle activity and differ almost completely from those that covary with kinematics. Collectively, our results reveal an instructive direct motor cortical influence on limb muscles that is selective within a motor behavior and reliant on a distinct neural activity subspace.
Collapse
|
2
|
Nicholas MA, Yttri EA. Motor cortex is responsible for motoric dynamics in striatum and the execution of both skilled and unskilled actions. Neuron 2024; 112:3486-3501.e5. [PMID: 39168128 DOI: 10.1016/j.neuron.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/28/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
Striatum and its predominant input, motor cortex, are responsible for the selection and performance of purposive movement, but how their interaction guides these processes is not understood. To establish its neural and behavioral contributions, we bilaterally lesioned motor cortex and recorded striatal activity and reaching performance daily, capturing the lesion's direct ramifications within hours of the intervention. We observed reaching impairment and an absence of striatal motoric activity following lesion of motor cortex, but not parietal cortex control lesions. Although some aspects of performance began to recover after 8-10 days, striatal projection and interneuronal dynamics did not-eventually entering a non-motor encoding state that aligned with persisting kinematic control deficits. Lesioned mice also exhibited a profound inability to switch motor plans while locomoting, reminiscent of clinical freezing of gait (FOG). Our results demonstrate the necessity of motor cortex in generating trained and untrained actions as well as striatal motoric dynamics.
Collapse
Affiliation(s)
- Mark A Nicholas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Eric A Yttri
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
3
|
Banerjee A, Chen F, Druckmann S, Long MA. Temporal scaling of motor cortical dynamics reveals hierarchical control of vocal production. Nat Neurosci 2024; 27:527-535. [PMID: 38291282 DOI: 10.1038/s41593-023-01556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 12/13/2023] [Indexed: 02/01/2024]
Abstract
Neocortical activity is thought to mediate voluntary control over vocal production, but the underlying neural mechanisms remain unclear. In a highly vocal rodent, the male Alston's singing mouse, we investigate neural dynamics in the orofacial motor cortex (OMC), a structure critical for vocal behavior. We first describe neural activity that is modulated by component notes (~100 ms), probably representing sensory feedback. At longer timescales, however, OMC neurons exhibit diverse and often persistent premotor firing patterns that stretch or compress with song duration (~10 s). Using computational modeling, we demonstrate that such temporal scaling, acting through downstream motor production circuits, can enable vocal flexibility. These results provide a framework for studying hierarchical control circuits, a common design principle across many natural and artificial systems.
Collapse
Affiliation(s)
- Arkarup Banerjee
- NYU Neuroscience Institute, New York University Langone Health, New York, NY, USA.
- Department of Otolaryngology, New York University Langone Health, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Feng Chen
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Michael A Long
- NYU Neuroscience Institute, New York University Langone Health, New York, NY, USA.
- Department of Otolaryngology, New York University Langone Health, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
4
|
Banerjee A, Chen F, Druckmann S, Long MA. Neural dynamics in the rodent motor cortex enables flexible control of vocal timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525252. [PMID: 36747850 PMCID: PMC9900850 DOI: 10.1101/2023.01.23.525252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neocortical activity is thought to mediate voluntary control over vocal production, but the underlying neural mechanisms remain unclear. In a highly vocal rodent, the Alston's singing mouse, we investigate neural dynamics in the orofacial motor cortex (OMC), a structure critical for vocal behavior. We first describe neural activity that is modulated by component notes (approx. 100 ms), likely representing sensory feedback. At longer timescales, however, OMC neurons exhibit diverse and often persistent premotor firing patterns that stretch or compress with song duration (approx. 10 s). Using computational modeling, we demonstrate that such temporal scaling, acting via downstream motor production circuits, can enable vocal flexibility. These results provide a framework for studying hierarchical control circuits, a common design principle across many natural and artificial systems.
Collapse
Affiliation(s)
- Arkarup Banerjee
- NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
- Department of Otolaryngology, New York University Langone Health, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Feng Chen
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Shaul Druckmann
- Department of Neuroscience, Stanford University, Stanford, CA 94304, USA
| | - Michael A Long
- NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
- Department of Otolaryngology, New York University Langone Health, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
5
|
Barrett JM, Martin ME, Shepherd GMG. Manipulation-specific cortical activity as mice handle food. Curr Biol 2022; 32:4842-4853.e6. [PMID: 36243014 PMCID: PMC9691616 DOI: 10.1016/j.cub.2022.09.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/02/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
Food handling offers unique yet largely unexplored opportunities to investigate how cortical activity relates to forelimb movements in a natural, ethologically essential, and kinematically rich form of manual dexterity. To determine these relationships, we recorded high-speed (1,000 fps) video and multi-channel electrophysiological cortical spiking activity while mice handled food. The high temporal resolution of the video allowed us to decompose active manipulation ("oromanual") events into characteristic submovements, enabling event-aligned analysis of cortical activity. Activity in forelimb M1 was strongly modulated during food handling, generally higher during oromanual events and lower during holding intervals. Optogenetic silencing and stimulation of forelimb M1 neurons partially affected food-handling movements, exerting suppressive and activating effects, respectively. We also extended the analysis to forelimb S1 and lateral M1, finding broadly similar oromanual-related activity across all three areas. However, each area's activity displayed a distinct timing and phasic/tonic temporal profile, which was further analyzed by non-negative matrix factorization and demonstrated to be attributable to area-specific composition of activity classes. Current or future forelimb position could be accurately predicted from activity in all three regions, indicating that the cortical activity in these areas contains high information content about forelimb movements during food handling. These results thus establish that cortical activity during food handling is manipulation specific, distributed, and broadly similar across multiple sensorimotor areas while also exhibiting area- and submovement-specific relationships with the fast kinematic hallmarks of this natural form of complex free-object-handling manual dexterity.
Collapse
Affiliation(s)
- John M Barrett
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| | - Megan E Martin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Gordon M G Shepherd
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| |
Collapse
|