1
|
Varon S, Babin K, Spering M, Culham JC. Target interception in virtual reality is better for natural versus unnatural trajectory shapes and orientations. J Vis 2025; 25:11. [PMID: 39786733 PMCID: PMC11725989 DOI: 10.1167/jov.25.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025] Open
Abstract
Human performance in perceptual and visuomotor tasks is enhanced when stimulus motion follows the laws of gravitational physics, including acceleration consistent with Earth's gravity, g. Here we used a manual interception task in virtual reality to investigate the effects of trajectory shape and orientation on interception timing and accuracy. Participants punched to intercept a ball moving along one of four trajectories that varied in shape (parabola or tent) and orientation (upright or inverted). We also varied the location of visual fixation such that trajectories fell entirely within the lower or upper visual field. Reaction times were faster for more natural shapes and orientations, regardless of visual field. Overall accuracy was poorer and movement time was longer for the inverted tent condition than the other three conditions, perhaps because it was imperfectly reminiscent of a bouncing ball. A detailed analysis of spatial errors revealed that interception endpoints were more likely to fall along the path of the final trajectory in upright vs. inverted conditions, suggesting stronger expectations regarding the final trajectory direction for these conditions. Taken together, these results suggest that the naturalness of the shape and orientation of a trajectory contributes to performance in a virtual interception task.
Collapse
Affiliation(s)
- Sofia Varon
- Neuroscience Program, University of Western Ontario, London, Ontario, Canada
| | - Karsten Babin
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Miriam Spering
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jody C Culham
- Neuroscience Program, University of Western Ontario, London, Ontario, Canada
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
- https://www.culhamlab.com/
- https://orcid.org/0000-0003-0754-2999
| |
Collapse
|
2
|
李 越, 张 勤, 马 孝, 沈 佳, 金 玉, 陈 向, 杨 军, 陈 建. [The effect of different rotation modes on testing resulting of the subjective visual vertical]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:665-669. [PMID: 36036065 PMCID: PMC10127615 DOI: 10.13201/j.issn.2096-7993.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Objective:To investigate the effect of different rotations modes of control rod on testing results of the subjective visual vertical (SVV). Methods:Twenty-four normal young volunteers were selected for this study, and the control rod of SVV was rotated in clockwise, counterclockwise and any direction at the head tilt-positions of 0°, 45° left and 45° right. The differences of SVV deflection angle values at different rotation modes were analyzed. Results:①The deviation angle values of SVV obtained by rotating the control rod in clockwise, counterclockwise and any direction at the head tilt-positions of 0° were 1.56°±0.21°, 3.05°±0.24°, and 2.16°±0.22°, respectively,and the difference was statistically significant (P<0.05),the deviation angle value of SVV in clockwise direction was smaller; ②At head tilt-positions of 45° left, the SVV deviation angle values obtained by rotating the control rod in three rotation modes were 2.59°±0.53°, 4.03°±0.51°, and 3.49°±0.54°, respectively, and the difference was statistically significant(P<0.05),the deviation angle value in the clockwise direction was also smaller; ③At the head tilt-positions of 45° right, the SVV deviation angle values in three modes were 4.68°±0.58°, 7.23°±0.72°, and 5.93°±0.96°, respectively, and the difference was statistically significant (P<0.05),the deviation value of SVV was also smaller when rotated in the clockwise direction; ④Comparison of SVV deviation angle values in three rotation modes at the head tilt-positions of 45° left and 45° right showed that there was no statistical difference in clockwise and in any direction (P>0.05), while the difference was statistically significant when rotated in the counterclockwise direction (P<0.05). Conclusion:Different rotation modes of the control rod during SVV testing will affect the test results. Rotating the control rod in clockwise direction to make the SVV values more accurate is recommended.
Collapse
Affiliation(s)
- 越 李
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室(上海,200092)Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200092, China
| | - 勤 张
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室(上海,200092)Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200092, China
| | - 孝宝 马
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室(上海,200092)Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200092, China
| | - 佳丽 沈
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室(上海,200092)Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200092, China
| | - 玉莲 金
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室(上海,200092)Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200092, China
| | - 向平 陈
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室(上海,200092)Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200092, China
| | - 军 杨
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室(上海,200092)Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200092, China
| | - 建勇 陈
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室(上海,200092)Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200092, China
| |
Collapse
|
3
|
Delle Monache S, Indovina I, Zago M, Daprati E, Lacquaniti F, Bosco G. Watching the Effects of Gravity. Vestibular Cortex and the Neural Representation of "Visual" Gravity. Front Integr Neurosci 2021; 15:793634. [PMID: 34924968 PMCID: PMC8671301 DOI: 10.3389/fnint.2021.793634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Gravity is a physical constraint all terrestrial species have adapted to through evolution. Indeed, gravity effects are taken into account in many forms of interaction with the environment, from the seemingly simple task of maintaining balance to the complex motor skills performed by athletes and dancers. Graviceptors, primarily located in the vestibular otolith organs, feed the Central Nervous System with information related to the gravity acceleration vector. This information is integrated with signals from semicircular canals, vision, and proprioception in an ensemble of interconnected brain areas, including the vestibular nuclei, cerebellum, thalamus, insula, retroinsula, parietal operculum, and temporo-parietal junction, in the so-called vestibular network. Classical views consider this stage of multisensory integration as instrumental to sort out conflicting and/or ambiguous information from the incoming sensory signals. However, there is compelling evidence that it also contributes to an internal representation of gravity effects based on prior experience with the environment. This a priori knowledge could be engaged by various types of information, including sensory signals like the visual ones, which lack a direct correspondence with physical gravity. Indeed, the retinal accelerations elicited by gravitational motion in a visual scene are not invariant, but scale with viewing distance. Moreover, the "visual" gravity vector may not be aligned with physical gravity, as when we watch a scene on a tilted monitor or in weightlessness. This review will discuss experimental evidence from behavioral, neuroimaging (connectomics, fMRI, TMS), and patients' studies, supporting the idea that the internal model estimating the effects of gravity on visual objects is constructed by transforming the vestibular estimates of physical gravity, which are computed in the brainstem and cerebellum, into internalized estimates of virtual gravity, stored in the vestibular cortex. The integration of the internal model of gravity with visual and non-visual signals would take place at multiple levels in the cortex and might involve recurrent connections between early visual areas engaged in the analysis of spatio-temporal features of the visual stimuli and higher visual areas in temporo-parietal-insular regions.
Collapse
Affiliation(s)
- Sergio Delle Monache
- UniCamillus—Saint Camillus International University of Health Sciences, Rome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Iole Indovina
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Myrka Zago
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Center for Space Biomedicine, University of Rome “Tor Vergata”, Rome, Italy
- Department of Civil and Computer Engineering, University of Rome “Tor Vergata”, Rome, Italy
| | - Elena Daprati
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Center for Space Biomedicine, University of Rome “Tor Vergata”, Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Center for Space Biomedicine, University of Rome “Tor Vergata”, Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Gianfranco Bosco
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Center for Space Biomedicine, University of Rome “Tor Vergata”, Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|