1
|
Wang J, Fan L, Teng T, Wu H, Liu X, Yin B, Li X, Jiang Y, Zhao J, Wu Q, Guo Y, Zhou X, Xie P. Adolescent male rats show altered gut microbiota composition associated with depressive-like behavior after chronic unpredictable mild stress: Differences from adult rats. J Psychiatr Res 2024; 173:183-191. [PMID: 38547740 DOI: 10.1016/j.jpsychires.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
Accumulating evidence reveals the metabolism and neurotransmitter systems are different in major depressive disorder (MDD) between adolescent and adult patients; however, much is still unknown from the gut microbiome perspective. To minimize confounding factors such as geographical location, ethnicity, diet, and drugs, we investigated the gut microbial differences between adolescent and adult male Sprague-Dawley rats. We exposed the adolescent rats to chronic unpredictable mild stress (CUMS) for 3 weeks and assessed their behavior using the sucrose preference test (SPT), open field test (OFT), and forced swimming test (FST). We collected and sequenced fecal samples after the behavioral tests and compared them with our previous data on adult rats. Both adolescent and adult CUMS rats exhibited reduced sucrose preference in SPT, reduced total distance in OFT, and increased immobility time in FST. Moreover, compared to their respective controls, the adolescent CUMS rats had distinct amplicon sequence variants (ASVs) mainly in the Muribaculaceae family, Bacteroidetes phylum, while the adult CUMS rats had those in the Lachnospiraceae family, Firmicutes phylum. In the adolescent group, the Muribaculaceae negatively correlated with FST and positively correlated with SPT and OFT. In the adult group, the different genera in the Lachnospiraceae showed opposite correlations with FST. Furthermore, the adolescent CUMS rats showed disrupted microbial functions, such as "Xenobiotics biodegradation and metabolism" and "Immune system", while the adult CUMS rats did not. These results confirmed the gut microbiota differences between adolescent and adult rats after CUMS modeling and provided new insight into the age-related influence on depression models.
Collapse
Affiliation(s)
- Jie Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Fan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Wu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianting Zhao
- Department of Neurology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical College, Xinxiang, China
| | - Qingyuan Wu
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Filipović D, Novak B, Xiao J, Tadić P, Turck CW. Prefrontal cortical synaptoproteome profile combined with machine learning predicts resilience towards chronic social isolation in rats. J Psychiatr Res 2024; 172:221-228. [PMID: 38412784 DOI: 10.1016/j.jpsychires.2024.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Chronic social isolation (CSIS) of rats serves as an animal model of depression and generates CSIS-resilient and CSIS-susceptible phenotypes. We aimed to investigate the prefrontal cortical synaptoproteome profile of CSIS-resilient, CSIS-susceptible, and control rats to delineate biochemical pathways and predictive biomarker proteins characteristic for the resilient phenotype. A sucrose preference test was performed to distinguish rat phenotypes. Class separation and machine learning (ML) algorithms support vector machine with greedy forward search and random forest were then used for discriminating CSIS-resilient from CSIS-susceptible and control rats. CSIS-resilient compared to CSIS-susceptible rat proteome analysis revealed, among other proteins, downregulated glycolysis intermediate fructose-bisphosphate aldolase C (Aldoc), and upregulated clathrin heavy chain 1 (Cltc), calcium/calmodulin-dependent protein kinase type II (Cam2a), synaptophysin (Syp) and fatty acid synthase (Fasn) that are involved in neuronal transmission, synaptic vesicular trafficking, and fatty acid synthesis. Comparison of CSIS-resilient and control rats identified downregulated mitochondrial proteins ATP synthase subunit beta (Atp5f1b) and citrate synthase (Cs), and upregulated protein kinase C gamma type (Prkcg), vesicular glutamate transporter 1 (Slc17a7), and synaptic vesicle glycoprotein 2 A (Sv2a) involved in signal transduction and synaptic trafficking. The combined protein differences make the rat groups linearly separable, and 100% validation accuracy is achieved by standard ML models. ML algorithms resulted in four panels of discriminative proteins. Proteomics-data-driven class separation and ML algorithms can provide a platform for accessing predictive features and insight into the molecular mechanisms underlying synaptic neurotransmission involved in stress resilience.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Božidar Novak
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Jinqiu Xiao
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Predrag Tadić
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia.
| | - Christoph W Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; National Resource Center for Non-human Primates, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China.
| |
Collapse
|
3
|
Zhu H, Du Z, Lu R, Zhou Q, Shen Y, Jiang Y. Investigating the Mechanism of Chufan Yishen Formula in Treating Depression through Network Pharmacology and Experimental Verification. ACS OMEGA 2024; 9:12698-12710. [PMID: 38524447 PMCID: PMC10955564 DOI: 10.1021/acsomega.3c08350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Objective: To investigate the antidepressant effect and potential mechanism of the Chufan Yishen Formula (CFYS) through network pharmacology, molecular docking, and experimental verification. Methods: The active ingredients and their target genes of CFYS were identified through Traditional Chinese Medicine Systems Pharmacology (TCMSP) and TCM-ID. We obtained the differentially expressed genes in patients with depression from the GEO database and screened out the genes intersecting with the target genes of CFYS to construct the PPI network. The key pathways were selected through STRING and KEGG. Then, molecular docking and experimental verification were performed. Results: A total of 113 effective components and 195 target genes were obtained. After intersecting the target genes with the differentially expressed genes in patients with depression, we obtained 37 differential target genes, among which HMOX1, VEGFA, etc., were the key genes. After enriching the differential target genes by KEGG, we found that the "chemical carcinogenesis-reactive oxygen species" pathway was the key pathway for the CFYS antidepressant effect. Besides, VEGFA might be a key marker for depression. Experimental verification found that CFYS could significantly improve the behavioral indicators of rats with depression models, including improving the antioxidant enzyme activity and increasing VEGFA levels. The results are consistent with the network pharmacology analysis. Conclusions: CFYS treatment for depression is a multicomponent, multitarget, and multipathway complex process, which may mainly exert an antidepressant effect by improving the neuron antioxidant stress response and regulating VEGFA levels.
Collapse
Affiliation(s)
- Haohao Zhu
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| | - Zhiqiang Du
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| | - Rongrong Lu
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| | - Qin Zhou
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| | - Yuan Shen
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| | - Ying Jiang
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| |
Collapse
|
4
|
Głombik K, Kukla-Bartoszek M, Curzytek K, Basta-Kaim A, Budziszewska B. Contribution of changes in the orexin system and energy sensors in the brain in depressive disorder - a study in an animal model. Pharmacol Rep 2024; 76:51-71. [PMID: 38194217 PMCID: PMC10830606 DOI: 10.1007/s43440-023-00559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Maternal elevated glucocorticoid levels during pregnancy can affect the developing fetus, permanently altering the structure and function of its brain throughout life. Excessive action of these hormones is known to contribute to psychiatric disorders, including depression. MATERIALS The study was performed in a rat model of depression based on prenatal administration of dexamethasone (DEX) in late pregnancy (0.1 mg/kg, days 14-21). We evaluated the effects of prenatal DEX treatment on the cognition and bioenergetic signaling pathways in the brain of adult male rats, in the frontal cortex and hippocampus, and in response to stress in adulthood, using behavioral and biochemical test batteries. RESULTS We revealed cognitive deficits in rats prenatally treated with DEX. At the molecular level, a decrease in the orexin A and orexin B levels and downregulation of the AMPK-SIRT1-PGC1α transduction pathway in the frontal cortex of these animals were observed. In the hippocampus, a decreased expression of orexin B was found and changes in the MR/GR ratio were demonstrated. Furthermore, an increase in HDAC5 level triggered by the prenatal DEX treatment in both brain structures and a decrease in MeCP2 level in the hippocampus were reported. CONCLUSIONS Our study demonstrated that prenatal DEX treatment is associated with cognitive dysfunction and alterations in various proteins leading to metabolic changes in the frontal cortex, while in the hippocampus adaptation mechanisms were activated. The presented results imply that different pathophysiological metabolic processes may be involved in depression development, which may be useful in the search for novel therapies.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| | - Magdalena Kukla-Bartoszek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Katarzyna Curzytek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| |
Collapse
|
5
|
Rodrigues-Ribeiro L, Resende BL, Pinto Dias ML, Lopes MR, de Barros LLM, Moraes MA, Verano-Braga T, Souza BR. Neuroproteomics: Unveiling the Molecular Insights of Psychiatric Disorders with a Focus on Anxiety Disorder and Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:103-128. [PMID: 38409418 DOI: 10.1007/978-3-031-50624-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Anxiety and depression are two of the most common mental disorders worldwide, with a lifetime prevalence of up to 30%. These disorders are complex and have a variety of overlapping factors, including genetic, environmental, and behavioral factors. Current pharmacological treatments for anxiety and depression are not perfect. Many patients do not respond to treatment, and those who do often experience side effects. Animal models are crucial for understanding the complex pathophysiology of both disorders. These models have been used to identify potential targets for new treatments, and they have also been used to study the effects of environmental factors on these disorders. Recent proteomic methods and technologies are providing new insights into the molecular mechanisms of anxiety disorder and depression. These methods have been used to identify proteins that are altered in these disorders, and they have also been used to study the effects of pharmacological treatments on protein expression. Together, behavioral and proteomic research will help elucidate the factors involved in anxiety disorder and depression. This knowledge will improve preventive strategies and lead to the development of novel treatments.
Collapse
Affiliation(s)
- Lucas Rodrigues-Ribeiro
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bruna Lopes Resende
- Department of Physiology and Biophysics, Laboratory of Neurodevelopment and Evolution (NeuroDEv), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maria Luiza Pinto Dias
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Megan Rodrigues Lopes
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Laboratory of Neurodevelopment and Evolution (NeuroDEv), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Larissa Luppi Monteiro de Barros
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Muiara Aparecida Moraes
- Department of Physiology and Biophysics, Laboratory of Neurodevelopment and Evolution (NeuroDEv), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thiago Verano-Braga
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil.
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Bruno Rezende Souza
- Department of Physiology and Biophysics, Laboratory of Neurodevelopment and Evolution (NeuroDEv), Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
6
|
Hu G, Zhou C, Wang J, Ma X, Ma H, Yu H, Peng Z, Huang J, Cai M. Electroacupuncture treatment ameliorates depressive-like behavior and cognitive dysfunction via CB1R dependent mitochondria biogenesis after experimental global cerebral ischemic stroke. Front Cell Neurosci 2023; 17:1135227. [PMID: 37091920 PMCID: PMC10113634 DOI: 10.3389/fncel.2023.1135227] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
INTRODUCTION This study aimed to identify the effect of electroacupuncture (EA) treatment on post-stroke depression (PSD) and explore whether cannabinoid receptor 1 (CB1R)-mediated mitochondrial biogenesis accounts for the treatment effect of EA. METHODS The PSD mouse model was induced by a consecutive 14-day chronic unpredictable stress operation after 7 days of recovery from the bilateral common carotid artery occlusion surgery. Either EA treatment or sham stimulation was performed for 14 consecutive days from Day 7 after the BCCAO operation. Subjects' PSD-like behaviors were tested via open field test, sucrose preference test, novelty suppressed feeding test, tail suspension test, and forced swim test, and subjects' cognitive function was examined using Y-maze and novelty object recognition test. In addition, the levels of CB1R, mitochondrial biogenesis-related proteins (nuclear transcription factor 1, NRF1; mitochondrial transcription factor A, TFAM), proteins related to mitochondrial function (Cytochrome C, Cyto C; AIF, COX IV), and mitochondrial DNA were measured. To elucidate the role of CB1R in EA treatment, CB1R antagonists AM251 and CB1R-shRNA were given to mice before EA treatment. Likewise, subjects' depressive-like behaviors, cognitive function, mitochondrial function, and mitochondrial biogenesis were examined after the PSD procedure. RESULTS It has been showed that EA successfully ameliorated depressive-like behaviors, improved cognitive dysfunctions, and upregulated CB1R, NRF1 and TFAM expressions. However, the supplementation of AM251 and CB1R-shRNA blocked the antidepressant-like effects generated by EA, and EA failed to improve cognitive dysfunction, upregulate CB1R protein expression, and increase mitochondrial function and biogenesis. CONCLUSION Altogether, these results indicated that EA ameliorated PSD-like behaviors in mice, improved cognitive dysfunctions after PSD, and promoted mitochondrial biogenesis by activating CB1R, a novel mechanism underlying EA's antidepressant-like effects in treating PSD.
Collapse
Affiliation(s)
- Guangtao Hu
- Department of Psychological Medicine, 958th Hospital, Chongqing, China
| | - Cuihong Zhou
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jin Wang
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xinxu Ma
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Hongzhe Ma
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Huan Yu
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhengwu Peng
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jing Huang
- Department of Health Management, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
7
|
Perić I, Lješević M, Beškoski V, Nikolić M, Filipović D. Metabolomic profiling relates tianeptine effectiveness with hippocampal GABA, myo-inositol, cholesterol, and fatty acid metabolism restoration in socially isolated rats. Psychopharmacology (Berl) 2022; 239:2955-2974. [PMID: 35776189 DOI: 10.1007/s00213-022-06180-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/16/2022] [Indexed: 12/28/2022]
Abstract
RATIONALE Discovering biomarkers of major depressive disorder (MDD) can give a deeper understanding of this mood disorder and improve the ability to screen for, diagnose, and treat MDD. OBJECTIVES In this study, metabolomics was used in unraveling metabolite fluctuations of MDD and drug outcome by creating specific metabolomic fingerprints. We report metabolomic patterns of change of the hippocampus of adult male Wistar rats following chronic social isolation (CSIS) (6 weeks), an animal model of depression, and/or chronic tianeptine (Tian) treatment (10 mg kg-1 per day) (lasting 3 weeks of 6-week CSIS), monitored by using comprehensive GC × GC-MS. RESULTS The comparative metabolomic analysis highlighted the role of gamma aminobutyric acid (GABA), iso-allocholate, and unsaturated fatty acid metabolism alterations following the CSIS, which was corroborated with moderate to strong negative Pearson's correlation of GABA, docosahexaenoic, 9-hexadecenoic acid, 5,8,11,14-eicosatetraynoic, and arachidonic acids with immobility behavior in the forced swim test. The antidepressant effect of Tian restored GABA levels, which was absent in Tian resilient rats. Tian decreased myo-inositol and increased TCA cycle intermediates, amino acids, and cholesterol and its metabolite. As key molecules of divergence between Tian effectiveness and resilience, metabolomics revealed myo-inositol, GABA, cholesterol, and its metabolite. A significant moderate positive correlation between myo-inositol and immobility was revealed. Tian probably acted by upregulating NMDAR's and α2 adrenergic receptors (AR) or norepinephrine transporter in both control and stressed animals. CONCLUSION Metabolomics revealed several dysregulations underlying CSIS-induced depressive-like behavior and responsiveness to Tian, predominantly converging into NMDAR-mediated glutamate and myo-inositol signalization and GABA inhibitory pathways.
Collapse
Affiliation(s)
- Ivana Perić
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351, Vinča, Belgrade, Serbia
| | - Marija Lješević
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Vladimir Beškoski
- Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Milan Nikolić
- Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351, Vinča, Belgrade, Serbia.
| |
Collapse
|
8
|
Filipović D, Novak B, Xiao J, Yan Y, Yeoh K, Turck CW. Chronic Fluoxetine Treatment of Socially Isolated Rats Modulates Prefrontal Cortex Proteome. Neuroscience 2022; 501:52-71. [PMID: 35963583 DOI: 10.1016/j.neuroscience.2022.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Abstract
Fluoxetine (Flx) is the most commonly used antidepressant to treat major depressive disorder. However, its molecular mechanisms of action are not defined as yet. A comparative proteomic approach was used to identify proteome changes in the prefrontal cortex (PFC) cytosolic and non-synaptic mitochondria (NSM)-enriched fractions of adult male Wistar rats following chronic social isolation (CSIS), a rat model of depression, and Flx treatment in CSIS and control rats, using liquid chromatography online tandem mass spectrometry. Flx reversed CSIS-induced depressive - like behavior according to preference for sucrose and immobility in the forced swim test, indicating its antidepressant effect. Flx treatment in controls led to an increase of the expression of cytosolic proteins involved in the microtubule cytoskeleton and intracellular calcium homeostasis and of enzymes involved in bioenergetic and transmembrane transport in NSM. CSIS downregulated the cytosolic proteins involved in proteasome pathway, and glutathione antioxidative system, and upregulated the expression of enzymes participating in mitochondrial-energy metabolism and transport. The presence of cytochrome c in the cytosol may suggest compromised mitochondrial membrane integrity. Flx treatment in CSIS rats downregulated protein involved in oxidative phosphorylation, such as complex III and manganese superoxide dismutase, and upregulated vesicle-mediated transport and synaptic signaling proteins in the cytosol, and neuronal calcium-binding protein 1 in NSM. Our study identified PFC modulated proteins and affected biochemical pathways that may represent potential markers/targets underlying CSIS-induced depression and effective Flx treatment, and highlights the role of protein systems involved in NSM and various metabolic pathways potentially involved in neuronal plasticity.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Božidar Novak
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jinqiu Xiao
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Yu Yan
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Karin Yeoh
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christoph W Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
9
|
Elias E, Zhang AY, Manners MT. Novel Pharmacological Approaches to the Treatment of Depression. Life (Basel) 2022; 12:196. [PMID: 35207483 PMCID: PMC8879976 DOI: 10.3390/life12020196] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder is one of the most prevalent mental health disorders. Monoamine-based antidepressants were the first drugs developed to treat major depressive disorder. More recently, ketamine and other analogues were introduced as fast-acting antidepressants. Unfortunately, currently available therapeutics are inadequate; lack of efficacy, adverse effects, and risks leave patients with limited treatment options. Efforts are now focused on understanding the etiology of depression and identifying novel targets for pharmacological treatment. In this review, we discuss promising novel pharmacological targets for the treatment of major depressive disorder. Targeting receptors including N-methyl-D-aspartate receptors, peroxisome proliferator-activated receptors, G-protein-coupled receptor 39, metabotropic glutamate receptors, galanin and opioid receptors has potential antidepressant effects. Compounds targeting biological processes: inflammation, the hypothalamic-pituitary-adrenal axis, the cholesterol biosynthesis pathway, and gut microbiota have also shown therapeutic potential. Additionally, natural products including plants, herbs, and fatty acids improved depressive symptoms and behaviors. In this review, a brief history of clinically available antidepressants will be provided, with a primary focus on novel pharmaceutical approaches with promising antidepressant effects in preclinical and clinical studies.
Collapse
Affiliation(s)
| | | | - Melissa T. Manners
- Department of Biological Sciences, University of the Sciences, 600 South 43rd Street, Philadelphia, PA 19104, USA; (E.E.); (A.Y.Z.)
| |
Collapse
|
10
|
Song X, Zheng Q, Zhang R, Wang M, Deng W, Wang Q, Guo W, Li T, Ma X. Potential Biomarkers for Predicting Depression in Diabetes Mellitus. Front Psychiatry 2021; 12:731220. [PMID: 34912246 PMCID: PMC8667273 DOI: 10.3389/fpsyt.2021.731220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: To identify the potential biomarkers for predicting depression in diabetes mellitus using support vector machine to analyze routine biochemical tests and vital signs between two groups: subjects with both diabetes mellitus and depression, and subjects with diabetes mellitus alone. Methods: Electronic medical records upon admission and biochemical tests and vital signs of 135 patients with both diabetes mellitus and depression and 187 patients with diabetes mellitus alone were identified for this retrospective study. After matching on factors of age and sex, the two groups (n = 72 for each group) were classified by the recursive feature elimination-based support vector machine, of which, the training data, validation data, and testing data were split for ranking the parameters, determine the optimal parameters, and assess classification performance. The biomarkers were identified by 10-fold cross validation. Results: The experimental results identified 8 predictive biomarkers with classification accuracy of 78%. The 8 biomarkers are magnesium, cholesterol, AST/ALT, percentage of monocytes, bilirubin indirect, triglyceride, lactic dehydrogenase, and diastolic blood pressure. Receiver operating characteristic curve analysis was also adopted with area under the curve being 0.72. Conclusions: Some biochemical parameters may be potential biomarkers to predict depression among the subjects with diabetes mellitus.
Collapse
Affiliation(s)
- Xiuli Song
- Clinical Psychology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
- Psychiatric Laboratory and Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Zheng
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Rui Zhang
- Information Center, West China Hospital, Sichuan University, Chengdu, China
| | - Miye Wang
- Information Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Deng
- Psychiatric Laboratory and Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wang
- Psychiatric Laboratory and Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Wanjun Guo
- Psychiatric Laboratory and Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Psychiatric Laboratory and Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Perić I, Costina V, Djordjević S, Gass P, Findeisen P, Inta D, Borgwardt S, Filipović D. Tianeptine modulates synaptic vesicle dynamics and favors synaptic mitochondria processes in socially isolated rats. Sci Rep 2021; 11:17747. [PMID: 34493757 PMCID: PMC8423821 DOI: 10.1038/s41598-021-97186-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/09/2021] [Indexed: 11/09/2022] Open
Abstract
Deregulation of synaptic function and neurotransmission has been linked with the development of major depression disorder (MDD). Tianeptine (Tian) has been used as antidepressant with anxiolytic properties and recently as a nootropic to improve cognitive performance, but its mechanism of action is unknown. We conducted a proteomic study on the hippocampal synaptosomal fractions of adult male Wistar rats exposed to chronic social isolation (CSIS, 6 weeks), an animal model of depression and after chronic Tian treatment in controls (nootropic effect) and CSIS-exposed rats (lasting 3 weeks of 6-week CSIS) (therapeutic effect). Increased expression of Syn1 and Camk2-related neurotransmission, vesicle transport and energy processes in Tian-treated controls were found. CSIS led to upregulation of proteins associated with actin cytoskeleton, signaling transduction and glucose metabolism. In CSIS rats, Tian up-regulated proteins involved in mitochondrial energy production, mitochondrial transport and dynamics, antioxidative defense and glutamate clearance, while attenuating the CSIS-increased glycolytic pathway and cytoskeleton organization proteins expression and decreased the expression of proteins involved in V-ATPase and vesicle endocytosis. Our overall findings revealed that synaptic vesicle dynamics, specifically exocytosis, and mitochondria-related energy processes might be key biological pathways modulated by the effective nootropic and antidepressant treatment with Tian and be a potential target for therapeutic efficacy of the stress-related mood disorders.
Collapse
Affiliation(s)
- Ivana Perić
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Victor Costina
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, 68159, Mannheim, Germany
| | | | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, 68159, Mannheim, Germany
| | - Dragoš Inta
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
12
|
Fluoxetine exerts subregion/layer specific effects on parvalbumin/GAD67 protein expression in the dorsal hippocampus of male rats showing social isolation-induced depressive-like behaviour. Brain Res Bull 2021; 173:174-183. [PMID: 34048829 DOI: 10.1016/j.brainresbull.2021.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/29/2021] [Accepted: 05/23/2021] [Indexed: 11/21/2022]
Abstract
The molecular background of depression is intensively studied in terms of alterations of inhibitory circuits, mediated by gamma aminobutyric acid (GABA) signalization. We investigated the effects of chronic social isolation (CSIS) and chronic fluoxetine (Flx) treatment (15 mg/kg/day) (3 weeks), on Parvalbumin (PV) and GAD67 expression in a layer-specific manner in rat dorsal hippocampal subregions. CSIS-induced depressive- and anxiety-like behaviours were confirmed with decrease in sucrose preference and increase in marble burying during behavioural testing, while Flx antagonized these effects. CSIS altered PV expression in stratum pyramidale (SP) of dorsal cornu ammonis 1 (dCA1) and stratum radiatum (SR) of dCA3. Flx antagonized this effect, and boosted PV expression in SP of the entire dCA and the dorsal dentate gyrus (dDG), as well as in the SR of dCA1/CA3. CSIS showed no significant effects on GAD67 expression, while Flx boosted its expression within the SR of the entire CA and SO of the dCA3. A correlation between SP of dCA1 and SR of dCA3 with regard to PV changes, implicates their possible role in the inhibitory circuit alterations. Flx-induced increase in GAD67 expression, specifically in SR of the entire dHIPP, may impose its involvement in the cell metabolic processes. Strong negative correlation between GAD67 and sucrose preference following Flx-treatment of CSIS rats was revealed. PV + cells of the SP layer of dCA1 and CA2 could be a potential target for the antidepressant action of Flx, while strong effect of Flx on GAD67 expression in the SR should be more extensively studied.
Collapse
|
13
|
Głombik K, Budziszewska B, Basta-Kaim A. Mitochondria-targeting therapeutic strategies in the treatment of depression. Mitochondrion 2021; 58:169-178. [PMID: 33766747 DOI: 10.1016/j.mito.2021.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Depression is an affective disease with a complex clinical picture that is characterized by mood and emotional disturbances. It is known that several factors contribute to the risk of developing depression. The concept that mitochondrial dysfunction is one of the causes of depression is supported by a wide range of studies on cell cultures, animal models, and clinical research. An understanding the relationship between mitochondrial processes and central nervous system abnormalities that occur in the course of depression can guide the development of novel mitochondrial targeted therapeutic strategies as well as the usage of currently available antidepressants in a new context. This brief review aims to summarize recent findings on mitochondria dysfunction in depression, provide insight into therapeutic strategies targeting mitochondrial pathways, allude to future promising therapies, and discuss factors that can be used to improve treatment outcomes. The main focus is on new aspects (the effects of nutraceuticals and physical activity on brain metabolism), which can be combined with the available treatment options [monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs) and atypical drugs] to enhance their therapeutic effects.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland.
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland
| |
Collapse
|