1
|
Gryka-Marton M, Grabowska AD, Szukiewicz D. Breaking the Barrier: The Role of Proinflammatory Cytokines in BBB Dysfunction. Int J Mol Sci 2025; 26:3532. [PMID: 40331982 PMCID: PMC12026921 DOI: 10.3390/ijms26083532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
The BBB is created by a special system of brain microvascular endothelial cells (BMECs), pericytes (PCs), the capillary basement membrane, and the terminal branches ("end-feet") of astrocytes (ACs). The key function of the BBB is to protect the central nervous system (CNS) from potentially harmful/toxic substances in the bloodstream by selectively controlling the entry of cells and molecules, including nutrients and components of the immune system. The loss of BBB integrity in response to neuroinflammation, as manifested by an increase in permeability, depends predominantly on the activity of proinflammatory cytokines. However, the pathomechanism of structural and functional changes in the BBB under the influence of individual cytokines is still poorly understood. This review summarizes the current state of knowledge on this topic, which is important from both pathophysiological and therapeutic points of view. The structures and functions of all components of the BBB are reviewed, with emphasis given to differences between this and other locations of the circulatory system. The protein composition of the interendothelial tight junctions in the context of regulating BBB permeability is presented, as is the role of pericyte-BMEC interactions in the exchange of metabolites, ions, and nucleic acids. Finally, the documented actions of proinflammatory cytokines within the BBB are discussed.
Collapse
Affiliation(s)
| | | | - Dariusz Szukiewicz
- Laboratory of the Blood–Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (M.G.-M.); (A.D.G.)
| |
Collapse
|
2
|
Varghese SM, Patel S, Nandan A, Jose A, Ghosh S, Sah RK, Menon B, K V A, Chakravarty S. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol 2024; 61:10398-10447. [PMID: 38730081 DOI: 10.1007/s12035-024-04205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Depression is a highly prevalent psychological disorder characterized by persistent dysphoria, psychomotor retardation, insomnia, anhedonia, suicidal ideation, and a remarkable decrease in overall well-being. Despite the prevalence of accessible antidepressant therapies, many individuals do not achieve substantial improvement. Understanding the multifactorial pathophysiology and the heterogeneous nature of the disorder could lead the way toward better outcomes. Recent findings have elucidated the substantial impact of compromised blood-brain barrier (BBB) integrity on the manifestation of depression. BBB functions as an indispensable defense mechanism, tightly overseeing the transport of molecules from the periphery to preserve the integrity of the brain parenchyma. The dysfunction of the BBB has been implicated in a multitude of neurological disorders, and its disruption and consequent brain alterations could potentially serve as important factors in the pathogenesis and progression of depression. In this review, we extensively examine the pathophysiological relevance of the BBB and delve into the specific modifications of its components that underlie the complexities of depression. A particular focus has been placed on examining the effects of peripheral inflammation on the BBB in depression and elucidating the intricate interactions between the gut, BBB, and brain. Furthermore, this review encompasses significant updates on the assessment of BBB integrity and permeability, providing a comprehensive overview of the topic. Finally, we outline the therapeutic relevance and strategies based on BBB in depression, including COVID-19-associated BBB disruption and neuropsychiatric implications. Understanding the comprehensive pathogenic cascade of depression is crucial for shaping the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Shamili Mariya Varghese
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Shashikant Patel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Soumya Ghosh
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
3
|
Calderone A, Latella D, Cardile D, Gangemi A, Corallo F, Rifici C, Quartarone A, Calabrò RS. The Role of Neuroinflammation in Shaping Neuroplasticity and Recovery Outcomes Following Traumatic Brain Injury: A Systematic Review. Int J Mol Sci 2024; 25:11708. [PMID: 39519259 PMCID: PMC11546226 DOI: 10.3390/ijms252111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Neuroplasticity and neuroinflammation are variables seen during recovery from traumatic brain injury (TBI), while biomarkers are useful in monitoring injury and guiding rehabilitation efforts. This systematic review examines how neuroinflammation affects neuroplasticity and recovery following TBI in animal models and humans. Studies were identified from an online search of the PubMed, Web of Science, and Embase databases without any search time range. This review has been registered on Open OSF (n) UDWQM. Recent studies highlight the critical role of biomarkers like serum amyloid A1 (SAA1) and Toll-like receptor 4 (TLR4) in predicting TBI patients' injury severity and recovery outcomes, offering the potential for personalized treatment and improved neurorehabilitation strategies. Additionally, insights from animal studies reveal how neuroinflammation affects recovery, emphasizing targets such as NOD-like receptor family pyrin domain-containing 3 (NLRP3) and microglia for enhancing therapeutic interventions. This review emphasizes the central role of neuroinflammation in TBI, and its adverse impact on neuroplasticity and recovery, and suggests that targeted anti-inflammatory treatments and biomarker-based personalized approaches hold the key to improvement. Such approaches will need further development in future research by integrating neuromodulation and pharmacological interventions, along with biomarker validation, to optimize management in TBI.
Collapse
Affiliation(s)
- Andrea Calderone
- Department of Clinical and Experimental Medicine, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Desirèe Latella
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Antonio Gangemi
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Francesco Corallo
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Carmela Rifici
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| |
Collapse
|
4
|
Chen WJ, Kung WM, Lin MS. Editorial: The legacy of Dr. Rita Levi-Montalcini: advances in neurotrophic factors in brain disease development and treatment. Front Mol Neurosci 2024; 17:1387026. [PMID: 38736481 PMCID: PMC11084665 DOI: 10.3389/fnmol.2024.1387026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024] Open
Affiliation(s)
- Wei-Jung Chen
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan, Taiwan
| | - Woon-Man Kung
- Division of Neurosurgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei, Taiwan
| | - Muh-Shi Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan, Taiwan
- Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung, Taiwan
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Yap RS, Kumar J, Teoh SL. Potential Neuroprotective Role of Neurotrophin in Traumatic Brain Injury. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1189-1202. [PMID: 38279761 DOI: 10.2174/0118715273289222231219094225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
Traumatic brain injury (TBI) is a major global health issue that affects millions of people every year. It is caused by any form of external force, resulting in temporary or permanent impairments in the brain. The pathophysiological process following TBI usually involves excitotoxicity, mitochondrial dysfunction, oxidative stress, inflammation, ischemia, and apoptotic cell death. It is challenging to find treatment for TBI due to its heterogeneous nature, and no therapeutic interventions have been approved thus far. Neurotrophins may represent an alternative approach for TBI treatment because they influence various functional activities in the brain. The present review highlights recent studies on neurotrophins shown to possess neuroprotective roles in TBI. Neurotrophins, specifically brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have demonstrated reduced neuronal death, alleviated neuroinflammatory responses and improved neurological functions following TBI via their immunomodulatory, anti-inflammatory and antioxidant properties. Further studies are required to ensure the efficacy and safety of neurotrophins to be used as TBI treatment in clinical settings.
Collapse
Affiliation(s)
- Rei Shian Yap
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Wu X, Xu J, Li J, Deng M, Shen Z, Nie K, Luo W, Zhang C, Ma K, Chen X, Wang X. Bacteroides vulgatus alleviates dextran sodium sulfate-induced colitis and depression-like behaviour by facilitating gut-brain axis balance. Front Microbiol 2023; 14:1287271. [PMID: 38033588 PMCID: PMC10687441 DOI: 10.3389/fmicb.2023.1287271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background Patients with inflammatory bowel disease (IBD) have a higher prevalence of depression. Gut microbiota dysbiosis plays an important role in IBD and depression. However, few studies have explored the characteristic microbiota of patients with IBD and depression (IBDD), or their role in IBDD. Methods We performed deep metagenomic sequencing and 16S rDNA quantitative PCR to characterise the gut microbial communities of patients with IBDD and patients with IBD without depression (IBDND). We then assessed the effect of the microbiota on colitis and depression in mouse models of dextran sulfate sodium salt (DSS)-induced colitis and lipopolysaccharide (LPS)-induced depression. Furthermore, liquid chromatography-tandem mass spectrometry was used to analyse the microbiota-derived metabolites involved in gut-brain communication. Evans Blue tracer dye was used to assess blood-brain barrier (BBB) permeability. Results Our results showed that the faecal abundance of Bacteroides vulgatus (B. vulgatus) was lower in patients with IBDD than in those with IBDND. In the DSS-induced colitis mouse model, the B. vulgatus group showed a significantly lower disease activity index score, lesser weight loss, and longer colon length than the DSS group. Moreover, B. vulgatus relieved depression-like behaviour in the DSS-induced colitis mouse model and in the LPS-induced depression mouse model. Furthermore, the key metabolite of B. vulgatus was p-hydroxyphenylacetic acid (4-HPAA), which was found to relieve intestinal inflammation and alleviate depression-like behaviours in mouse models. By increasing the expression of the tight junction protein claudin-5 in the vascular endothelium of the BBB, B. vulgatus and 4-HPAA play critical roles in gut-brain communication. Conclusion B. vulgatus and B. vulgatus-derived 4-HPAA ameliorated intestinal inflammation and relieved depressive symptoms through the gut-brain axis. Thus, administration of B. vulgatus or 4-HPAA supplementation is a promising therapeutic strategy for treating IBD, particularly IBDD.
Collapse
Affiliation(s)
- Xing Wu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Jiahao Xu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Jingbo Li
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohua Shen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kai Nie
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Luo
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Chao Zhang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Kejia Ma
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
| |
Collapse
|
7
|
Singh S, Fereshetyan K, Shorter S, Paliokha R, Dremencov E, Yenkoyan K, Ovsepian SV. Brain-derived neurotrophic factor (BDNF) in perinatal depression: Side show or pivotal factor? Drug Discov Today 2023; 28:103467. [PMID: 36528281 DOI: 10.1016/j.drudis.2022.103467] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Perinatal depression is the most common psychiatric complication of pregnancy, with its detrimental effects on maternal and infant health widely underrated. There is a pressing need for specific molecular biomarkers, with pregnancy-related decline in brain-derived neurotrophic factor (BDNF) in the blood and downregulation of TrkB receptor in the brain reported in clinical and preclinical studies. In this review, we explore the emerging role of BDNF in reproductive biology and discuss evidence suggesting its deficiency as a risk factor for perinatal depression. With the increasing evidence for restoration of serum BDNF levels by antidepressant therapy, the strengthening association of perinatal depression with deficiency of BDNF supports its potential as a surrogate endpoint for preclinical and clinical studies.
Collapse
Affiliation(s)
- Saumya Singh
- Faculty of Science and Engineering, University of Greenwich London, Chatham Maritime, Kent ME4 4TB, UK
| | - Katarine Fereshetyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University of M. Heratsi, 0025, Yerevan, Armenia
| | - Susan Shorter
- Faculty of Science and Engineering, University of Greenwich London, Chatham Maritime, Kent ME4 4TB, UK
| | - Ruslan Paliokha
- Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eliyahu Dremencov
- Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University of M. Heratsi, 0025, Yerevan, Armenia
| | - Saak V Ovsepian
- Faculty of Science and Engineering, University of Greenwich London, Chatham Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
8
|
Yeltekin AÇ, Ucar A, Parlak V, Özgeriş FB, Türkez H, Esenbuğa N, Atamanalp M, Alak G. Borax exerts protective effect against ferrocene-induced neurotoxicity in Oncorhynchus mykiss. J Trace Elem Med Biol 2022; 72:126996. [PMID: 35569284 DOI: 10.1016/j.jtemb.2022.126996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND In recent years, therapeutic targets and the development of new drugs have shifted research towards inflammatory and oxidative stress pathways. Ferrocene (FcH) is a stable, small molecule that exhibits immunostimulatory and anti-tumor properties by a different mechanism and is effective at low doses in oral administration. However, it was surprising that there has been no performed investigation using FcH on aquaculture. On the other hand, recent papers reveal the key biological functions and health benefits due to daily boron intake in animals and humans. Therefore, we investigated the neurotoxic damage potential of FcH and its related neurotoxicity action mechanism in aquatic environments. In addition, the protective potential of borax (BX, or sodium borate) were evaluated againt in vivo neurotoxicity by FcH. METHODS Neurotoxicity assessment was performed in rainbow trout brain tissue, acutely under semi-static conditions via determining a vide range of parameters including catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) activities as well as glutathione (GSH), myeloperoxidase (MPO), glutathione (GSH), malondialdehyde (MDA levels), DNA damage (8-OHdG), apoptosis (caspase 3), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), nuclear factor erythroid-2 (Nrf-2), acetylcholinesterase (AChE) and brain-derived neurotrophic factor (BDNF) levels. In addition, the LC50 96 h level of FcH was determined for the first time in rainbow trout in this study. RESULTS In the obtained results, while FcH caused inhibition in enzyme activities, it showed an inducing effect on MDA, MPO, BDNF, Nrf2, TNF-α and IL-6 levels. It was determined that this oxidative damage related alterations were significantly different (p < 0.05) in comparison between FcH treated and controls. Again, the LC50 96 h value in rainbow trout was determined as 11.73 mg/L, which is approximately 5% less than the value given for freshwater fish (12.3 mg/L). On the contrary, it was observed that BX has a mitigating effect on FcH-induced neurotoxicity. CONCLUSION The present study suggests that borax may be useful for preventing or alleviating neurotoxicity induced by environmental contaminants or toxic chemicals.
Collapse
Affiliation(s)
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Fatma Betül Özgeriş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Turkey
| | - Hasan Türkez
- Department of Basic Medical Sciences, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Nurinisa Esenbuğa
- Department of Animal Science, Faculty of Agriculture, Ataturk University, TR-25030 Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
9
|
Kui H, Su H, Wang Q, Liu C, Li Y, Tian Y, Kong J, Sun G, Huang J. Serum metabolomics study of anxiety disorder patients based on LC-MS. Clin Chim Acta 2022; 533:131-143. [PMID: 35779624 DOI: 10.1016/j.cca.2022.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND In the current environment of increasing social pressure, anxiety disorder has become a kind of health problem that needs to be solved urgently. However, the pathological mechanism of anxiety is still unclear, the classification of clinical diagnosis and symptoms is complex, and there is still a lack of biomarkers that can be identified and judged. METHODS This study used LC-MS and non-targeted metabolomics to analyze the clinically collected plasma of 18 samples from anxiety disorder patients and 31 samples from healthy people to screen differential metabolites and perform subsequent metabolic pathway analysis. Binary Logistic regression was used to construct the anxiety disorder diagnosis prediction model and evaluate the prediction efficacy. RESULTS The results showed that 22 metabolites were disturbed in the plasma of anxiety patients compared with healthy people. These metabolites mainly participate in 6 metabolic pathways. The combined diagnostic factors 4-Acetamidobutanoate, 3-Hydroxysebacic acid, and Cytosine were used to construct the diagnosis prediction model. The prediction probability of the model is 91.8%, the Youden index is 0.889, the sensitivity is 0.889, and the specificity is 1.000, so the prediction effect is good. CONCLUSIONS This study preliminarily analyzed and explored the differences between plasma samples from patients with anxiety disorder and healthy individuals, increased the types of potential biomarkers for anxiety disorder, and provided a valuable reference for subsequent research related to anxiety disorder.
Collapse
Affiliation(s)
- Hongqian Kui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Haihua Su
- Department of Endocrinology and Nephrology, PKU Care CNOOC Hospital, Tianjin 300452, China
| | - Qian Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chuanxin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Department of Metabolism and Endocrinology, Endocrine and Metabolic Disease Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Medical Key Laboratory of Hereditary Rare Diseases of Henan, Luoyang Sub-center of National Clinical Research Center for Metabolic Diseases, Luoyang 471003, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiao Kong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Guijiang Sun
- Department of Kidney Disease and Blood Purification, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
10
|
He E, Liu M, Gong S, Fu X, Han Y, Deng F. White Matter Alterations in Depressive Disorder. Front Immunol 2022; 13:826812. [PMID: 35634314 PMCID: PMC9133348 DOI: 10.3389/fimmu.2022.826812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Depressive disorder is the most prevalent affective disorder today. Depressive disorder has been linked to changes in the white matter. White matter changes in depressive disorder could be a result of impaired cerebral blood flow (CBF) and CBF self-regulation, impaired blood-brain barrier function, inflammatory factors, genes and environmental factors. Additionally, white matter changes in patients with depression are associated with clinical variables such as differential diagnosis, severity, treatment effect, and efficacy assessment. This review discusses the characteristics, possible mechanisms, clinical relevance, and potential treatment of white matter alterations caused by depressive disorders.
Collapse
|
11
|
Dion-Albert L, Bandeira Binder L, Daigle B, Hong-Minh A, Lebel M, Menard C. Sex differences in the blood-brain barrier: Implications for mental health. Front Neuroendocrinol 2022; 65:100989. [PMID: 35271863 DOI: 10.1016/j.yfrne.2022.100989] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Prevalence of mental disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ) are increasing at alarming rates in our societies. Growing evidence points toward major sex differences in these conditions, and high rates of treatment resistance support the need to consider novel biological mechanisms outside of neuronal function to gain mechanistic insights that could lead to innovative therapies. Blood-brain barrier alterations have been reported in MDD, BD and SZ. Here, we provide an overview of sex-specific immune, endocrine, vascular and transcriptional-mediated changes that could affect neurovascular integrity and possibly contribute to the pathogenesis of mental disorders. We also identify pitfalls in current literature and highlight promising vascular biomarkers. Better understanding of how these adaptations can contribute to mental health status is essential not only in the context of MDD, BD and SZ but also cardiovascular diseases and stroke which are associated with higher prevalence of these conditions.
Collapse
Affiliation(s)
- Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Luisa Bandeira Binder
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Beatrice Daigle
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Amandine Hong-Minh
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada.
| |
Collapse
|
12
|
Role of Inflammation in Traumatic Brain Injury-Associated Risk for Neuropsychiatric Disorders: State of the Evidence and Where Do We Go From Here. Biol Psychiatry 2022; 91:438-448. [PMID: 34955170 DOI: 10.1016/j.biopsych.2021.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/01/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
In the past decade, there has been an increasing awareness that traumatic brain injury (TBI) and concussion substantially increase the risk for developing psychiatric disorders. Even mild TBI increases the risk for depression and anxiety disorders such as posttraumatic stress disorder by two- to threefold, predisposing patients to further functional impairment. This strong epidemiological link supports examination of potential mechanisms driving neuropsychiatric symptom development after TBI. One potential mechanism for increased neuropsychiatric symptoms after TBI is via inflammatory processes, as central nervous system inflammation can last years after initial injury. There is emerging preliminary evidence that TBI patients with posttraumatic stress disorder or depression exhibit increased central and peripheral inflammatory markers compared with TBI patients without these comorbidities. Growing evidence has demonstrated that immune signaling in animals plays an integral role in depressive- and anxiety-like behaviors after severe stress or brain injury. In this review, we will 1) discuss current evidence for chronic inflammation after TBI in the development of neuropsychiatric symptoms, 2) highlight potential microglial activation and cytokine signaling contributions, and 3) discuss potential promise and pitfalls for immune-targeted interventions and biomarker strategies to identify and treat TBI patients with immune-related neuropsychiatric symptoms.
Collapse
|
13
|
Liu T, Li H, Conley YP, Primack BA, Wang J, Li C. The Brain-Derived Neurotrophic Factor Functional Polymorphism and Hand Grip Strength Impact the Association between Brain-Derived Neurotrophic Factor Levels and Cognition in Older Adults in the United States. Biol Res Nurs 2022; 24:226-234. [PMID: 34974714 DOI: 10.1177/10998004211065151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Aging is associated with subtle cognitive decline in attention, memory, executive function, processing speed, and reasoning. Although lower brain-derived neurotrophic factor (BDNF) has been linked to cognitive decline among older adults, it is not known if the association differs among individuals with various BDNF Val66Met (rs6265) genotypes. In addition, it is not clear whether these associations vary by hand grip strength or physical activity (PA). METHODS A total of 2904 older adults were included in this study using data from the Health and Retirement Study. Associations between serum BDNF and measures of cognitive function were evaluated using multivariable linear regression models stratified by Met allele status. PA and hand grip strength were added to the model to evaluate whether including these variables altered associations between serum BDNF and cognition. RESULTS Mean age was 71.4 years old, and mean body mass index was 28.3 kg/m2. Serum BDNF levels were positively associated with higher total cognitive score (beta = 0.34, p = .07), mental status (beta = 0.16, p = .07), and word recall (beta = 0.22, p =.04) among Met carriers, while serum BDNF levels were negatively associated with mental status (beta = -0.09, p = .07) among non-Met carriers. Furthermore, associations changed when hand grip strength was added to the model but not when PA was added to the model. CONCLUSIONS The BDNF Val66Met variant may moderate the association between serum BDNF levels and cognitive function in older adults. Furthermore, such associations differ according to hand grip strength but not PA.
Collapse
Affiliation(s)
- Tingting Liu
- 16081University of Arkansas Eleanor Mann School of Nursing, Fayetteville, AR, USA
| | - Hongjin Li
- 16100University of Illinois at Chicago College of Nursing, Chicago, IL, USA
| | - Yvette P Conley
- University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
| | - Brian A Primack
- 137660University of Arkansas College of Education and Health Professions, Fayetteville, AR, USA
| | - Jing Wang
- 15805Florida State University College of Nursing, Tallahassee, FL, USA
| | - Changwei Li
- Department of Epidemiology, 5783Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| |
Collapse
|
14
|
Zhang R, Wang J, Huang L, Wang TJ, Huang Y, Li Z, He J, Sun C, Wang J, Chen X, Wang J. The pros and cons of motor, memory, and emotion-related behavioral tests in the mouse traumatic brain injury model. Neurol Res 2021; 44:65-89. [PMID: 34308784 DOI: 10.1080/01616412.2021.1956290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a medical emergency with high morbidity and mortality. Motor, memory, and emotion-related deficits are common symptoms following TBI, yet treatment is very limited. To develop new drugs and find new therapeutic avenues, a wide variety of TBI models have been established to mimic the heterogeneity of TBI. In this regard, along with histologic measures, behavioral functional outcomes provide valuable insight into the underlying neuropathology and guide neurorehabilitation efforts for neuropsychiatric impairment after TBI. Development, characterization, and application of behavioral tests that can assess functional neurologic deficits are essential to the development of translational therapies. This comprehensive review aims to summarize 19 common behavioral tests from three aspects (motor, memory, and emotion-related) that are associated with TBI pathology. Discussion covers the apparatus, the test steps, the evaluation indexes, data collection and analysis, animal performance and applications, advantages and disadvantages as well as precautions to eliminate bias wherever possible. We discussed recent studies on TBI-related preconditioning, biomarkers, and optimized behavioral protocols. The neuropsychologic tests employed in clinics were correlated with those used in mouse TBI models. In summary, this review provides a comprehensive, up-to-date reference for TBI researchers to choose the right neurobehavioral protocol according to the research objectives of their translational investigation.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junming Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Yinrou Huang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zefu Li
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinxin He
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chen Sun
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|