1
|
Greene C, Rebergue N, Fewell G, Janigro D, Godfrin Y, Campbell M, Lemarchant S. NX210c drug candidate peptide strengthens mouse and human blood-brain barriers. Fluids Barriers CNS 2024; 21:76. [PMID: 39334382 PMCID: PMC11438064 DOI: 10.1186/s12987-024-00577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Alterations of blood-brain barrier (BBB) and blood-spinal cord barrier have been documented in various animal models of neurodegenerative diseases and in patients. Correlations of these alterations with functional deficits suggest that repairing barriers integrity may represent a disease-modifying approach to prevent neuroinflammation and neurodegeneration induced by the extravasation of blood components into the parenchyma. Here, we screened the effect of a subcommissural organ-spondin-derived peptide (NX210c), known to promote functional recovery in several models of neurological disorders, on BBB integrity in vitro and in vivo. METHODS In vitro, bEnd.3 endothelial cell (EC) monolayers and two different primary human BBB models containing EC, astrocytes and pericytes, in static and microfluidic conditions, were treated with NX210c (1-100 µM), or its vehicle, for 4 h and up to 5 days. Tight junction (TJ) protein levels, permeability to dextrans and transendothelial electrical resistance (TEER) were evaluated. In vivo, young and old mice (3- and 21-month-old, respectively) were treated daily intraperitoneally with NX210c at 10 mg/kg or its vehicle for 5 days and their brains collected at day 6 to measure TJ protein levels by immunohistochemistry. RESULTS NX210c induced an increase in claudin-5 protein expression after 24-h and 72-h treatments in mouse EC. Occludin level was also increased after a 24-h treatment. Accordingly, NX210c decreased by half the permeability of EC to a 40-kDa FITC-dextran and increased TEER. In the human static BBB model, NX210c increased by ∼ 25% the TEER from 3 to 5 days. NX210c also increased TEER in the human 3D dynamic BBB model after 4 h, which was associated with a reduced permeability to a 4-kDa FITC-dextran. In line with in vitro results, after only 5 days of daily treatments in mice, NX210c restored aging-induced reduction of claudin-5 and occludin levels in the hippocampus, and also in the cortex for occludin. CONCLUSIONS In summary, we have gathered preclinical data showing the capacity of NX210c to strengthen BBB integrity. Through this property, NX210c holds great promises of being a disease-modifying treatment for several neurological disorders with high unmet medical needs.
Collapse
Affiliation(s)
- Chris Greene
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | | | | | | | - Yann Godfrin
- Axoltis Pharma, 60 avenue Rockefeller, Lyon, 69008, France
- Godfrin Life-Sciences, Caluire-et-Cuire, 69300, France
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | | |
Collapse
|
2
|
Zhang T, Ai D, Wei P, Xu Y, Bi Z, Ma F, Li F, Chen XJ, Zhang Z, Zou X, Guo Z, Zhao Y, Li JL, Ye M, Feng Z, Zhang X, Zheng L, Yu J, Li C, Tu T, Zeng H, Lei J, Zhang H, Hong T, Zhang L, Luo B, Li Z, Xing C, Jia C, Li L, Sun W, Ge WP. The subcommissural organ regulates brain development via secreted peptides. Nat Neurosci 2024; 27:1103-1115. [PMID: 38741020 DOI: 10.1038/s41593-024-01639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
The subcommissural organ (SCO) is a gland located at the entrance of the aqueduct of Sylvius in the brain. It exists in species as distantly related as amphioxus and humans, but its function is largely unknown. Here, to explore its function, we compared transcriptomes of SCO and non-SCO brain regions and found three genes, Sspo, Car3 and Spdef, that are highly expressed in the SCO. Mouse strains expressing Cre recombinase from endogenous promoter/enhancer elements of these genes were used to genetically ablate SCO cells during embryonic development, resulting in severe hydrocephalus and defects in neuronal migration and development of neuronal axons and dendrites. Unbiased peptidomic analysis revealed enrichment of three SCO-derived peptides, namely, thymosin beta 4, thymosin beta 10 and NP24, and their reintroduction into SCO-ablated brain ventricles substantially rescued developmental defects. Together, these data identify a critical role for the SCO in brain development.
Collapse
Affiliation(s)
- Tingting Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Daosheng Ai
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Pingli Wei
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Ying Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Zhanying Bi
- Chinese Institute for Brain Research, Beijing, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Fengfei Ma
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Fengzhi Li
- Chinese Institute for Brain Research, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xing-Jun Chen
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Zhaohuan Zhang
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaoxiao Zou
- Chinese Institute for Brain Research, Beijing, China
- Changping Laboratory, Beijing, China
| | - Zongpei Guo
- Chinese Institute for Brain Research, Beijing, China
| | - Yue Zhao
- Chinese Institute for Brain Research, Beijing, China
| | - Jun-Liszt Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Meng Ye
- Chinese Institute for Brain Research, Beijing, China
- Changping Laboratory, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ziyan Feng
- Chinese Institute for Brain Research, Beijing, China
| | | | - Lijun Zheng
- Chinese Institute for Brain Research, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jie Yu
- Chinese Institute for Brain Research, Beijing, China
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Chunli Li
- National Institute of Biological Sciences, Beijing, China
| | - Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, China
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jianfeng Lei
- Medical Imaging laboratory of Core Facility Center, Capital Medical University, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, China
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Zhen Li
- Chinese Institute for Brain Research, Beijing, China
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, Department of Bioinformatics, School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chenxi Jia
- State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Lingjun Li
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing, China.
- School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing, China.
- Changping Laboratory, Beijing, China.
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Zhang T, Ai D, Wei P, Xu Y, Bi Z, Ma F, Li F, Chen XJ, Zhang Z, Zou X, Guo Z, Zhao Y, Li JL, Ye M, Feng Z, Zhang X, Zheng L, Yu J, Li C, Tu T, Zeng H, Lei J, Zhang H, Hong T, Zhang L, Luo B, Li Z, Xing C, Jia C, Li L, Sun W, Ge WP. The subcommissural organ regulates brain development via secreted peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.30.587415. [PMID: 38585720 PMCID: PMC10996762 DOI: 10.1101/2024.03.30.587415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The subcommissural organ (SCO) is a gland located at the entrance of the aqueduct of Sylvius in the brain. It exists in species as distantly related as amphioxus and humans, but its function is largely unknown. To explore its function, we compared transcriptomes of SCO and non-SCO brain regions and found three genes, Sspo, Car3, and Spdef, that are highly expressed in the SCO. Mouse strains expressing Cre recombinase from endogenous promoter/enhancer elements of these genes were used to genetically ablate SCO cells during embryonic development, resulting in severe hydrocephalus and defects in neuronal migration and development of neuronal axons and dendrites. Unbiased peptidomic analysis revealed enrichment of three SCO-derived peptides, namely thymosin beta 4, thymosin beta 10, and NP24, and their reintroduction into SCO-ablated brain ventricles substantially rescued developmental defects. Together, these data identify a critical role for the SCO in brain development.
Collapse
Affiliation(s)
- Tingting Zhang
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Daosheng Ai
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Pingli Wei
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Wisconsin 53705, USA
| | - Ying Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Zhanying Bi
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Fengfei Ma
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Wisconsin 53705, USA
| | - Fengzhi Li
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing 100875, China
| | - Xing-jun Chen
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Zhaohuan Zhang
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xiaoxiao Zou
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
- Changping Laboratory, Beijing 102206, China
| | - Zongpei Guo
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Yue Zhao
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Jun-Liszt Li
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Meng Ye
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Changping Laboratory, Beijing 102206, China
| | - Ziyan Feng
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Xinshuang Zhang
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Lijun Zheng
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jie Yu
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chunli Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, Washington 98109, USA
| | - Jianfeng Lei
- Medical Imaging laboratory of Core Facility Center, Capital Medical University, Beijing 100054, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhen Li
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, Department of Bioinformatics, School of Public Health, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Chenxi Jia
- State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lingjun Li
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Wisconsin 53705, USA
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Woo-ping Ge
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
- Changping Laboratory, Beijing 102206, China
| |
Collapse
|
4
|
Li L, Li W, Jiang W, Xu R. Sulbactam protects neurons against double neurotoxicity of amyloid beta and glutamate load by upregulating glial glutamate transporter 1. Cell Death Discov 2024; 10:64. [PMID: 38320997 PMCID: PMC10847450 DOI: 10.1038/s41420-024-01827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Amyloid beta (Abeta) synergistically enhances excitotoxicity of glutamate load by impairing glutamate transporter 1 (GLT1) expression and function, which exacerbates the development of Alzheimer's disease (AD). Our previous studies suggested that sulbactam can upregulate the expression levels and capacity of GLT1. Therefore, this study aims to investigate whether sulbactam improves neuronal tolerance against neurotoxicity of Abeta and glutamate load by up-regulating GLT1 in primary neuron-astrocyte co-cultures. Early postnatal P0-P1 Wistar rat pups' cortices were collected for primary neuron-astrocyte cultures. Hoechst-propidium iodide (HO-PI) stain and lactate dehydrogenase (LDH) assays were used to analyze neuronal death. Cell counting kit 8 (CCK8) was applied to determine cell viability. Immunofluorescence staining and western blotting were used to assess protein expressions including GLT1, B-cell lymphoma 2 (BCL2), BCL2 associated X (BAX), and cleaved caspase 3 (CCP3). Under the double effect of Abeta and glutamate load, more neurons were lost than that induced by Abeta or glutamate alone, shown as decreased cell viability, increased LDH concentration in the cultural medium, HO-PI positive stains, high CCP3 expression, and high BAX/BCL2 ratio resulting from increased BAX and decreased BCL2 expressions. Notably, pre-incubation with sulbactam significantly attenuated the neuronal loss and activation of apoptosis induced by both Abeta and glutamate in a dose-dependent manner. Simultaneously, both astrocytic and neuronal GLT1 expressions were upregulated after sulbactam incubation. Taken together, it could be concluded that sulbactam protected neurons against double neurotoxicity of Abeta and glutamate load by upregulating GLT1 expression. The conclusion provides evidence for potential intervention using sulbactam in AD research.
Collapse
Affiliation(s)
- Li Li
- The Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Wenbin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Jiang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Vascular Homeostasis Key Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Renhao Xu
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Vascular Homeostasis Key Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Datki Z, Darula Z, Vedelek V, Hunyadi-Gulyas E, Dingmann BJ, Vedelek B, Kalman J, Urban P, Gyenesei A, Galik-Olah Z, Galik B, Sinka R. Biofilm formation initiating rotifer-specific biopolymer and its predicted components. Int J Biol Macromol 2023; 253:127157. [PMID: 37778576 DOI: 10.1016/j.ijbiomac.2023.127157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The rotifer-specific biopolymer, namely Rotimer, is a recently discovered group of the biomolecule family. Rotimer has an active role in the biofilm formation initiated by rotifers (e.g., Euchlanis dilatata or Adineta vaga) or in the female-male sexual interaction of monogononts. To understand the Ca2+- and polarity-dependent formation of this multifunctional viscoelastic material, it is essential to explore its molecular composition. The investigation of the rotifer-enhanced biofilm and Rotimer-inductor conglomerate (RIC) formation yielded several protein candidates to predict the Rotimer-specific main components. The exudate of E. dilatata males was primarily applied from different biopolimer-containing samples (biofilm or RIC). The advantage of males over females lies in their degenerated digestive system and simple anatomy. Thus, their exudate is less contaminated with food and endosymbiont elements. The sequenced and annotated genome and transcriptome of this species opened the way for identifying Rotimer proteins by mass spectrometry. The predicted rotifer-biopolymer forming components are SCO-spondins and 14-3-3 protein. The characteristics of Rotimer are similar to Reissner's fiber, which is found in the central nervous system of vertebrates and is mainly formed from SCO-spondins. This molecular information serves as a starting point for its interdisciplinary investigation and application in biotechnology, biomedicine, or neurodegeneration-related drug development.
Collapse
Affiliation(s)
- Zsolt Datki
- Micro-In Vivo Biomolecule Research Laboratory, Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged. Dugonics ter 13. H-6720, Szeged, Hungary.
| | - Zsuzsanna Darula
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary; Proteomics Research Group, Core Facilities, Biological Research Centre, ELKH, Szeged, Hungary
| | - Viktor Vedelek
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726, Hungary
| | - Eva Hunyadi-Gulyas
- Proteomics Research Group, Core Facilities, Biological Research Centre, ELKH, Szeged, Hungary
| | - Brian J Dingmann
- Department of Math Science and Technology, University of Minnesota Crookston, 2900 University Avenue, Crookston, MN 56716, United States of America
| | - Balazs Vedelek
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726, Hungary
| | - Janos Kalman
- Department of Psychiatry, Albert Szent-Gyorgyi Medical School, University of Szeged, Koranyi Fasor 8-10, H-6725 Szeged, Hungary
| | - Peter Urban
- Szentagothai Research Center, Genomic and Bioinformatic Core Facility, Pecs, Hungary
| | - Attila Gyenesei
- Szentagothai Research Center, Genomic and Bioinformatic Core Facility, Pecs, Hungary
| | - Zita Galik-Olah
- Micro-In Vivo Biomolecule Research Laboratory, Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged. Dugonics ter 13. H-6720, Szeged, Hungary
| | - Bence Galik
- Szentagothai Research Center, Genomic and Bioinformatic Core Facility, Pecs, Hungary
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726, Hungary
| |
Collapse
|
6
|
Mashanov V, Ademiluyi S, Jacob Machado D, Reid R, Janies D. Echinoderm radial glia in adult cell renewal, indeterminate growth, and regeneration. Front Neural Circuits 2023; 17:1258370. [PMID: 37841894 PMCID: PMC10570448 DOI: 10.3389/fncir.2023.1258370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Echinoderms are a phylum of marine deterostomes with a range of interesting biological features. One remarkable ability is their impressive capacity to regenerate most of their adult tissues, including the central nervous system (CNS). The research community has accumulated data that demonstrates that, in spite of the pentaradial adult body plan, echinoderms share deep similarities with their bilateral sister taxa such as hemichordates and chordates. Some of the new data reveal the complexity of the nervous system in echinoderms. In terms of the cellular architecture, one of the traits that is shared between the CNS of echinoderms and chordates is the presence of radial glia. In chordates, these cells act as the main progenitor population in CNS development. In mammals, radial glia are spent in embryogenesis and are no longer present in adults, being replaced with other neural cell types. In non-mammalian chordates, they are still detected in the mature CNS along with other types of glia. In echinoderms, radial glia also persist into the adulthood, but unlike in chordates, it is the only known glial cell type that is present in the fully developed CNS. The echinoderm radial glia is a multifunctional cell type. Radial glia forms the supporting scaffold of the neuroepithelium, exhibits secretory activity, clears up dying or damaged cells by phagocytosis, and, most importantly, acts as a major progenitor cell population. The latter function is critical for the outstanding developmental plasticity of the adult echinoderm CNS, including physiological cell turnover, indeterminate growth, and a remarkable capacity to regenerate major parts following autotomy or traumatic injury. In this review we summarize the current knowledge on the organization and function of the echinoderm radial glia, with a focus on the role of this cell type in adult neurogenesis.
Collapse
Affiliation(s)
- Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Soji Ademiluyi
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Denis Jacob Machado
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Robert Reid
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Daniel Janies
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
7
|
Inada H, Corales LG, Osumi N. A novel feature of the ancient organ: A possible involvement of the subcommissural organ in neurogenic/gliogenic potential in the adult brain. Front Neurosci 2023; 17:1141913. [PMID: 36960167 PMCID: PMC10027738 DOI: 10.3389/fnins.2023.1141913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
The subcommissural organ (SCO) is a circumventricular organ highly conserved in vertebrates from Cyclostomata such as lamprey to mammals including human. The SCO locates in the boundary between the third ventricle and the entrance of the aqueduct of Sylvius. The SCO functions as a secretory organ producing a variety of proteins such as SCO-spondin, transthyretin, and basic fibroblast growth factor (FGF) into the cerebrospinal fluid (CSF). A significant contribution of the SCO has been thought to maintain the homeostasis of CSF dynamics. However, evidence has shown a possible role of SCO on neurogenesis in the adult brain. This review highlights specific features of the SCO related to adult neurogenesis, suggested by the progress of understanding SCO functions. We begin with a brief history of the SCO discovery and continue to structural features, gene expression, and a possible role in adult neurogenesis suggested by the SCO transplant experiment.
Collapse
Affiliation(s)
- Hitoshi Inada
- Laboratory of Health and Sports Sciences, Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Developmental Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
- *Correspondence: Hitoshi Inada,
| | - Laarni Grace Corales
- Department of Developmental Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
Cerebrolysin Alleviating Effect on Glutamate-Mediated Neuroinflammation Via Glutamate Transporters and Oxidative Stress. J Mol Neurosci 2022; 72:2292-2302. [PMID: 36333611 DOI: 10.1007/s12031-022-02078-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Glutamate, one of the most important excitatory neurotransmitters, acts as a signal transducer in peripheral tissues and endocrine cells. Excessive glutamate secretion has been shown to cause excitotoxicity and neurodegenerative disease. Cerebrolysin is a mixture of enzymatically treated peptides derived from pig brain including neurotrophic factors, like brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and ciliary neurotrophic factor (CNTF). The present study investigated the protective effects of cerebrolysin on glutamate transporters (EAAT 1, EAAT 2) and cytokines (IL-1β and IL-10) activity in glutamate-mediated neurotoxicity. Primary cortex neuron culture was exposed to glutamate and successively treated with various cerebrolysin concentrations for 24 and 48 h. Our data showed that cerebrolysin primarily protects neurons by decreasing glutamate concentration in the synaptic cleft. In addition, Cerebrolysin can decrease oxidative stress and neuron cell damage by increasing antioxidant activity and decreasing inflammation cytokine levels.
Collapse
|
9
|
Bourdès V, Dogterom P, Aleman A, Parmantier P, Colas D, Lemarchant S, Marie S, Chou T, Abd-Elaziz K, Godfrin Y. Safety, Tolerability, Pharmacokinetics and Initial Pharmacodynamics of a Subcommissural Organ-Spondin-Derived Peptide: A Randomized, Placebo-Controlled, Double-Blind, Single Ascending Dose First-in-Human Study. Neurol Ther 2022; 11:1353-1374. [PMID: 35779189 PMCID: PMC9338184 DOI: 10.1007/s40120-022-00380-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/08/2022] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION This randomized, double-blind, placebo-controlled study in healthy volunteers assessed the safety, tolerability, and pharmacokinetics of single ascending doses of intravenously administered NX210-a linear peptide derived from subcommissural organ-spondin-and explored the effects on blood/urine biomarkers and cerebral activity. METHODS Participants in five cohorts (n = 8 each) were randomized to receive a single intravenous dose of NX210 (n = 6 each) (0.4, 1.25, 2.5, 5, and 10 mg/kg) or placebo (n = 2 each); in total, 10 and 29 participants received placebo and NX210, respectively. Blood samples were collected for pharmacokinetics within 180 min post dosing. Plasma and urine were collected from participants (cohorts: 2.5, 5, and 10 mg/kg) for biomarker analysis and electroencephalography (EEG) recordings within 48 h post dosing. Safety/tolerability and pharmacokinetic data were assessed before ascending to the next dose. RESULTS The study included 39 participants. All dosages were safe and well tolerated. All treatment-emergent adverse events (n = 17) were of mild severity and resolved spontaneously (except one with unknown outcome). Twelve treatment-emergent adverse events (70.6%) were deemed drug related; seven of those (58.3%) concerned nervous system disorders (dizziness, headache, and somnolence). The pharmacokinetic analysis indicated a short half-life in plasma (6-20 min), high apparent volume of distribution (1870-4120 L), and rapid clearance (7440-16,400 L/h). In plasma, tryptophan and homocysteine showed dose-related increase and decrease, respectively. No drug dose effect was found for the glutamate or glutamine plasma biomarkers. Nevertheless, decreased blood glutamate and increased glutamine were observed in participants treated with NX210 versus placebo. EEG showed a statistically significant decrease in beta and gamma bands and a dose-dependent increasing trend in alpha bands. Pharmacodynamics effects were sustained for several hours (plasma) or 48 h (urine and EEG). CONCLUSION NX210 is safe and well tolerated and may exert beneficial effects on the central nervous system, particularly in terms of cognitive processing.
Collapse
Affiliation(s)
| | | | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | - Yann Godfrin
- Axoltis Pharma, 60 Avenue Rockefeller, 69008, Lyon, France
- Godfrin Life-Sciences, Caluire-et-Cuire, France
| |
Collapse
|
10
|
Lemarchant S, Sourioux M, Le Douce J, Henriques A, Callizot N, Hugues S, Farinelli M, Godfrin Y. NX210c Peptide Promotes Glutamatergic Receptor-Mediated Synaptic Transmission and Signaling in the Mouse Central Nervous System. Int J Mol Sci 2022; 23:8867. [PMID: 36012124 PMCID: PMC9408760 DOI: 10.3390/ijms23168867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
NX210c is a disease-modifying dodecapeptide derived from the subcommissural organ-spondin that is under preclinical and clinical development for the treatment of neurological disorders. Here, using whole-cell patch-clamp recordings, we demonstrate that NX210c increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and GluN2A-containing N-methyl-D-aspartate receptor (GluN2A-NMDAR)-mediated excitatory postsynaptic currents in the brain. Accordingly, using extracellular field excitatory postsynaptic potential recordings, an enhancement of synaptic transmission was shown in the presence of NX210c in two different neuronal circuits. Furthermore, the modulation of synaptic transmission and GluN2A-NMDAR-driven signaling by NX210c restored memory in mice chronically treated with the NMDAR antagonist phencyclidine. Overall, by promoting glutamatergic receptor-related neurotransmission and signaling, NX210c represents an innovative therapeutic opportunity for patients suffering from CNS disorders, injuries, and states with crippling synaptic dysfunctions.
Collapse
Affiliation(s)
| | | | | | | | - Noëlle Callizot
- Neuro-Sys, 410 Chemin Départemental 60, 13120 Gardanne, France
| | - Sandrine Hugues
- E-Phy-Science, Bioparc, 2400 Routes de Colles, Sophia Antipolis, 06410 Biot, France
| | - Mélissa Farinelli
- E-Phy-Science, Bioparc, 2400 Routes de Colles, Sophia Antipolis, 06410 Biot, France
| | - Yann Godfrin
- Axoltis Pharma, 60 Avenue Rockefeller, 69008 Lyon, France
- Godfrin Life-Sciences, 8 Impasse de la Source, 69300 Caluire-et-Cuire, France
| |
Collapse
|
11
|
Yang L, Zhu J, Yang L, Gan Y, Hu D, Zhao J, Zhao Y. SCO-spondin-derived peptide NX210 rescues neurons from cerebral ischemia/reperfusion injury through modulating the Integrin-β1 mediated PI3K/Akt pathway. Int Immunopharmacol 2022; 111:109079. [PMID: 35930911 DOI: 10.1016/j.intimp.2022.109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022]
Abstract
Ischemic stroke is a common condition with high morbidity and mortality, causing irreversible neuronal damage and seriously affecting neurological function. There has been no ideal effective treatment so far. The NX210 peptide is derived from the thrombospondin type 1 repeat (TSR) sequence of SCO-spondin, and has been reported to exert various neurogenic properties. This study investigated whether NX210 had therapeutic effects and possible underlying mechanisms against cerebral ischemia/reperfusion (I/R). Therefore, primary embryonic rat cortical neurons and Sprague-Dawley (SD) rats that were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) and middle cerebral artery occlusion/reperfusion (MCAO/R) injuries, respectively, were treated with or without NX210. We found that NX210 reduced OGD/R-induced cell viability loss and cytotoxicity. NX210 decreased cerebral infarct volume and brain edema, ameliorated neurological dysfunction, attenuated oxidative stress damage, and diminished neuronal apoptosis in MCAO/R rats. Furthermore, western blot analysis shown that treatment with NX210 up-regulated the expression of Integrin-β1, phosphorylated-PI3K (p-PI3K) and phosphorylated-Akt (p-Akt). The Integrin-β1 specific inhibitor, ATN-161, was used to identify pathways involved. The anti-oxidation activities and anti-apoptosis of NX210 was reversed by treatment with ATN-161. Overall, our results indicated that NX210 prevents oxidative stress and neuronal apoptosis in cerebral I/R via upregulation of the Integrin-β1/PI3K/Akt signaling pathway. These results indicated that NX210 may be a promising therapeutic candidate for ischemic stroke.
Collapse
Affiliation(s)
- Liyu Yang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, PR China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Jin Zhu
- Department of Pathology, Chongqing Medical University, Chongqing 400016, PR China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Yang
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, PR China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yunhao Gan
- Department of Pathology, Chongqing Medical University, Chongqing 400016, PR China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Di Hu
- Department of Pathology, Chongqing Medical University, Chongqing 400016, PR China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, PR China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing 400016, PR China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
12
|
Sepúlveda V, Maurelia F, González M, Aguayo J, Caprile T. SCO-spondin, a giant matricellular protein that regulates cerebrospinal fluid activity. Fluids Barriers CNS 2021; 18:45. [PMID: 34600566 PMCID: PMC8487547 DOI: 10.1186/s12987-021-00277-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/11/2021] [Indexed: 12/28/2022] Open
Abstract
Cerebrospinal fluid is a clear fluid that occupies the ventricular and subarachnoid spaces within and around the brain and spinal cord. Cerebrospinal fluid is a dynamic signaling milieu that transports nutrients, waste materials and neuroactive substances that are crucial for the development, homeostasis and functionality of the central nervous system. The mechanisms that enable cerebrospinal fluid to simultaneously exert these homeostatic/dynamic functions are not fully understood. SCO-spondin is a large glycoprotein secreted since the early stages of development into the cerebrospinal fluid. Its domain architecture resembles a combination of a matricellular protein and the ligand-binding region of LDL receptor family. The matricellular proteins are a group of extracellular proteins with the capacity to interact with different molecules, such as growth factors, cytokines and cellular receptors; enabling the integration of information to modulate various physiological and pathological processes. In the same way, the LDL receptor family interacts with many ligands, including β-amyloid peptide and different growth factors. The domains similarity suggests that SCO-spondin is a matricellular protein enabled to bind, modulate, and transport different cerebrospinal fluid molecules. SCO-spondin can be found soluble or polymerized into a dynamic threadlike structure called the Reissner fiber, which extends from the diencephalon to the caudal tip of the spinal cord. Reissner fiber continuously moves caudally as new SCO-spondin molecules are added at the cephalic end and are disaggregated at the caudal end. This movement, like a conveyor belt, allows the transport of the bound molecules, thereby increasing their lifespan and action radius. The binding of SCO-spondin to some relevant molecules has already been reported; however, in this review we suggest more than 30 possible binding partners, including peptide β-amyloid and several growth factors. This new perspective characterizes SCO-spondin as a regulator of cerebrospinal fluid activity, explaining its high evolutionary conservation, its apparent multifunctionality, and the lethality or severe malformations, such as hydrocephalus and curved body axis, of knockout embryos. Understanding the regulation and identifying binding partners of SCO-spondin are crucial for better comprehension of cerebrospinal fluid physiology.
Collapse
Affiliation(s)
- Vania Sepúlveda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Maurelia
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Maryori González
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jaime Aguayo
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
13
|
Le Douce J, Delétage N, Bourdès V, Lemarchant S, Godfrin Y. Subcommissural Organ-Spondin-Derived Peptide Restores Memory in a Mouse Model of Alzheimer's Disease. Front Neurosci 2021; 15:651094. [PMID: 34194293 PMCID: PMC8236707 DOI: 10.3389/fnins.2021.651094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disease that affects millions of older people worldwide and is characterized by a progressive deterioration of cognitive functions, including learning and memory. There are currently very few approved treatments (i.e., acetylcholinesterase inhibitors such as donepezil), all of which are limited to the symptomatic control of AD and are associated with side effects that may result in discontinuation of treatment. Therefore, there is an urgent need to develop disease-modifying treatments to prevent AD-induced cognitive deficits. Subcommissural organ (SCO)-spondin is a brain-specific glycoprotein produced during embryogenesis and has a substantial impact on neuronal development. In the current study, we sought to evaluate the protective effects of the linear (NX210) and cyclized (NX210c) forms of a SCO-spondin-derived peptide on learning and memory in a mouse model of AD. Mice received an intracerebroventricular injection of Aβ25–35 oligomers and were subsequently treated with intraperitoneal injections of vehicle, NX210 or NX210c of different doses (ranging from 0.1 to 30 mg/kg) and therapy paradigms (early or late stand-alone treatments, combination with donepezil or second-line treatment). Cognitive function was evaluated using Y-Maze, step-through latency passive avoidance (STPA) and Morris water maze (MWM) tests for up to 4 months. Early stage daily treatment with NX210 and NX210c decreased the levels of common pathological markers and features of AD, including Aβ1–42, phosphorylated-tau, inflammation, astrogliosis and lipid peroxidation. Meanwhile, use of these drugs increased the levels of synaptophysin and postsynaptic density protein 95. Regardless of the experimental paradigm used, NX210 and NX210c prevented Aβ25–35-induced decrease in spontaneous alternations (Y-Maze) and step-through latency into the dark compartment (STPA), and Aβ25–35-induced increase in time needed to locate the immersed platform during the learning phase and decrease in time spent in the target quadrant during the retention phase (MWM). Interestingly, this study provides the novel evidence that the native and oxidized cyclic forms of the SCO-spondin-derived peptide reduce pathological factors associated with AD and restore learning and memory at both early and late disease stages. Overall, this study sheds light on the therapeutic potential of this innovative disease-modifying peptide to restore memory function in patients with AD.
Collapse
Affiliation(s)
| | | | | | | | - Yann Godfrin
- Axoltis Pharma, Lyon, France.,Godfrin Life-Sciences, Caluire-et-Cuire, France
| |
Collapse
|