1
|
Sadeghi S, Hajilou B, Rohbanfard H. The Effect of Cognitive and Motor Dual Tasks on the Synergy of Lower Limb Muscles During Walking. Motor Control 2025; 29:145-156. [PMID: 39547220 DOI: 10.1123/mc.2024-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/08/2024] [Accepted: 08/31/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE Walking is one of the most complex human movements that can be affected by various sources of attention. Dual tasks reduce attention, increase information processing, and may alter control mechanisms such as synergy. However, the effect of dual tasks on muscle synergy remains unknown. Therefore, this study aimed to investigate the effect of cognitive and motor dual tasks on the synergy of lower limb muscles during walking. METHODS Twenty-four participants were selected voluntarily. The activity of the eight lower limb muscles was recorded under three different conditions: normal walking without a dual task, walking with a cognitive dual task, and walking with a motor dual task. A nonnegative matrix factorization algorithm and the variance accounted for were used to extract muscle synergy. The repeated-measures analysis of variance test and Pearson's correlation coefficient were performed to analyze the data. RESULTS In this study, five muscle synergies were extracted from electromyography data using the variance accounted for method under three different conditions. The pattern of muscle synergies showed moderate to strong correlations. Peaks of synergies changed, and a time shift in synergy peaks during walking was observed. However, the number of extracted synergies did not change. CONCLUSION The number of recruited muscle synergies remained consistent across different conditions. Dual tasks affect the higher levels of the motor control system, causing interference in information processing that leads to a shift in the tendency of synergy and weight coefficients of the muscles, ultimately resulting in a change in walking mechanics.
Collapse
Affiliation(s)
- Sara Sadeghi
- Faculty of Sports Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Behrouz Hajilou
- Research Institute of Exceptional Children, Research Institute for Education, Organization for Educational Research and Planning, Tehran, Iran
| | | |
Collapse
|
2
|
Lana V, Frère J, Cabibel V, Réguème T, Lefèvre N, Vlamynck E, Decker LM. Kinematic and neuromuscular characterization of cognitive involvement in gait control in healthy young adults. J Neurophysiol 2024; 132:1333-1347. [PMID: 39259893 DOI: 10.1152/jn.00043.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024] Open
Abstract
The signature of cognitive involvement in gait control has rarely been studied using both kinematic and neuromuscular features. The present study aimed to address this gap. Twenty-four healthy young adults walked on an instrumented treadmill in a virtual environment under two optic flow conditions: normal (NOF) and perturbed (POF, continuous mediolateral pseudorandom oscillations). Each condition was performed under single-task and dual-task conditions of increasing difficulty (1-, 2-, 3-back). Subjective mental workload (raw NASA-TLX), cognitive performance (mean reaction time and d-prime), kinematic (steadiness, variability, and complexity in the mediolateral and anteroposterior directions), and neuromuscular (duration and variability of motor primitives) control of gait were assessed. The cognitive performance and the number and composition of motor modules were unaffected by simultaneous walking, regardless of the optic flow condition. Kinematic and neuromuscular variability was greater under POF compared with NOF conditions. Young adults sought to counteract POF by rapidly correcting task-relevant gait fluctuations. The depletion of cognitive resources through dual-tasking led to reduced kinematic and neuromuscular variability and this occurred to the same extent regardless of simultaneous working memory (WM) load. Increasing WM load led to a prioritization of gait control in the mediolateral direction over the anteroposterior direction. The impact of POF on kinematic variability (step velocity) was reduced when a cognitive task was performed simultaneously, but this phenomenon was not modulated by WM load. Collectively, these results shed important light on how young adults adjust the processes involved in goal-directed locomotion when exposed to varying levels of task and environmental constraints.NEW & NOTEWORTHY The kinematic and neuromuscular signatures of cognitive involvement in gait control have rarely been studied jointly. We sought to address this issue using gait perturbation and dual-task paradigms. The protocol consisted of a fixed-speed treadmill walk to which visual and cognitive constraints were applied separately and together. The results revealed that young adults optimally regulated their gait to cope with these constraints by maintaining relatively stable muscle synergies and flexibly allocating attentional resources.
Collapse
Affiliation(s)
- Valentin Lana
- Normandie Université, UNICAEN, INSERM, COMETE, GIP Cyceron, Caen, France
| | - Julien Frère
- Université Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, Grenoble, France
| | - Vincent Cabibel
- Normandie Université, UNICAEN, INSERM, COMETE, GIP Cyceron, Caen, France
| | - Tristan Réguème
- Normandie Université, UNICAEN, INSERM, COMETE, GIP Cyceron, Caen, France
| | | | - Elodie Vlamynck
- Normandie Université, UNICAEN, INSERM, COMETE, GIP Cyceron, Caen, France
| | - Leslie M Decker
- Normandie Université, UNICAEN, INSERM, COMETE, GIP Cyceron, Caen, France
- Normandie Université, UNICAEN, CIREVE, Caen, France
| |
Collapse
|
3
|
Winter L, Taylor P, Bellenger C, Grimshaw P, Crowther RG. The application of the Lyapunov Exponent to analyse human performance: A systematic review. J Sports Sci 2023; 41:1994-2013. [PMID: 38326239 DOI: 10.1080/02640414.2024.2308441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Variability is a normal component of human movement, allowing one to adapt to environmental perturbations. It can be analysed from linear or non-linear perspectives. The Lyapunov Exponent (LyE) is a commonly used non-linear technique, which quantifies local dynamic stability. It has been applied primarily to walking gait and appears to be limited application in other movements. Therefore, this systematic review aims to summarise research methodologies applying the LyE to movements, excluding walking gait. Four databases were searched using keywords related to movement variability, dynamic stability, LyE and divergence exponent. Articles written in English, using the LyE to analyse movements, excluding walking gait were included for analysis. 31 papers were included for data extraction. Quality appraisal was conducted and information related to the movement, data capture method, data type, apparatus, sampling rate, body segment/joint, number of strides/steps, state space reconstruction, algorithm, filtering, surrogation and time normalisation were extracted. LyE values were reported in supplementary materials (Appendix 2). Running was the most prevalent non-walking gait movement assessed. Methodologies to calculate the LyE differed in various aspects resulting in different LyE values being generated. Additionally, test-retest reliability, was only conducted in one study, which should be addressed in future.
Collapse
Affiliation(s)
- Lachlan Winter
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| | - Paul Taylor
- School of Behavioural and Health Sciences, Australian Catholic University, North Sydney, New South Wales, Australia
| | - Clint Bellenger
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| | - Paul Grimshaw
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Faculty of Sciences, Engineering and Technology, Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert G Crowther
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
da Silva Costa AA, Hortobágyi T, den Otter R, Sawers A, Moraes R. Age, Cognitive Task, and Arm Position Differently Affect Muscle Synergy Recruitment but have Similar Effects on Walking Balance. Neuroscience 2023; 527:11-21. [PMID: 37437799 DOI: 10.1016/j.neuroscience.2023.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Age modifies walking balance and neuromuscular control. Cognitive and postural constraints can increase walking balance difficulty and magnify age-related differences. However, how such challenges affect neuromuscular control remains unknown. We determined the effects of age, cognitive task, and arm position on neuromuscular control of walking balance. Young (YA) and older adults (OA) walked on a 6-cm wide beam with and without arm crossing and a cognitive task. Walking balance was quantified by the distance walked on the beam. We also computed step speed, margin of stability, and cognitive errors. Neuromuscular control was determined through muscle synergies extracted from 13 right leg and trunk muscles. We analyzed neuromuscular complexity by the number of synergies and the variance accounted for by the first synergy, coactivity by the number of significantly active muscles in each synergy, and efficiency by the sum of the activation of each significantly active muscle in each synergy. OA vs. YA walked a 14% shorter distance, made 12 times more cognitive errors, and showed less complex and efficient neuromuscular control. Cognitive task reduced walking balance mainly in OA. Decreases in step speed and margin of stability, along with increased muscle synergy coactivity and reduced efficiency were observed in both age groups. Arm-crossing also reduced walking balance mostly in OA, but step speed decreased mainly in YA, in whom the margin of stability increased. Arm-crossing reduced the complexity of synergies. Age, cognitive task, and arm position affect differently muscle synergy recruitment but have similar effects on walking balance.
Collapse
Affiliation(s)
- Andréia Abud da Silva Costa
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil; Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, The Netherlands.
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, The Netherlands; Department of Kinesiology, Hungarian University of Sports Science, 1123 Budapest, Hungary; Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary; Department of Neurology, Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary; Institute of Sport Research, Sports University of Tirana, Tirana, Albania
| | - Rob den Otter
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, The Netherlands
| | - Andrew Sawers
- Department of Kinesiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Renato Moraes
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
5
|
Walsh GS, Snowball J. Cognitive and visual task effects on gaze behaviour and gait of younger and older adults. Exp Brain Res 2023; 241:1623-1631. [PMID: 37148282 DOI: 10.1007/s00221-023-06627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Cognitive dual tasks alter gait of younger and older adults and recent research has demonstrated that they also influence gaze behaviour and standing postural control. These findings suggest that age-related changes in cognitive and gaze function might increase fall risk in older adults. The purpose of this study was to determine the effect cognitive and visual dual tasks on the gait and gaze behaviour of younger and older adults. Ten older and ten younger adults walked for 3 min on a treadmill at preferred walking speed under three conditions, single task, cognitive and visual dual task conditions. Gait dynamics were measured using accelerometry and gaze behaviour was measured using wearable eye-trackers. Stride time variability and centre of mass (COM) motion complexity increased in dual-task conditions in older adults but had no difference for younger adults. Dual tasks had limited effect on gaze behaviour; however, visual input duration was greater, and visual input frequency and saccade frequency were lower in older than younger adults. The gaze adaptations in older adults may be the result of slower visual processing or represent a compensatory strategy to suppress postural movement. The increase in gait COM motion complexity in older adults suggests the dual tasks led to more automatic gait control resulting from both cognitive and visual tasks.
Collapse
Affiliation(s)
- Gregory S Walsh
- Department of Sport, Health Sciences and Social Work, Oxford Brookes University, Oxford, OX3 0BP, UK.
| | - James Snowball
- Department of Sport, Health Sciences and Social Work, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
6
|
Wilson TJ, Likens AD. Running gait produces long range correlations: A systematic review. Gait Posture 2023; 102:171-179. [PMID: 37028119 DOI: 10.1016/j.gaitpost.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/27/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Walking and running are common forms of locomotion, both of which exhibit variability over many gait cycles. Many studies have investigated the patterns generated from that ebb and flow, and a large proportion suggests human gait exhibits Long Range Correlations (LRCs). LRCs refer to the observation that healthy gait characteristic, like stride times, are positively correlated to themselves over time. Literature on LRCs in walking gait is well known but less attention has been given to LRCs in running gait. RESEARCH QUESTION What is the state of the art concerning LRCs in running gait? METHODS We conducted a systematic review to identify the typical LRC patterns present in human running gait, in addition to disease, injury, and running surface effects on LRCs. Inclusion criteria were human subjects, running related experiments, computed LRCs, and experimental design. Exclusion criteria were studies on animals, non-humans, walking only, non-running, non-LRC analysis, and non-experiments. RESULTS The initial search returned 536 articles. After review and deliberation, our review included 26 articles. Almost every article produced strong evidence for LRCs apparent in running gait and in all running surfaces. Additionally, LRCs tended to decrease due to fatigue, past injury, increased load carriage and seem to be lowest at preferred running speed on a treadmill. No studies investigated disease effects on LRCs in running gait. SIGNIFICANCE LRCs seem to increase with deviations away from preferred running speed. Previously injured runners produced decreased LRCs compared to non-injured runners. LRCs also tended to decrease due to an increase in fatigue rate, which has been associated with increased injury rate. Lastly, there is a need for research on the typical LRCs in an overground environment, for which the typical LRCs found in a treadmill environment may or may not transfer.
Collapse
Affiliation(s)
- Taylor J Wilson
- University of Nebraska at Omaha, 6160 University Drive S., Omaha NE 68182, United States.
| | - Aaron D Likens
- University of Nebraska at Omaha, 6160 University Drive S., Omaha NE 68182, United States
| |
Collapse
|
7
|
Santuz A, Laflamme OD, Akay T. The brain integrates proprioceptive information to ensure robust locomotion. J Physiol 2022; 600:5267-5294. [PMID: 36271747 DOI: 10.1113/jp283181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/10/2022] [Indexed: 01/05/2023] Open
Abstract
Robust locomotion relies on information from proprioceptors: sensory organs that communicate the position of body parts to the spinal cord and brain. Proprioceptive circuits in the spinal cord are known to coarsely regulate locomotion in the presence of perturbations. Yet, the regulatory importance of the brain in maintaining robust locomotion remains less clear. Here, through mouse genetic studies and in vivo electrophysiology, we examined the role of the brain in integrating proprioceptive information during perturbed locomotion. The systemic removal of proprioceptors left the mice in a constantly perturbed state, similar to that observed during mechanically perturbed locomotion in wild-type mice and characterised by longer and less accurate synergistic activation patterns. By contrast, after surgically interrupting the ascending proprioceptive projection to the brain through the dorsal column of the spinal cord, wild-type mice showed normal walking behaviour, yet lost the ability to respond to external perturbations. Our findings provide direct evidence of a pivotal role for ascending proprioceptive information in achieving robust, safe locomotion. KEY POINTS: Whether brain integration of proprioceptive feedback is crucial for coping with perturbed locomotion is not clear. We showed a crucial role of the brain for responding to external perturbations and ensure robust locomotion. We used mouse genetics to remove proprioceptors and a spinal lesion model to interrupt the flow of proprioceptive information to the brain through the dorsal column in wild-type animals. Using a custom-built treadmill, we administered sudden and random mechanical perturbations to mice during walking. External perturbations affected locomotion in wild-type mice similar to the absence of proprioceptors in genetically modified mice. Proprioceptive feedback from muscle spindles and Golgi tendon organs contributed to locomotor robustness. Wild-type mice lost the ability to respond to external perturbations after interruption of the ascending proprioceptive projection to the brainstem.
Collapse
Affiliation(s)
- Alessandro Santuz
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Olivier D Laflamme
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
8
|
Benson LC, Räisänen AM, Clermont CA, Ferber R. Is This the Real Life, or Is This Just Laboratory? A Scoping Review of IMU-Based Running Gait Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 22:1722. [PMID: 35270869 PMCID: PMC8915128 DOI: 10.3390/s22051722] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/19/2023]
Abstract
Inertial measurement units (IMUs) can be used to monitor running biomechanics in real-world settings, but IMUs are often used within a laboratory. The purpose of this scoping review was to describe how IMUs are used to record running biomechanics in both laboratory and real-world conditions. We included peer-reviewed journal articles that used IMUs to assess gait quality during running. We extracted data on running conditions (indoor/outdoor, surface, speed, and distance), device type and location, metrics, participants, and purpose and study design. A total of 231 studies were included. Most (72%) studies were conducted indoors; and in 67% of all studies, the analyzed distance was only one step or stride or <200 m. The most common device type and location combination was a triaxial accelerometer on the shank (18% of device and location combinations). The most common analyzed metric was vertical/axial magnitude, which was reported in 64% of all studies. Most studies (56%) included recreational runners. For the past 20 years, studies using IMUs to record running biomechanics have mainly been conducted indoors, on a treadmill, at prescribed speeds, and over small distances. We suggest that future studies should move out of the lab to less controlled and more real-world environments.
Collapse
Affiliation(s)
- Lauren C. Benson
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.M.R.); (C.A.C.); (R.F.)
- Tonal Strength Institute, Tonal, San Francisco, CA 94107, USA
| | - Anu M. Räisänen
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.M.R.); (C.A.C.); (R.F.)
- Department of Physical Therapy Education, College of Health Sciences—Northwest, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - Christian A. Clermont
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.M.R.); (C.A.C.); (R.F.)
- Sport Product Testing, Canadian Sport Institute Calgary, Calgary, AB T3B 6B7, Canada
| | - Reed Ferber
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.M.R.); (C.A.C.); (R.F.)
- Cumming School of Medicine, Faculty of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
- Running Injury Clinic, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
9
|
Carey HD, Liss DJ, Allen JL. Young adults recruit similar motor modules across walking, turning, and chair transfers. Physiol Rep 2021; 9:e15050. [PMID: 34558203 PMCID: PMC8461213 DOI: 10.14814/phy2.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Moving about in the world during daily life requires executing and successfully shifting between a variety of functional tasks, such as rising from a chair or bed, walking, turning, and navigating stairs. Moreover, moving about during daily life requires not only navigating between different functional tasks, but also performing these tasks in the presence of mental distractions. However, little is known about underlying neuromuscular control for executing and shifting between these different tasks. In this study, we investigated muscle coordination across walking, turning, and chair transfers by applying motor module (a.k.a. muscle synergy) analysis to the Timed-Up-and-Go (TUG) test with and without a secondary cognitive dual task. We found that healthy young adults recruit a small set of common motor modules across the subtasks of the TUG test and that their composition is robust to cognitive distraction. Instead, cognitive distraction impacted motor module activation timings such that they became more consistent. This work is the first to demonstrate motor module generalization across multiple tasks that are both functionally different and crucial for healthy mobility. Overall, our results suggest that the central nervous system may draw from a "library" of modular control strategies to navigate the variety of movements and cognitive demands required of daily life.
Collapse
Affiliation(s)
- Hannah D. Carey
- Department of Chemical and Biomedical EngineeringWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Daniel J. Liss
- Department of Chemical and Biomedical EngineeringWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Jessica L. Allen
- Department of Chemical and Biomedical EngineeringWest Virginia UniversityMorgantownWest VirginiaUSA
| |
Collapse
|
10
|
Walsh GS, Harrison I. Gait and neuromuscular dynamics during level and uphill walking carrying military loads. Eur J Sport Sci 2021; 22:1364-1373. [PMID: 34231431 DOI: 10.1080/17461391.2021.1953154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The neuromuscular system responds to perturbation and increasing locomotor task difficulty by altering the stability of neuromuscular output signals. The purpose of this study was to determine the effects of two different military load carriage systems on the dynamic stability of gait and muscle activation signals. 14 army office cadets (20 ± 1 years) performed 4-minute treadmill walking trials on level (0%) and uphill (10%) gradients while unloaded, and with 11 kg backpack and 11 kg webbing loads while the activity of 6 leg and trunk muscles and the motion of the centre of mass (COM) were recorded. Loaded and uphill walking decreased stability and increased magnitude of muscle activations compared to loaded and level gradient walking. Backpack loads increased the medio-lateral stability of COM and uphill walking decreased stability of vertical COM motion and increased stride time variability. However, there was no difference between the two load carriage systems for any variable. The reduced stability of muscle activations in loaded and uphill conditions indicates an impaired ability of the neuromuscular control systems to accommodate perturbations in these conditions which may have implications on the operational performance of military personnel. However, improved medio-lateral stability in backpack conditions may indicate that participants were able to compensate for the loads used in this study, despite the decreased vertical stability and increased stride time variability evident in uphill walking. This study did not find differences between load carriage systems however, specific load carriage system effects may be elicited by greater load carriage masses.Highlights Loaded and uphill walking decreased dynamic stability of muscle activationsLower activation stability indicates impaired neuromotor resistance to perturbationBackpack and webbing loads produced similar effects on muscle activations.
Collapse
Affiliation(s)
- Gregory S Walsh
- Department of Sport, Health Sciences and Social Work, Oxford Brookes University, Oxford, UK
| | - Isabel Harrison
- Department of Sport, Health Sciences and Social Work, Oxford Brookes University, Oxford, UK
| |
Collapse
|