1
|
Song Z, Chen H, Xu W, Zong X, Wang X, Ji Y, Gong J, Pang M, Fung SY, Yang H, Yu Y. The hexapeptide functionalized gold nanoparticles protect against sepsis-associated encephalopathy by forming specific protein corona and regulating macrophage activation. Mater Today Bio 2025; 32:101704. [PMID: 40236814 PMCID: PMC11997411 DOI: 10.1016/j.mtbio.2025.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/23/2025] [Indexed: 04/17/2025] Open
Abstract
Sepsis-induced systemic inflammatory responses can often lead to brain dysfunction with impaired cognitive function and mobility, known as sepsis-associated encephalopathy (SAE). Currently, there are no effective pharmacological therapeutics to treat SAE. Herein, we demonstrated the hexapeptide functionalized gold nanoparticles P12 that reduced SAE in septic mice with a dual mechanism to down-regulate systemic inflammation. We found that intraperitoneally administered P12 could target macrophages and regulate their inflammatory responses to decrease systemic inflammation and improve mice's cognitive function and mobility with SAE. Depleting peritoneal macrophages diminished the neuroprotective effects of P12 in SAE mice, suggesting macrophages as the effector cells for the neuroprotection by P12. In addition, the proteomic analysis revealed that P12 was capable of sequestering specific circulating inflammatory proteins in the blood of septic mice by forming a protein corona, contributing to the suppression of systemic inflammation. We also found that the local administration of P12 directly to the brain parenchyma effectively inhibited microglia activation and neuroinflammation in mice with SAE. This study provides an insightful understanding of the function and mechanisms of action of P12 in regulating sepsis-associated systemic inflammation and presents a new drug-free nanotherapeutic approach to treat SAE.
Collapse
Affiliation(s)
- Zichen Song
- Department of Anesthesia, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, NO. 154 Anshan Road, Tianjin 300052, China
| | - Hongguang Chen
- Department of Anesthesia, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, NO. 154 Anshan Road, Tianjin 300052, China
| | - Wenfei Xu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Xiaoye Zong
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Xiaoyu Wang
- Department of Immunology and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yuting Ji
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Jiameng Gong
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Mimi Pang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Shan-Yu Fung
- Department of Immunology and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Hong Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yonghao Yu
- Department of Anesthesia, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, NO. 154 Anshan Road, Tianjin 300052, China
| |
Collapse
|
2
|
Cui Y, Liu J, Song Y, Chen C, Shen Y, Xie K. High Concentration Hydrogen Protects Sepsis-Associated Encephalopathy by Enhancing Pink1/Parkin-Mediated Mitophagy and Inhibiting cGAS-STING-IRF3 Pathway. CNS Neurosci Ther 2025; 31:e70305. [PMID: 40016173 PMCID: PMC11867788 DOI: 10.1111/cns.70305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) leads to increased mortality. Hydrogen (H2) has been proven to be effective in protecting against SAE. This study aimed to investigate the protective mechanism of a high concentration of H2 (HCH) (67%) against SAE. METHODS A mouse sepsis model was established via cecal ligation and puncture (CLP). 67% H2 was inhaled for 1 h at 1 h and 6 h after the operation. First, mice were randomly divided into 5 groups: Sham, CLP, CLP + CQ (a mitophagy inhibitor), CLP + H2, and CLP + H2 + CQ. Seven-day survival, cognitive function, and hippocampal damage were assessed. Then, mice were randomly divided into four groups: Sham, CLP, CLP + UA (a mitophagy agonist), and CLP + H2. Seven-day survival was recorded, cognitive function was assessed via Y-maze and Morris water maze tests, and hippocampal damage was evaluated via Nissl staining. Phosphorylated tau, inflammatory factors, ATP, and antioxidant enzyme levels and mitochondrial membrane potential (MMP) were detected. Mitochondria were observed via transmission electron microscopy. The protein levels of the PINK1/Parkin pathway and STING-TBK-IRF3 pathway were detected via western blotting. RESULTS HCH inhalation improves 7-day survival and cognitive function in septic mice and reduces brain tissue damage, proinflammatory cytokine levels, and phosphorylated tau levels. These effects were reversed by a mitophagy inhibitor. HCH significantly improves mitochondrial function, enhances PINK1/Parkin-mediated mitophagy, and reduces the activity of the STING-TBK-IRF3 pathway in brain tissue. CONCLUSIONS HCH inhalation effectively improved the survival rate of septic mice, alleviated SAE, and reduced tau phosphorylation. The mechanism may involve HCH enhancing PINK1/Parkin-mediated mitophagy, which inhibits the activity of the cGAS-STING-IRF3 pathway, thereby reducing neuroinflammation.
Collapse
Affiliation(s)
- Yan Cui
- Department of Pathogen BiologySchool of Basic Medical Sciences, Tianjin Medical UniversityTianjinChina
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Jianfeng Liu
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Yu Song
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Chen Chen
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Yuehao Shen
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Keliang Xie
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
- Department of AnesthesiologyTianjin Institute of Anesthesiology, Tianjin Medical University General HospitalTianjinChina
| |
Collapse
|
3
|
Hou FF, Mi JH, Wang Q, Tao YL, Guo SB, Ran GH, Wang JC. Macrophage polarization in sepsis: Emerging role and clinical application prospect. Int Immunopharmacol 2025; 144:113715. [PMID: 39626538 DOI: 10.1016/j.intimp.2024.113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/15/2024]
Abstract
Sepsis is a severe, potentially fatal condition defined by organ dysfunction due to excessive inflammation. Its complex pathogenesis and poor therapeutic outcomes pose significant challenges in treatment. Macrophages, with their high heterogeneity and plasticity, play crucial roles in both the innate and adaptive immune systems. They can polarize into M1-like macrophages, which promote pro-inflammatory responses, or M2-like macrophages, which mediate anti-inflammatory responses, positioning them as critical mediators in the immune response during sepsis.Macrophages are the main regulators of inflammatory responses, and their polarization is also regulated by inflammatory signaling pathways. This review highlights recent advances in the inflammatory signaling pathways involved in sepsis, mechanism of macrophage polarization mediated by inflammation-related signaling pathways in sepsis, and the role of signaling pathway mediated macrophage polarization in organ dysfunction involved in sepsis. We also explore the therapeutic potential of targeting macrophage polarization for immunotherapy, offering new perspectives on macrophage-targeted treatments for sepsis.
Collapse
Affiliation(s)
- Fei Fei Hou
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Jun Hao Mi
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou 545001, China
| | - Qiong Wang
- Burn and Plastic Surgery Department of Hohhot First Hospital, Hohhot 010030, China
| | - Yan Lin Tao
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Shuai Bin Guo
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Guang He Ran
- Chongqing Changshou Traditional Cinese Medicine Hospital, 401200 Chongqing, China.
| | - Jing Chao Wang
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China.
| |
Collapse
|
4
|
Cui Y, Meng S, Zhang N, Liu J, Zheng L, Ma W, Song Y, Wang Z, Shen Y, Liu J, Xie K. High-concentration hydrogen inhalation mitigates sepsis-associated encephalopathy in mice by improving mitochondrial dynamics. CNS Neurosci Ther 2024; 30:e70021. [PMID: 39258790 PMCID: PMC11388582 DOI: 10.1111/cns.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a neuronal injury with poor prognosis. Mitochondrial dysfunction is critical in SAE development, and hydrogen gas (H2) has a protective effect on septic mice. This study aimed to investigate the effect of high concentration (67%) of H2 on SAE and whether it is related to mitochondrial biogenesis and mitochondrial dynamics. METHODS A mouse sepsis model was induced by cecal ligation and puncture. The mice inhalated 67% H2 for 1 h at 1 and 6 h post-surgery, respectively. The 7-day survival rate was recorded. Cognitive function was assessed using the Y-maze test and Morris water maze test. Serum inflammatory factors, antioxidant enzymes, as well as mitochondrial function indexes including mitochondrial membrane potential (MMP) and ATP in the hippocampal tissue were evaluated 24 h after surgery. Mitochondrial dynamic proteins (DRP1 and MFN2) and biosynthetic proteins (PGC-1α, NRF2, and TFAM) in the hippocampal tissue were detected. Moreover, the morphology of mitochondria was observed by transmission electron microscopy. RESULTS Inhalation of 67% H2 improved the 7-day survival rates and recognition memory function of septic mice, alleviated brain antioxidant enzyme activity (SOD and CAT), and reduced serum proinflammatory cytokine levels. H2 inhalation also enhanced the expression of MFN2 and mitochondrial biogenesis-related factors (PGC-1α, NRF2, and TFAM) and decreased the expression of fission protein (DRP1), leading to improvement in mitochondrial function, as evidenced by MMP and ATP levels. CONCLUSIONS Inhalation of high concentration (67%) of H2 in septic mice improved the survival rate and reduced neuronal injury. Its mechanism might be mediated by enhancing mitochondrial biogenesis and mitochondrial dynamics.
Collapse
Affiliation(s)
- Yan Cui
- Department of Pathogen BiologySchool of Basic Medical Sciences, Tianjin Medical UniversityTianjinChina
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Shuqi Meng
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
- Department of AnesthesiologyTianjin Institute of Anesthesiology, Tianjin Medical University General HospitalTianjinChina
| | - Nannan Zhang
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Jingya Liu
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
- Department of AnesthesiologyTianjin Institute of Anesthesiology, Tianjin Medical University General HospitalTianjinChina
| | - Lina Zheng
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Wanjie Ma
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Yu Song
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Zhiwei Wang
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Yuehao Shen
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Jianfeng Liu
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
- Department of AnesthesiologyTianjin Institute of Anesthesiology, Tianjin Medical University General HospitalTianjinChina
| | - Keliang Xie
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
- Department of AnesthesiologyTianjin Institute of Anesthesiology, Tianjin Medical University General HospitalTianjinChina
| |
Collapse
|
5
|
Yang Y, Ke J, Cao Y, Gao Y, Lin C. Melatonin regulates microglial M1/M2 polarization via AMPKα2-mediated mitophagy in attenuating sepsis-associated encephalopathy. Biomed Pharmacother 2024; 177:117092. [PMID: 38976956 DOI: 10.1016/j.biopha.2024.117092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a disease characterized by neuroinflammation and cognitive dysfunction caused by systemic infection. Inflammation-induced microglial activation is closely associated with neuroinflammation in SAE. It is widely understood that melatonin has strong anti-inflammatory and immunomodulatory properties beneficial for sepsis-related brain damage. However, the mechanism of melatonin action in SAE has not been fully elucidated. METHODS The SAE cell model and SAE mouse model were induced by lipopolysaccharide (LPS). Behavioral tests were performed to analyze cognitive function. Microglial markers and M1/M2 markers were measured by immunofluorescence. Mitophagy was assessed by western blot, mt-Keima and transmission electron microscopy experiments. Immunoprecipitation and co-immunoprecipitation assays investigated the interactions between AMP-activated protein kinase α2 (AMPKα2) and PTEN-induced putative kinase 1 (PINK1). RESULTS Melatonin suppresses LPS-induced microglia M1 polarization by enhancing mitophagy, thereby attenuating LPS-induced neuroinflammation and behavioral deficits. However, inhibition or knockdown of AMPKα2 can inhibit the enhancement of melatonin on mitophagy, then weaken its promotion of microglia polarization towards M2 phenotype, and eliminate its protective effect on brain function. Furthermore, melatonin enhances mitophagy through activating AMPKα2, promotes PINK1 Ser495 site phosphorylation, and ultimately regulates microglial polarization from M1 to M2. CONCLUSIONS Our findings demonstrate that melatonin facilitates microglia polarization towards M2 phenotype to alleviate LPS-induced neuroinflammation, primarily through AMPKα2-mediated enhancement of mitophagy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Jinyong Ke
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Yang Cao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Yue Gao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Chunshui Lin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
6
|
Bu Z, Xu S, Xu F. Deciphering the mechanism of cimifugin in mitigating LPS-induced neuroinflammation in BV-2 cells. Allergol Immunopathol (Madr) 2024; 52:38-45. [PMID: 38970263 DOI: 10.15586/aei.v52i4.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE Sepsis often triggers a systemic inflammatory response leading to multi-organ dysfunction, with complex and not fully understood pathogenesis. This study investigates the therapeutic effects of cimifugin on BV-2 cells under sepsis-induced stress conditions. METHODS We utilized a BV-2 microglial cell model treated with lipopolysaccharide (LPS) to mimic sepsis. Assessments included cellular vitality, inflammatory cytokine quantification (6 interleukin [6IL]-1β, interleukin 6 [IL-6], and tumor necrosis factor-α [TNF-α]) via enzyme-linked-immunosorbent serologic assay, and analysis of mRNA expression using real-time polymerase chain reaction. Oxidative stress and mitochondrial function were also evaluated to understand the cellular effects of cimifugin. RESULTS Cimifugin significantly attenuated LPS-induced inflammatory responses, oxidative stress, and mitochondrial dysfunction. It enhanced cell viability and modulated the secretion and gene expression of inflammatory cytokines IL-1β, IL-6, and TNF-α. Notably, cimifugin activated the deacetylase sirtuin 1-nuclear factor erythroid 2-related factor 2 pathway, contributing to its protective effects against mitochondrial damage. CONCLUSION Cimifugin demonstrates the potential of being an effective treatment for sepsis--induced neuroinflammation, warranting further investigation.
Collapse
Affiliation(s)
- Zhang Bu
- Department of Emergency Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shan Xu
- Soochow University Campus Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Feng Xu
- Department of Emergency Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China;
| |
Collapse
|
7
|
Zhu Q, Wan L, Huang H, Liao Z. IL-1β, the first piece to the puzzle of sepsis-related cognitive impairment? Front Neurosci 2024; 18:1370406. [PMID: 38665289 PMCID: PMC11043581 DOI: 10.3389/fnins.2024.1370406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis is a leading cause of death resulting from an uncontrolled inflammatory response to an infectious agent. Multiple organ injuries, including brain injuries, are common in sepsis. The underlying mechanism of sepsis-associated encephalopathy (SAE), which is associated with neuroinflammation, is not yet fully understood. Recent studies suggest that the release of interleukin-1β (IL-1β) following activation of microglial cells plays a crucial role in the development of long-lasting neuroinflammation after the initial sepsis episode. This review provides a comprehensive analysis of the recent literature on the molecular signaling pathways involved in microglial cell activation and interleukin-1β release. It also explores the physiological and pathophysiological role of IL-1β in cognitive function, with a particular focus on its contribution to long-lasting neuroinflammation after sepsis. The findings from this review may assist healthcare providers in developing novel interventions against SAE.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Wan
- Department of Medical Genetics/Prenatal Diagnostic Center Nursing and Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Han Huang
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhimin Liao
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Yu Z, Shi H, Zhang J, Ma C, He C, Yang F, Zhao L. ROLE OF MICROGLIA IN SEPSIS-ASSOCIATED ENCEPHALOPATHY PATHOGENESIS: AN UPDATE. Shock 2024; 61:498-508. [PMID: 38150368 DOI: 10.1097/shk.0000000000002296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
ABSTRACT Sepsis-associated encephalopathy (SAE) is a serious complication of sepsis, which is characterized by cognitive dysfunction, a poor prognosis, and high incidences of morbidity and mortality. Substantial levels of systemic inflammatory factors induce neuroinflammatory responses during sepsis, ultimately disrupting the central nervous system's (CNS) homeostasis. This disruption results in brain dysfunction through various underlying mechanisms, contributing further to SAE's development. Microglia, the most important macrophage in the CNS, can induce neuroinflammatory responses, brain tissue injury, and neuronal dysregulation, resulting in brain dysfunction. They serve an important regulatory role in CNS homeostasis and can be activated through multiple pathways. Consequently, activated microglia are involved in several pathogenic mechanisms related to SAE and play a crucial role in its development. This article discusses the role of microglia in neuroinflammation, dysfunction of neurotransmitters, disruption of the blood-brain barrier, abnormal control of cerebral blood flow, mitochondrial dysfunction, and reduction in the number of good bacteria in the gut as main pathogenic mechanisms of SAE and focuses on studies targeting microglia to ameliorate SAE to provide a theoretical basis for targeted microglial therapy for SAE.
Collapse
Affiliation(s)
| | - Hui Shi
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| | - Jingjing Zhang
- Department of Central Laboratory, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| | - Chunhan Ma
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Hohhot, China
| | - Chen He
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Hohhot, China
| | - Fei Yang
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| | - Lina Zhao
- Department of Critical Care Medicine, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Qin N, Miao Y, Xie L, Ma X, Xie P. Sepsis-associated encephalopathy: Autophagy and miRNAs regulate microglial activation. Physiol Rep 2024; 12:e15964. [PMID: 38439741 PMCID: PMC10912956 DOI: 10.14814/phy2.15964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) describes diffuse or multifocal cerebral dysfunction caused by the systemic inflammatory response to sepsis. SAE is a common neurological complication in patients in the middle and late stages of sepsis in the intensive care unit. Microglia, resident macrophages of the central nervous system, phagocytose small numbers of neuronal cells and apoptotic cells, among other cells, to maintain the dynamic balance of the brain's internal environment. The neuroinflammatory response induced by activated microglia plays a central role in the pathogenesis of various central nervous system diseases. In this paper, we systematically describe the functions and phenotypes of microglia, summarize how microglia mediate neuroinflammation and contribute to the occurrence and development of SAE, and discuss recent progress in autophagy- and microRNA-mediated regulation of microglial activation to provide a theoretical basis for the prevention and treatment of SAE and identify related therapeutic targets.
Collapse
Affiliation(s)
- Nannan Qin
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi)Zunyi Medical UniversityZunyiChina
| | - Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi)Zunyi Medical UniversityZunyiChina
| | - Leiyu Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi)Zunyi Medical UniversityZunyiChina
| | - Xinglong Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi)Zunyi Medical UniversityZunyiChina
| | - Peng Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi)Zunyi Medical UniversityZunyiChina
| |
Collapse
|
10
|
Ji MH, Gao YZ, Shi CN, Wu XM, Yang JJ. Acute and long-term cognitive impairment following sepsis: mechanism and prevention. Expert Rev Neurother 2023; 23:931-943. [PMID: 37615511 DOI: 10.1080/14737175.2023.2250917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION Sepsis is a severe host response to infection, which induces both acute and long-term cognitive impairment. Despite its high incidence following sepsis, the underlying mechanisms remain elusive and effective treatments are not available clinically. AREA COVERED This review focuses on elucidating the pathological mechanisms underlying cognitive impairment following sepsis. Specifically, the authors discuss the role of systemic inflammation response, blood-brain barrier disruption, neuroinflammation, mitochondrial dysfunction, neuronal dysfunction, and Aβ accumulation and tau phosphorylation in cognitive impairment after sepsis. Additionally, they review current strategies to ameliorate cognitive impairment. EXPERT OPINION Potential interventions to reduce cognitive impairment after sepsis include earlier diagnosis and effective infection control, hemodynamic homeostasis, and adequate brain perfusion. Furthermore, interventions to reduce inflammatory response, reactive oxygen species, blood-brain barrier disruption, mitochondrial dysfunction, neuronal injury or death could be beneficial. Implementing strategies to minimize delirium, sleep disturbance, stress factors, and immobility are also recommended. Furthermore, avoiding neurotoxins and implementing early rehabilitation may also be important for preventing cognitive impairment after sepsis.
Collapse
Affiliation(s)
- Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Zhu Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cui-Na Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin-Miao Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Krzyzaniak K, Krion R, Szymczyk A, Stepniewska E, Sieminski M. Exploring Neuroprotective Agents for Sepsis-Associated Encephalopathy: A Comprehensive Review. Int J Mol Sci 2023; 24:10780. [PMID: 37445958 DOI: 10.3390/ijms241310780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Sepsis is a life-threatening condition resulting from an inflammatory overreaction that is induced by an infectious factor, which leads to multi-organ failure. Sepsis-associated encephalopathy (SAE) is a common complication of sepsis that can lead to acute cognitive and consciousness disorders, and no strict diagnostic criteria have been created for the complication thus far. The etiopathology of SAE is not fully understood, but plausible mechanisms include neuroinflammation, blood-brain barrier disruption, altered cerebral microcirculation, alterations in neurotransmission, changes in calcium homeostasis, and oxidative stress. SAE may also lead to long-term consequences such as dementia and post-traumatic stress disorder. This review aims to provide a comprehensive summary of substances with neuroprotective properties that have the potential to offer neuroprotection in the treatment of SAE. An extensive literature search was conducted, extracting 71 articles that cover a range of substances, including plant-derived drugs, peptides, monoclonal antibodies, and other commonly used drugs. This review may provide valuable insights for clinicians and researchers working in the field of sepsis and SAE and contribute to the development of new treatment options for this challenging condition.
Collapse
Affiliation(s)
- Klaudia Krzyzaniak
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Robert Krion
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Aleksandra Szymczyk
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Ewelina Stepniewska
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Mariusz Sieminski
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| |
Collapse
|
12
|
Dumbuya JS, Li S, Liang L, Zeng Q. Paediatric sepsis-associated encephalopathy (SAE): a comprehensive review. Mol Med 2023; 29:27. [PMID: 36823611 PMCID: PMC9951490 DOI: 10.1186/s10020-023-00621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is one of the most common types of organ dysfunction without overt central nervous system (CNS) infection. It is associated with higher mortality, low quality of life, and long-term neurological sequelae, its mortality in patients diagnosed with sepsis, progressing to SAE, is 9% to 76%. The pathophysiology of SAE is still unknown, but its mechanisms are well elaborated, including oxidative stress, increased cytokines and proinflammatory factors levels, disturbances in the cerebral circulation, changes in blood-brain barrier permeability, injury to the brain's vascular endothelium, altered levels of neurotransmitters, changes in amino acid levels, dysfunction of cerebral microvascular cells, mitochondria dysfunction, activation of microglia and astrocytes, and neuronal death. The diagnosis of SAE involves excluding direct CNS infection or other types of encephalopathies, which might hinder its early detection and appropriate implementation of management protocols, especially in paediatric patients where only a few cases have been reported in the literature. The most commonly applied diagnostic tools include electroencephalography, neurological imaging, and biomarker detection. SAE treatment mainly focuses on managing underlying conditions and using antibiotics and supportive therapy. In contrast, sedative medication is used judiciously to treat those showing features such as agitation. The most widely used medication is dexmedetomidine which is neuroprotective by inhibiting neuronal apoptosis and reducing a sepsis-associated inflammatory response, resulting in improved short-term mortality and shorter time on a ventilator. Other agents, such as dexamethasone, melatonin, and magnesium, are also being explored in vivo and ex vivo with encouraging results. Managing modifiable factors associated with SAE is crucial in improving generalised neurological outcomes. From those mentioned above, there are still only a few experimentation models of paediatric SAE and its treatment strategies. Extrapolation of adult SAE models is challenging because of the evolving brain and technical complexity of the model being investigated. Here, we reviewed the current understanding of paediatric SAE, its pathophysiological mechanisms, diagnostic methods, therapeutic interventions, and potential emerging neuroprotective agents.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Siqi Li
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lili Liang
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Qiyi Zeng
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
13
|
Qi B, Song Y, Chen C, Zhao L, Ma W, Meng S, Zhuang X, Lin H, Liang J, Cui Y, Xie K. Molecular hydrogen attenuates sepsis-induced cognitive dysfunction through regulation of tau phosphorylation. Int Immunopharmacol 2023; 114:109603. [PMID: 36538853 DOI: 10.1016/j.intimp.2022.109603] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a cognitive dysfunction caused by sepsis. Hyperphosphorylated tau is considered to play a significant role in the progression of neurodegenerative disease and also contributes to cognitive dysfunction in septic mice. Molecular hydrogen (H2) plays an antioxidant and anti-inflammatory role, and plays a protective role in septic mice. This study explored the possible effects of H2 on cognition and tau phosphorylation in a mouse model of SAE. METHODS The model of sepsis was established in C57BL/6J male mice by cecal ligation and puncture surgery. Mice treated with 2 % H2 inhalation for 60 min at 1 h and 6 h after surgery, respectively. HY-15769, the inhibitor of Tau Tubulin Kinase 1 (TTBK1), was injected 1 h before the surgery. The 7-day survival rates of the mice were recorded. Cognitive behavior was tested with both novel object recognition and the Y-maze novelty arm recognition on day 7 after surgery. Hematoxylin-eosin staining was used to observe the histological damage in CA1 region of hippocampus. The expression of inflammatory factors in hippocampus was assessed by Elisa. Western blotting was adopted to determine the tau phosphorylation levels at AT8 epitopes (pSer202 and pThr205) and T22 epitopes (neurofibrillary tangle protein oligomer), and the GSK3β phosphorylation levels (Tyr216), as well as p-Ser422 and TTBK1 levels in the hippocampus. The number of dendritic spine and mushroom type of dendritic spines in the hippocampus were assessed by Golgi staining. RESULTS The survival rate, visual and spatial learning ability, and memory ability were improved in septic mice treated with H2. After H2 treatment, the density of dendritic spine, mushroom type of dendritic spine, and the number of normal hippocampal neurons were progressively elevated. H2 decreased the levels of phosphorylated tau protein, tau oligomer and TTBK1, as well as the phosphorylation of tau key kinase. Furthermore, the injection of HY-15769 (a TTBK1 inhibitor) protected SAE through the similar way. CONCLUSION The protective effect of H2 on cognitive dysfunction induced by SAE may be achieved by inhibiting tau phosphorylation, which is perhaps related with the inhibition of TTBK1.
Collapse
Affiliation(s)
- Bo Qi
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu Song
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chen Chen
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Anesthesiology, Tianjin Beichen Hospital, Tianjin 300134, China
| | - Lina Zhao
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wanjie Ma
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shuqi Meng
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaoli Zhuang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huayi Lin
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Liang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yan Cui
- Department of Pathogen Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China.
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
14
|
Inhibition of the TLR/NF- κB Signaling Pathway and Improvement of Autophagy Mediates Neuroprotective Effects of Plumbagin in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1837278. [PMID: 36589679 PMCID: PMC9800084 DOI: 10.1155/2022/1837278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
A naphthoquinone molecule known as plumbagin (PL), which has a wide range of pharmacological properties including antitumor, antioxidation, anti-inflammation, and neuroprotective effects, is extracted from the roots of the medicinal herb Plumbago zeylanica L. Plumbagin has been studied for its potential to treat Parkinson's disease (PD). However, its effectiveness and mechanism are still unknown. This study intends to evaluate plumbagin's effectiveness against PD in vitro and in vivo. Plumbagin partially repaired the loss of dopaminergic neurons in the nigral substantia nigra and the resulting behavioural impairment caused by MPTP or MPTP/probenecid in mice. Furthermore, plumbagin treatment significantly inhibited the TLR/NF-κB pathways. It reduced the TNF-α, IL-6, and IL-1β mRNA expression in PD mice induced by MPTP or MPTP/probenecid, which was consistent with the findings in the inflammatory model of BV2 cells induced by MPP+ or LPS. In addition, plumbagin treatment enhanced the microtubule-associated protein 1 light chain 3 beta (LC3) LC3-II/LC3-I levels while decreasing the p-mTOR and p62 protein accumulation in PD mice induced by MPTP or MPTP/probenecid, which was similar to the results obtained from the experiments in SH-SY5Y and PC12 cells induced by MPP+. Consequently, our results support the hypothesis that plumbagin, by promoting autophagy and inhibiting the activation of the TLR/NF-κB signaling pathway, is a promising treatment agent for treating Parkinson's disease (PD). However, to confirm plumbagin's anti-PD action more thoroughly, other animal and cell PD models must be used in future studies.
Collapse
|
15
|
Sepsis-Induced Brain Dysfunction: Pathogenesis, Diagnosis, and Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1328729. [PMID: 36062193 PMCID: PMC9433216 DOI: 10.1155/2022/1328729] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
Dysregulated host response to infection, which cause life-threatening organ dysfunction, was defined as sepsis. Sepsis can cause acute and long-term brain dysfunction, namely, sepsis-associated encephalopathy (SAE) and cognitive impairment. SAE refers to changes in consciousness without direct evidence of central nervous system infection. It is highly prevalent and may cause poor outcomes in sepsis patients. Cognitive impairment seriously affects the life quality of sepsis patients and increases the medical burden. The pathogenesis of sepsis-induced brain dysfunction is mainly characterized by the interaction of systemic inflammation, blood-brain barrier (BBB) dysfunction, neuroinflammation, microcirculation dysfunction, and brain dysfunction. Currently, the diagnosis of sepsis-induced brain dysfunction is based on clinical manifestation of altered consciousness along with neuropathological examination, and the treatment is mainly involves controlling sepsis. Although treatments for sepsis-induced brain dysfunction have been tested in animals, clinical treat sepsis-induced brain dysfunction is still difficult. Therefore, we review the underlying mechanisms of sepsis-induced brain injury, which mainly focus on the influence of systemic inflammation on BBB, neuroinflammation, brain microcirculation, and the brain function, which want to bring new mechanism-based directions for future basic and clinical research aimed at preventing or ameliorating brain dysfunction.
Collapse
|
16
|
Yan X, Yang K, Xiao Q, Hou R, Pan X, Zhu X. Central role of microglia in sepsis-associated encephalopathy: From mechanism to therapy. Front Immunol 2022; 13:929316. [PMID: 35958583 PMCID: PMC9361477 DOI: 10.3389/fimmu.2022.929316] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a cognitive impairment associated with sepsis that occurs in the absence of direct infection in the central nervous system or structural brain damage. Microglia are thought to be macrophages of the central nervous system, devouring bits of neuronal cells and dead cells in the brain. They are activated in various ways, and microglia-mediated neuroinflammation is characteristic of central nervous system diseases, including SAE. Here, we systematically described the pathogenesis of SAE and demonstrated that microglia are closely related to the occurrence and development of SAE. Furthermore, we comprehensively discussed the function and phenotype of microglia and summarized their activation mechanism and role in SAE pathogenesis. Finally, this review summarizes recent studies on treating cognitive impairment in SAE by blocking microglial activation and toxic factors produced after activation. We suggest that targeting microglial activation may be a putative treatment for SAE.
Collapse
Affiliation(s)
- Xiaoqian Yan
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rongyao Hou
- Department of Neurology, The Affiliated Hiser Hospital of Qingdao University, Qingdao, China
- *Correspondence: Rongyao Hou, ; Xudong Pan, ; Xiaoyan Zhu,
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Rongyao Hou, ; Xudong Pan, ; Xiaoyan Zhu,
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Rongyao Hou, ; Xudong Pan, ; Xiaoyan Zhu,
| |
Collapse
|