1
|
Li J, Mo D, Hu J, Wang S, Gong J, Huang Y, Li Z, Yuan Z, Xu M. PEDOT:PSS-based bioelectronics for brain monitoring and modulation. MICROSYSTEMS & NANOENGINEERING 2025; 11:87. [PMID: 40360495 PMCID: PMC12075682 DOI: 10.1038/s41378-025-00948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025]
Abstract
The growing demand for advanced neural interfaces that enable precise brain monitoring and modulation has catalyzed significant research into flexible, biocompatible, and highly conductive materials. PEDOT:PSS-based bioelectronic materials exhibit high conductivity, mechanical flexibility, and biocompatibility, making them particularly suitable for integration into neural devices for brain science research. These materials facilitate high-resolution neural activity monitoring and provide precise electrical stimulation across diverse modalities. This review comprehensively examines recent advances in the development of PEDOT:PSS-based bioelectrodes for brain monitoring and modulation, with a focus on strategies to enhance their conductivity, biocompatibility, and long-term stability. Furthermore, it highlights the integration of multifunctional neural interfaces that enable synchronous stimulation-recording architectures, hybrid electro-optical stimulation modalities, and multimodal brain activity monitoring. These integrations enable fundamentally advancing the precision and clinical translatability of brain-computer interfaces. By addressing critical challenges related to efficacy, integration, safety, and clinical translation, this review identifies key opportunities for advancing next-generation neural devices. The insights presented are vital for guiding future research directions in the field and fostering the development of cutting-edge bioelectronic technologies for neuroscience and clinical applications.
Collapse
Affiliation(s)
- Jing Li
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Daize Mo
- School of Applied Physics and Materials, Wuyi University, Jiangmen, 529020, P. R. China
| | - Jinyuan Hu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Shichao Wang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Jun Gong
- Central Laboratory of YunFu People's Hospital, Yunfu, Guangdong, China
| | - Yujing Huang
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, SAR 999078, China
| | - Zheng Li
- Department of Psychology, Faculty of Arts and Sciences, Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, SAR 999078, China
| | - Mengze Xu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China.
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, SAR 999078, China.
- Department of Psychology, Faculty of Arts and Sciences, Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China.
| |
Collapse
|
2
|
Cooray GK, Cooray V, Friston KJ. Cortical dynamics of neural-connectivity fields. J Comput Neurosci 2025:10.1007/s10827-025-00903-8. [PMID: 40208381 DOI: 10.1007/s10827-025-00903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
Macroscopic studies of cortical tissue reveal a prevalence of oscillatory activity, that reflect a fine tuning of neural interactions. This research extends neural field theories by incorporating generalized oscillatory dynamics into previous work on conservative or semi-conservative neural field dynamics. Prior studies have largely assumed isotropic connections among neural units; however, this study demonstrates that a broad range of anisotropic and fluctuating connections can still sustain oscillations. Using Lagrangian field methods, we examine different types of connectivity, their dynamics, and potential interactions with neural fields. From this theoretical foundation, we derive a framework that incorporates Hebbian and non-Hebbian learning - i.e., plasticity - into the study of neural fields via the concept of a connectivity field.
Collapse
Affiliation(s)
- Gerald K Cooray
- Clinical Neuroscience, Karolinska Institutet, Eugeniav, 17177, Stockholm, Sweden.
| | - Vernon Cooray
- Angstrom Laboratory, Uppsala University, Lägerhyddsv 1, 752 37, Uppsala, Sweden
| | - Karl J Friston
- Functional Imaging Laboratory at Queens Square Institute of Neurology, University College London, 12 Queens Square, London, WC1N 3AR, UK
| |
Collapse
|
3
|
Schmitt O. Relationships and representations of brain structures, connectivity, dynamics and functions. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111332. [PMID: 40147809 DOI: 10.1016/j.pnpbp.2025.111332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
The review explores the complex interplay between brain structures and their associated functions, presenting a diversity of hierarchical models that enhances our understanding of these relationships. Central to this approach are structure-function flow diagrams, which offer a visual representation of how specific neuroanatomical structures are linked to their functional roles. These diagrams are instrumental in mapping the intricate connections between different brain regions, providing a clearer understanding of how functions emerge from the underlying neural architecture. The study details innovative attempts to develop new functional hierarchies that integrate structural and functional data. These efforts leverage recent advancements in neuroimaging techniques such as fMRI, EEG, MEG, and PET, as well as computational models that simulate neural dynamics. By combining these approaches, the study seeks to create a more refined and dynamic hierarchy that can accommodate the brain's complexity, including its capacity for plasticity and adaptation. A significant focus is placed on the overlap of structures and functions within the brain. The manuscript acknowledges that many brain regions are multifunctional, contributing to different cognitive and behavioral processes depending on the context. This overlap highlights the need for a flexible, non-linear hierarchy that can capture the brain's intricate functional landscape. Moreover, the study examines the interdependence of these functions, emphasizing how the loss or impairment of one function can impact others. Another crucial aspect discussed is the brain's ability to compensate for functional deficits following neurological diseases or injuries. The investigation explores how the brain reorganizes itself, often through the recruitment of alternative neural pathways or the enhancement of existing ones, to maintain functionality despite structural damage. This compensatory mechanism underscores the brain's remarkable plasticity, demonstrating its ability to adapt and reconfigure itself in response to injury, thereby ensuring the continuation of essential functions. In conclusion, the study presents a system of brain functions that integrates structural, functional, and dynamic perspectives. It offers a robust framework for understanding how the brain's complex network of structures supports a wide range of cognitive and behavioral functions, with significant implications for both basic neuroscience and clinical applications.
Collapse
Affiliation(s)
- Oliver Schmitt
- Medical School Hamburg - University of Applied Sciences and Medical University - Institute for Systems Medicine, Am Kaiserkai 1, Hamburg 20457, Germany; University of Rostock, Department of Anatomy, Gertrudenstr. 9, Rostock, 18055 Rostock, Germany.
| |
Collapse
|
4
|
Alijanpourotaghsara A, Mirpour K, Choi JW, Chitta KK, Shalaby A, Boswell M, Chilukuri S, Cohen SL, Byon R, Benam M, Kariv S, Lee J, Duncan D, Pouratian N. B(RAIN) 2-BRAIN integrated Resource for Anatomy and Intracranial Neurophysiology. Sci Data 2025; 12:442. [PMID: 40089497 PMCID: PMC11910653 DOI: 10.1038/s41597-025-04784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
The Brain Integrated Resource for Human Anatomy and Intracranial Neurophysiology (B(RAIN)2) is a multi-center data resource that provides standardized imaging and intracranial neurophysiological data from patients who have undergone deep brain stimulation (DBS) implantation with intracranial electroencephalography (iEEG) recordings. The database includes patients' electrophysiological recordings from the cerebral cortex and deeper brain structures, alongside high-resolution neurological imaging scans taken at preoperative, intraoperative, and postoperative stages. The data are systematically organized using the Brain Imaging Data Structure (BIDS) format for imaging data and iEEG-BIDS for intracranial electrophysiological recordings. This standardized structure facilitates data integration, sharing, and analysis across research institutions. Additionally, the database features detailed metadata, such as diagnostic information and neurological assessment scores, providing a comprehensive profile of each patient's data.
Collapse
Affiliation(s)
| | - Koorosh Mirpour
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jeong Woo Choi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Krishna Kanth Chitta
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ahmed Shalaby
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Misque Boswell
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sahil Chilukuri
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Samantha L Cohen
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryan Byon
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mohsen Benam
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Saar Kariv
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Dominique Duncan
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
5
|
Mishra P, Narayanan R. The enigmatic HCN channels: A cellular neurophysiology perspective. Proteins 2025; 93:72-92. [PMID: 37982354 PMCID: PMC7616572 DOI: 10.1002/prot.26643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
What physiological role does a slow hyperpolarization-activated ion channel with mixed cation selectivity play in the fast world of neuronal action potentials that are driven by depolarization? That puzzling question has piqued the curiosity of physiology enthusiasts about the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are widely expressed across the body and especially in neurons. In this review, we emphasize the need to assess HCN channels from the perspective of how they respond to time-varying signals, while also accounting for their interactions with other co-expressing channels and receptors. First, we illustrate how the unique structural and functional characteristics of HCN channels allow them to mediate a slow negative feedback loop in the neurons that they express in. We present the several physiological implications of this negative feedback loop to neuronal response characteristics including neuronal gain, voltage sag and rebound, temporal summation, membrane potential resonance, inductive phase lead, spike triggered average, and coincidence detection. Next, we argue that the overall impact of HCN channels on neuronal physiology critically relies on their interactions with other co-expressing channels and receptors. Interactions with other channels allow HCN channels to mediate intrinsic oscillations, earning them the "pacemaker channel" moniker, and to regulate spike frequency adaptation, plateau potentials, neurotransmitter release from presynaptic terminals, and spike initiation at the axonal initial segment. We also explore the impact of spatially non-homogeneous subcellular distributions of HCN channels in different neuronal subtypes and their interactions with other channels and receptors. Finally, we discuss how plasticity in HCN channels is widely prevalent and can mediate different encoding, homeostatic, and neuroprotective functions in a neuron. In summary, we argue that HCN channels form an important class of channels that mediate a diversity of neuronal functions owing to their unique gating kinetics that made them a puzzle in the first place.
Collapse
Affiliation(s)
- Poonam Mishra
- Department of Neuroscience, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
6
|
Kumari S, Narayanan R. Ion-channel degeneracy and heterogeneities in the emergence of signature physiological characteristics of dentate gyrus granule cells. J Neurophysiol 2024; 132:991-1013. [PMID: 39110941 DOI: 10.1152/jn.00071.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Complex systems are neither fully determined nor completely random. Biological complex systems, including single neurons, manifest intermediate regimes of randomness that recruit integration of specific combinations of functionally specialized subsystems. Such emergence of biological function provides the substrate for the expression of degeneracy, the ability of disparate combinations of subsystems to yield similar function. Here, we present evidence for the expression of degeneracy in morphologically realistic models of dentate gyrus granule cells (GCs) through functional integration of disparate ion-channel combinations. We performed a 45-parameter randomized search spanning 16 active and passive ion channels, each biophysically constrained by their gating kinetics and localization profiles, to search for valid GC models. Valid models were those that satisfied 17 sub- and suprathreshold cellular-scale electrophysiological measurements from rat GCs. A vast majority (>99%) of the 15,000 random models were not electrophysiologically valid, demonstrating that arbitrarily random ion-channel combinations would not yield GC functions. The 141 valid models (0.94% of 15,000) manifested heterogeneities in and cross-dependencies across local and propagating electrophysiological measurements, which matched with their respective biological counterparts. Importantly, these valid models were widespread throughout the parametric space and manifested weak cross-dependencies across different parameters. These observations together showed that GC physiology could neither be obtained by entirely random ion-channel combinations nor is there an entirely determined single parametric combination that satisfied all constraints. The complexity, the heterogeneities in measurement and parametric spaces, and degeneracy associated with GC physiology should be rigorously accounted for while assessing GCs and their robustness under physiological and pathological conditions.NEW & NOTEWORTHY A recent study from our laboratory had demonstrated pronounced heterogeneities in a set of 17 electrophysiological measurements obtained from a large population of rat hippocampal granule cells. Here, we demonstrate the manifestation of ion-channel degeneracy in a heterogeneous population of morphologically realistic conductance-based granule cell models that were validated against these measurements and their cross-dependencies. Our analyses show that single neurons are complex entities whose functions emerge through intricate interactions among several functionally specialized subsystems.
Collapse
Affiliation(s)
- Sanjna Kumari
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
Seenivasan P, Basak R, Narayanan R. Cross-strata co-occurrence of ripples with theta-frequency oscillations in the hippocampus of foraging rats. J Physiol 2024; 602:2315-2341. [PMID: 38654581 PMCID: PMC7615956 DOI: 10.1113/jp284629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Brain rhythms have been postulated to play central roles in animal cognition. A prominently reported dichotomy of hippocampal rhythms links theta-frequency oscillations (4-12 Hz) and ripples (120-250 Hz) exclusively to preparatory and consummatory behaviours, respectively. However, because of the differential power expression of these two signals across hippocampal strata, such exclusivity requires validation through analyses of simultaneous multi-strata recordings. We assessed co-occurrence of theta-frequency oscillations with ripples in multi-channel recordings of extracellular potentials across hippocampal strata from foraging rats. We detected all ripple events from an identified stratum pyramidale (SP) channel. We then defined theta epochs based on theta oscillations detected from the stratum lacunosum-moleculare (SLM) or the stratum radiatum (SR). We found ∼20% of ripple events (in SP) to co-occur with theta epochs identified from SR/SLM channels, defined here as theta ripples. Strikingly, when theta epochs were instead identified from the SP channel, such co-occurrences were significantly reduced because of a progressive reduction in theta power along the SLM-SR-SP axis. Behaviourally, we found most theta ripples to occur during immobile periods, with comparable theta power during exploratory and immobile theta epochs. Furthermore, the progressive reduction in theta power along the SLM-SR-SP axis was common to exploratory and immobile periods. Finally, we found a strong theta-phase preference of theta ripples within the fourth quadrant [3π/2 - 2π] of the associated theta oscillation. The prevalence of theta ripples expands the potential roles of ripple-frequency oscillations to span the continuum of encoding, retrieval and consolidation, achieved through interactions with theta oscillations. KEY POINTS: The brain manifests oscillations in recorded electrical potentials, with different frequencies of oscillation associated with distinct behavioural states. A prominently reported dichotomy assigns theta-frequency oscillations (4-12 Hz) and ripples (120-250 Hz) recorded in the hippocampus to be exclusively associated with preparatory and consummatory behaviours, respectively. Our multi-strata recordings from the rodent hippocampus coupled with cross-strata analyses provide direct quantitative evidence for the occurrence of ripple events nested within theta oscillations. These results highlight the need for an analysis pipeline that explicitly accounts for the specific strata where individual oscillatory power is high, in analysing simultaneously recorded data from multiple strata. Our observations open avenues for investigations involving cross-strata interactions between theta oscillations and ripples across different behavioural states.
Collapse
Affiliation(s)
- Pavithraa Seenivasan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Reshma Basak
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
8
|
Tschumak A, Feldhoff F, Klefenz F. The switching and learning behavior of an octopus cell implemented on FPGA. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5762-5781. [PMID: 38872557 DOI: 10.3934/mbe.2024254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
A dendrocentric backpropagation spike timing-dependent plasticity learning rule has been derived based on temporal logic for a single octopus neuron. It receives parallel spike trains and collectively adjusts its synaptic weights in the range [0, 1] during training. After the training phase, it spikes in reaction to event signaling input patterns in sensory streams. The learning and switching behavior of the octopus cell has been implemented in field-programmable gate array (FPGA) hardware. The application in an FPGA is described and the proof of concept for its application in hardware that was obtained by feeding it with spike cochleagrams is given; also, it is verified by performing a comparison with the pre-computed standard software simulation results.
Collapse
Affiliation(s)
- Alexej Tschumak
- Audio Communication Group, Technische Universität Berlin, Berlin, Germany
| | - Frank Feldhoff
- Advanced Electromagnetics Group, Technische Universität Ilmenau, Ilmenau, Germany
| | - Frank Klefenz
- Fraunhofer Institute for Digital Media Technology, Ilmenau, Germany
| |
Collapse
|
9
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
10
|
Yarur HE, Casello SM, Tsai VS, Enriquez-Traba J, Kore R, Wang H, Arenivar M, Tejeda HA. Dynorphin / kappa-opioid receptor regulation of excitation-inhibition balance toggles afferent control of prefrontal cortical circuits in a pathway-specific manner. Mol Psychiatry 2023; 28:4801-4813. [PMID: 37644172 PMCID: PMC10914606 DOI: 10.1038/s41380-023-02226-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
The medial prefrontal cortex (mPFC) controls behavior via connections with limbic excitatory afferents that engage various inhibitory motifs to shape mPFC circuit function. The dynorphin (Dyn) / kappa-opioid receptor (KOR) system is highly enriched in the mPFC, and its dysregulation is implicated in neuropsychiatric disorders. However, it is unclear how the Dyn / KOR system modulates excitatory and inhibitory circuits that are integral for mPFC information processing and behavioral control. Here, we provide a circuit-based framework wherein mPFC Dyn / KOR signaling regulates excitation-inhibition balance by toggling which afferents drive mPFC neurons. Dyn / KOR regulation of afferent inputs is pathway-specific. Dyn acting on presynaptic KORs inhibits glutamate release from afferent inputs to the mPFC, including the basolateral amygdala (BLA), paraventricular nucleus of the thalamus, and contralateral cortex. The majority of excitatory synapses to mPFC neurons, including those from the ventral hippocampus (VH), do not express presynaptic KOR, rendering them insensitive to Dyn / KOR modulation. Dyn / KOR signaling also suppresses afferent-driven recruitment of specific inhibitory sub-networks, providing a basis for Dyn to disinhibit mPFC circuits. Specifically, Dyn / KOR signaling preferentially suppresses SST interneuron- relative to PV interneuron-mediated inhibition. Selective KOR action on afferents or within mPFC microcircuits gates how distinct limbic inputs drive spiking in mPFC neurons. Presynaptic Dyn / KOR signaling decreases KOR-positive input-driven (e.g. BLA) spiking of mPFC neurons. In contrast, KOR-negative input recruitment of mPFC neurons is enhanced by Dyn / KOR signaling via suppression of mPFC inhibitory microcircuits. Thus, by acting on distinct circuit elements, Dyn / KOR signaling shifts KOR-positive and negative afferent control of mPFC circuits, providing mechanistic insights into the role of neuropeptides in shaping mPFC function. Together, these findings highlight the utility of targeting the mPFC Dyn / KOR system as a means to treat neuropsychiatric disorders characterized by dysregulation in mPFC integration of long-range afferents with local inhibitory microcircuits.
Collapse
Affiliation(s)
- Hector E Yarur
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sanne M Casello
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Valerie S Tsai
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Juan Enriquez-Traba
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- NIH Graduate Partnership Program, Washington, DC, USA
| | - Rufina Kore
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Miguel Arenivar
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- NIH Graduate Partnership Program, Washington, DC, USA
| | - Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Srikanth S, Narayanan R. Heterogeneous off-target impact of ion-channel deletion on intrinsic properties of hippocampal model neurons that self-regulate calcium. Front Cell Neurosci 2023; 17:1241450. [PMID: 37904732 PMCID: PMC10613471 DOI: 10.3389/fncel.2023.1241450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023] Open
Abstract
How do neurons that implement cell-autonomous self-regulation of calcium react to knockout of individual ion-channel conductances? To address this question, we used a heterogeneous population of 78 conductance-based models of hippocampal pyramidal neurons that maintained cell-autonomous calcium homeostasis while receiving theta-frequency inputs. At calcium steady-state, we individually deleted each of the 11 active ion-channel conductances from each model. We measured the acute impact of deleting each conductance (one at a time) by comparing intrinsic electrophysiological properties before and immediately after channel deletion. The acute impact of deleting individual conductances on physiological properties (including calcium homeostasis) was heterogeneous, depending on the property, the specific model, and the deleted channel. The underlying many-to-many mapping between ion channels and properties pointed to ion-channel degeneracy. Next, we allowed the other conductances (barring the deleted conductance) to evolve towards achieving calcium homeostasis during theta-frequency activity. When calcium homeostasis was perturbed by ion-channel deletion, post-knockout plasticity in other conductances ensured resilience of calcium homeostasis to ion-channel deletion. These results demonstrate degeneracy in calcium homeostasis, as calcium homeostasis in knockout models was implemented in the absence of a channel that was earlier involved in the homeostatic process. Importantly, in reacquiring homeostasis, ion-channel conductances and physiological properties underwent heterogenous plasticity (dependent on the model, the property, and the deleted channel), even introducing changes in properties that were not directly connected to the deleted channel. Together, post-knockout plasticity geared towards maintaining homeostasis introduced heterogenous off-target effects on several channels and properties, suggesting that extreme caution be exercised in interpreting experimental outcomes involving channel knockouts.
Collapse
Affiliation(s)
- Sunandha Srikanth
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Undergraduate Program, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
12
|
Abbasi S, Wolff A, Çatal Y, Northoff G. Increased noise relates to abnormal excitation-inhibition balance in schizophrenia: a combined empirical and computational study. Cereb Cortex 2023; 33:10477-10491. [PMID: 37562844 PMCID: PMC10560578 DOI: 10.1093/cercor/bhad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Electroencephalography studies link sensory processing issues in schizophrenia to increased noise level-noise here is background spontaneous activity-as measured by the signal-to-noise ratio. The mechanism, however, of such increased noise is unknown. We investigate if this relates to changes in cortical excitation-inhibition balance, which has been observed to be atypical in schizophrenia, by combining electroencephalography and computational modeling. Our electroencephalography task results, for which the local field potentials can be used as a proxy, show lower signal-to-noise ratio due to higher noise in schizophrenia. Both electroencephalography rest and task states exhibit higher levels of excitation in the functional excitation-inhibition (as a proxy of excitation-inhibition balance). This suggests a relationship between increased noise and atypical excitation in schizophrenia, which was addressed by using computational modeling. A Leaky Integrate-and-Fire model was used to simulate the effects of varying degrees of noise on excitation-inhibition balance, local field potential, NMDA current, and . Results show a noise-related increase in the local field potential, excitation in excitation-inhibition balance, pyramidal NMDA current, and spike rate. Mutual information and mediation analysis were used to explore a cross-level relationship, showing that the cortical local field potential plays a key role in transferring the effect of noise to the cellular population level of NMDA.
Collapse
Affiliation(s)
- Samira Abbasi
- University of Ottawa, Institute of Mental Health Research, Ottawa ON K1Z 7K4, Canada
- Department of Biomedical Engineering, Hamedan University of Technology, Hamedan 65169-13733, Iran
| | - Annemarie Wolff
- University of Ottawa, Institute of Mental Health Research, Ottawa ON K1Z 7K4, Canada
| | - Yasir Çatal
- University of Ottawa, Institute of Mental Health Research, Ottawa ON K1Z 7K4, Canada
| | - Georg Northoff
- University of Ottawa, Institute of Mental Health Research, Ottawa ON K1Z 7K4, Canada
| |
Collapse
|
13
|
Kloc ML, Chen Y, Daglian JM, Holmes GL, Baram TZ, Barry JM. Spatial learning impairments and discoordination of entorhinal-hippocampal circuit coding following prolonged febrile seizures. Hippocampus 2023; 33:970-992. [PMID: 37096324 PMCID: PMC10529121 DOI: 10.1002/hipo.23541] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
How the development and function of neural circuits governing learning and memory are affected by insults in early life remains poorly understood. The goal of this study was to identify putative changes in cortico-hippocampal signaling mechanisms that could lead to learning and memory deficits in a clinically relevant developmental pathophysiological rodent model, Febrile status epilepticus (FSE). FSE in both pediatric cases and the experimental animal model, is associated with enduring physiological alterations of the hippocampal circuit and cognitive impairment. Here, we deconstruct hippocampal circuit throughput by inducing slow theta oscillations in rats under urethane anesthesia and isolating the dendritic compartments of CA1 and dentate gyrus subfields, their reception of medial and lateral entorhinal cortex inputs, and the efficacy of signal propagation to each somatic cell layer. We identify FSE-induced theta-gamma decoupling at cortical synaptic input pathways and altered signal phase coherence along the CA1 and dentate gyrus somatodendritic axes. Moreover, increased DG synaptic activity levels are predictive of poor cognitive outcomes. We propose that these alterations in cortico-hippocampal coordination interfere with the ability of hippocampal dendrites to receive, decode and propagate neocortical inputs. If this frequency-specific syntax is necessary for cortico-hippocampal coordination and spatial learning and memory, its loss could be a mechanism for FSE cognitive comorbidities.
Collapse
Affiliation(s)
- Michelle L. Kloc
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Yuncai Chen
- Departments of Pediatrics, University California-Irvine, Irvine, California, USA
- Departments of Anatomy/Neurobiology, University California-Irvine, Irvine, California, USA
| | - Jennifer M. Daglian
- Departments of Pediatrics, University California-Irvine, Irvine, California, USA
| | - Gregory L. Holmes
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Tallie Z. Baram
- Departments of Pediatrics, University California-Irvine, Irvine, California, USA
- Departments of Anatomy/Neurobiology, University California-Irvine, Irvine, California, USA
- Departments of Neurology, University California-Irvine, Irvine, California, USA
| | - Jeremy M. Barry
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
14
|
Rimehaug AE, Stasik AJ, Hagen E, Billeh YN, Siegle JH, Dai K, Olsen SR, Koch C, Einevoll GT, Arkhipov A. Uncovering circuit mechanisms of current sinks and sources with biophysical simulations of primary visual cortex. eLife 2023; 12:e87169. [PMID: 37486105 PMCID: PMC10393295 DOI: 10.7554/elife.87169] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
Local field potential (LFP) recordings reflect the dynamics of the current source density (CSD) in brain tissue. The synaptic, cellular, and circuit contributions to current sinks and sources are ill-understood. We investigated these in mouse primary visual cortex using public Neuropixels recordings and a detailed circuit model based on simulating the Hodgkin-Huxley dynamics of >50,000 neurons belonging to 17 cell types. The model simultaneously captured spiking and CSD responses and demonstrated a two-way dissociation: firing rates are altered with minor effects on the CSD pattern by adjusting synaptic weights, and CSD is altered with minor effects on firing rates by adjusting synaptic placement on the dendrites. We describe how thalamocortical inputs and recurrent connections sculpt specific sinks and sources early in the visual response, whereas cortical feedback crucially alters them in later stages. These results establish quantitative links between macroscopic brain measurements (LFP/CSD) and microscopic biophysics-based understanding of neuron dynamics and show that CSD analysis provides powerful constraints for modeling beyond those from considering spikes.
Collapse
Affiliation(s)
| | | | - Espen Hagen
- Department of Physics, University of OsloOsloNorway
- Department of Data Science, Norwegian University of Life SciencesÅsNorway
| | | | - Josh H Siegle
- MindScope Program, Allen InstituteSeattleUnited States
| | - Kael Dai
- MindScope Program, Allen InstituteSeattleUnited States
| | - Shawn R Olsen
- MindScope Program, Allen InstituteSeattleUnited States
| | - Christof Koch
- MindScope Program, Allen InstituteSeattleUnited States
| | - Gaute T Einevoll
- Department of Physics, University of OsloOsloNorway
- Department of Physics, Norwegian University of Life SciencesÅsNorway
| | | |
Collapse
|
15
|
Monroe DC, Berry NT, Fino PC, Rhea CK. A Dynamical Systems Approach to Characterizing Brain-Body Interactions during Movement: Challenges, Interpretations, and Recommendations. SENSORS (BASEL, SWITZERLAND) 2023; 23:6296. [PMID: 37514591 PMCID: PMC10385586 DOI: 10.3390/s23146296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
Brain-body interactions (BBIs) have been the focus of intense scrutiny since the inception of the scientific method, playing a foundational role in the earliest debates over the philosophy of science. Contemporary investigations of BBIs to elucidate the neural principles of motor control have benefited from advances in neuroimaging, device engineering, and signal processing. However, these studies generally suffer from two major limitations. First, they rely on interpretations of 'brain' activity that are behavioral in nature, rather than neuroanatomical or biophysical. Second, they employ methodological approaches that are inconsistent with a dynamical systems approach to neuromotor control. These limitations represent a fundamental challenge to the use of BBIs for answering basic and applied research questions in neuroimaging and neurorehabilitation. Thus, this review is written as a tutorial to address both limitations for those interested in studying BBIs through a dynamical systems lens. First, we outline current best practices for acquiring, interpreting, and cleaning scalp-measured electroencephalography (EEG) acquired during whole-body movement. Second, we discuss historical and current theories for modeling EEG and kinematic data as dynamical systems. Third, we provide worked examples from both canonical model systems and from empirical EEG and kinematic data collected from two subjects during an overground walking task.
Collapse
Affiliation(s)
- Derek C Monroe
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Nathaniel T Berry
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
- Under Armour, Inc., Innovation, Baltimore, MD 21230, USA
| | - Peter C Fino
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher K Rhea
- College of Health Sciences, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
16
|
Stöber TM, Batulin D, Triesch J, Narayanan R, Jedlicka P. Degeneracy in epilepsy: multiple routes to hyperexcitable brain circuits and their repair. Commun Biol 2023; 6:479. [PMID: 37137938 PMCID: PMC10156698 DOI: 10.1038/s42003-023-04823-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Due to its complex and multifaceted nature, developing effective treatments for epilepsy is still a major challenge. To deal with this complexity we introduce the concept of degeneracy to the field of epilepsy research: the ability of disparate elements to cause an analogous function or malfunction. Here, we review examples of epilepsy-related degeneracy at multiple levels of brain organisation, ranging from the cellular to the network and systems level. Based on these insights, we outline new multiscale and population modelling approaches to disentangle the complex web of interactions underlying epilepsy and to design personalised multitarget therapies.
Collapse
Affiliation(s)
- Tristan Manfred Stöber
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, 44801, Bochum, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University, 60590, Frankfurt, Germany
| | - Danylo Batulin
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- CePTER - Center for Personalized Translational Epilepsy Research, Goethe University, 60590, Frankfurt, Germany
- Faculty of Computer Science and Mathematics, Goethe University, 60486, Frankfurt, Germany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Peter Jedlicka
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus Liebig University Giessen, 35390, Giessen, Germany.
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, 60590, Frankfurt am Main, Germany.
| |
Collapse
|