1
|
Butola T, Hernández-Frausto M, Blankvoort S, Flatset MS, Peng L, Hairston A, Johnson CD, Elmaleh M, Amilcar A, Hussain F, Clopath C, Kentros C, Basu J. Hippocampus shapes entorhinal cortical output through a direct feedback circuit. Nat Neurosci 2025; 28:811-822. [PMID: 39966537 DOI: 10.1038/s41593-025-01883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/16/2025] [Indexed: 02/20/2025]
Abstract
Our brains integrate sensory, cognitive and internal state information with memories to extract behavioral relevance. Cortico-hippocampal interactions likely mediate this interplay, but underlying circuit mechanisms remain elusive. Unlike the entorhinal cortex-to-hippocampus pathway, we know little about the organization and function of the hippocampus-to-cortex feedback circuit. Here we report in mice, two functionally distinct parallel hippocampus-to-entorhinal cortex feedback pathways: the canonical disynaptic route via layer 5 and a novel monosynaptic input to layer 2/3. Circuit mapping reveals that hippocampal input predominantly drives excitation in layer 5 but feed-forward inhibition in layer 2/3. Upon repetitive pairing with cortical layer 1 inputs, hippocampal inputs undergo homosynaptic potentiation in layer 5, but induce heterosynaptic plasticity and spike output in layer 2/3. Behaviorally, hippocampal inputs to layer 5 and layer 2/3 support object memory encoding versus recall, respectively. Two-photon imaging during navigation reveals hippocampal suppression reduces spatially tuned cortical axonal activity. We present a model, where hippocampal feedback could iteratively shape ongoing cortical processing.
Collapse
Affiliation(s)
- Tanvi Butola
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | | | - Stefan Blankvoort
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marcus Sandbukt Flatset
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lulu Peng
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Ariel Hairston
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Cara Deanna Johnson
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Margot Elmaleh
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Amanda Amilcar
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Fabliha Hussain
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, UK
| | - Clifford Kentros
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA.
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York City, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York City, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
2
|
Moore JJ, Rashid SK, Bicker E, Johnson CD, Codrington N, Chklovskii DB, Basu J. Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3. Nat Commun 2025; 16:1119. [PMID: 39875374 PMCID: PMC11775317 DOI: 10.1038/s41467-025-56289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons. We validated the method on sparsely labeled preparations and synthetic data, predicting an optimal labeling density for high experimental throughput and analytical accuracy. Our method detected rapid, local dendritic activity. Dendrites showed robust spatial tuning, similar to soma but with higher activity rates. Across days, apical dendrites remained more stable and outperformed in decoding of the animal's position. Thus, population-level apical and basal dendritic differences may reflect distinct compartment-specific input-output functions and computations in CA3. These tools will facilitate future studies mapping sub-cellular activity and their relation to behavior.
Collapse
Affiliation(s)
- Jason J Moore
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA.
- Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY, 10010, USA.
| | - Shannon K Rashid
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA
| | - Emmett Bicker
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA
| | - Cara D Johnson
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA
| | - Naomi Codrington
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA
| | - Dmitri B Chklovskii
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA
- Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY, 10010, USA
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA.
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| |
Collapse
|
3
|
Ofer N, Cornejo VH, Yuste R. Spike transmission failures in axons from cortical neurons in vivo. iScience 2024; 27:110884. [PMID: 39346673 PMCID: PMC11439538 DOI: 10.1016/j.isci.2024.110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
The propagation of action potentials along axons is traditionally considered reliable due to the high safety factor for axonal spike transmission. However, numerical simulations suggest that high-frequency spikes could fail to invade distal axonal branches. To explore this experimentally in vivo, we used an axonal-targeted calcium indicator to image action potentials at axonal terminal branches in the superficial layers of mouse somatosensory cortical neurons. We activated axons with an extracellular electrode, varying stimulation frequencies, and analyzed the images to computationally extract axonal morphologies and associated calcium responses. We found that axonal boutons have higher calcium accumulations than their axonal shafts, as was reported in vitro. However, contrary to previous in vitro results, our data reveal spike failures at high spike frequencies in a significant subset of branches as a function of branching geometry. These findings suggest that axonal morphologies could contribute to signal processing in the cortex.
Collapse
Affiliation(s)
- Netanel Ofer
- Neurotechnology Center, Department Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Victor Hugo Cornejo
- Neurotechnology Center, Department Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- Neurotechnology Center, Department Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
4
|
Cirtala G, De Schutter E. Branch-specific clustered parallel fiber input controls dendritic computation in Purkinje cells. iScience 2024; 27:110756. [PMID: 39286509 PMCID: PMC11404202 DOI: 10.1016/j.isci.2024.110756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Most central neurons have intricately branched dendritic trees that integrate massive numbers of synaptic inputs. Intrinsic active mechanisms in dendrites can be heterogeneous and be modulated in a branch-specific way. However, it remains poorly understood how heterogeneous intrinsic properties contribute to processing of synaptic input. We propose the first computational model of the cerebellar Purkinje cell with dendritic heterogeneity, in which each branch is an individual unit and is characterized by its own set of ion channel conductance densities. When simultaneously activating a cluster of parallel fiber synapses, we measure the peak amplitude of a response and observe how changes in P-type calcium channel conductance density shift the dendritic responses from a linear one to a bimodal one including dendritic calcium spikes and vice-versa. These changes relate to the morphology of each branch. We show how dendritic calcium spikes propagate and how Kv4.3 channels block spreading depolarization to nearby branches.
Collapse
Affiliation(s)
- Gabriela Cirtala
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna 904-0412, Okinawa, Japan
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna 904-0412, Okinawa, Japan
| |
Collapse
|
5
|
Savelli F. Spontaneous Dynamics of Hippocampal Place Fields in a Model of Combinatorial Competition among Stable Inputs. J Neurosci 2024; 44:e1663232024. [PMID: 38316560 PMCID: PMC10977031 DOI: 10.1523/jneurosci.1663-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
We present computer simulations illustrating how the plastic integration of spatially stable inputs could contribute to the dynamic character of hippocampal spatial representations. In novel environments of slightly larger size than typical apparatus, the emergence of well-defined place fields in real place cells seems to rely on inputs from normally functioning grid cells. Theoretically, the grid-to-place transformation is possible if a place cell is able to respond selectively to a combination of suitably aligned grids. We previously identified the functional characteristics that allow a synaptic plasticity rule to accomplish this selection by synaptic competition during rat foraging behavior. Here, we show that the synaptic competition can outlast the formation of place fields, contributing to their spatial reorganization over time, when the model is run in larger environments and the topographical/modular organization of grid inputs is taken into account. Co-simulated cells that differ only by their randomly assigned grid inputs display different degrees and kinds of spatial reorganization-ranging from place-field remapping to more subtle in-field changes or lapses in firing. The model predicts a greater number of place fields and propensity for remapping in place cells recorded from more septal regions of the hippocampus and/or in larger environments, motivating future experimental standardization across studies and animal models. In sum, spontaneous remapping could arise from rapid synaptic learning involving inputs that are functionally homogeneous, spatially stable, and minimally stochastic.
Collapse
Affiliation(s)
- Francesco Savelli
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
- Neurosciences Institute, The University of Texas at San Antonio, San Antonio, Texas 78249
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
6
|
Ofer N, Cornejo VH, Yuste R. Spike transmission failures in axons from mouse cortical pyramidal neurons in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577733. [PMID: 38352485 PMCID: PMC10862735 DOI: 10.1101/2024.01.29.577733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The propagation of action potentials along axons is traditionally considered to be reliable, as a consequence of the high safety factor of action potential propagation. However, numerical simulations have suggested that, at high frequencies, spikes could fail to invade distal axonal branches. Given the complex morphologies of axonal trees, with extensive branching and long-distance projections, spike propagation failures could be functionally important. To explore this experimentally in vivo, we used an axonal-targeted calcium indicator to image action potentials at axonal terminal branches in superficial layers from mouse somatosensory cortical pyramidal neurons. We activated axons with an extracellular electrode, varying stimulation frequencies, and computationally extracted axonal morphologies and associated calcium responses. We find that axonal boutons have higher calcium accumulations than their parent axons, as was reported in vitro. But, contrary to previous in vitro results, our data reveal spike failures in a significant subset of branches, as a function of branching geometry and spike frequency. The filtering is correlated with the geometric ratio of the branch diameters, as expected by cable theory. These findings suggest that axonal morphologies contribute to signal processing in the cortex.
Collapse
Affiliation(s)
- Netanel Ofer
- Neurotechnology Center, Dept. Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Victor Hugo Cornejo
- Neurotechnology Center, Dept. Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- Neurotechnology Center, Dept. Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
7
|
Roland PE. How far neuroscience is from understanding brains. Front Syst Neurosci 2023; 17:1147896. [PMID: 37867627 PMCID: PMC10585277 DOI: 10.3389/fnsys.2023.1147896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/31/2023] [Indexed: 10/24/2023] Open
Abstract
The cellular biology of brains is relatively well-understood, but neuroscientists have not yet generated a theory explaining how brains work. Explanations of how neurons collectively operate to produce what brains can do are tentative and incomplete. Without prior assumptions about the brain mechanisms, I attempt here to identify major obstacles to progress in neuroscientific understanding of brains and central nervous systems. Most of the obstacles to our understanding are conceptual. Neuroscience lacks concepts and models rooted in experimental results explaining how neurons interact at all scales. The cerebral cortex is thought to control awake activities, which contrasts with recent experimental results. There is ambiguity distinguishing task-related brain activities from spontaneous activities and organized intrinsic activities. Brains are regarded as driven by external and internal stimuli in contrast to their considerable autonomy. Experimental results are explained by sensory inputs, behavior, and psychological concepts. Time and space are regarded as mutually independent variables for spiking, post-synaptic events, and other measured variables, in contrast to experimental results. Dynamical systems theory and models describing evolution of variables with time as the independent variable are insufficient to account for central nervous system activities. Spatial dynamics may be a practical solution. The general hypothesis that measurements of changes in fundamental brain variables, action potentials, transmitter releases, post-synaptic transmembrane currents, etc., propagating in central nervous systems reveal how they work, carries no additional assumptions. Combinations of current techniques could reveal many aspects of spatial dynamics of spiking, post-synaptic processing, and plasticity in insects and rodents to start with. But problems defining baseline and reference conditions hinder interpretations of the results. Furthermore, the facts that pooling and averaging of data destroy their underlying dynamics imply that single-trial designs and statistics are necessary.
Collapse
Affiliation(s)
- Per E. Roland
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Savelli F. Spontaneous dynamics of hippocampal place fields in a model of combinatorial competition among stable inputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556254. [PMID: 37732194 PMCID: PMC10508775 DOI: 10.1101/2023.09.04.556254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
We present computer simulations illustrating how the plastic integration of spatially stable inputs could contribute to the dynamic character of hippocampal spatial representations. In novel environments of slightly larger size than typical apparatus, the emergence of well-defined place fields in real place cells seems to rely on inputs from normally functioning grid cells. Theoretically, the grid-to-place transformation is possible if a place cell is able to respond selectively to a combination of suitably aligned grids. We previously identified the functional characteristics that allow a synaptic plasticity rule to accomplish this selection by synaptic competition during rat foraging behavior. Here, we show that the synaptic competition can outlast the formation of place fields, contributing to their spatial reorganization over time, when the model is run in larger environments and the topographical/modular organization of grid inputs is taken into account. Co-simulated cells that differ only by their randomly assigned grid inputs display different degrees and kinds of spatial reorganization-ranging from place-field remapping to more subtle in-field changes or lapses in firing. The model predicts a greater number of place fields and propensity for remapping in place cells recorded from more septal regions of the hippocampus and/or in larger environments, motivating future experimental standardization across studies and animal models. In sum, spontaneous remapping could arise from rapid synaptic learning involving inputs that are functionally homogeneous, spatially stable, and minimally stochastic. Significance Statement In both AI and theoretical neuroscience, learning systems often rely on the asymptotic convergence of slow-acting learning rules applied to input spaces that are presumed to be sampled repeatedly, for example over developmental timescales. Place cells of the hippocampus testify to a neural system capable of rapidly encoding cognitive variables-such as the animal's position in space-from limited experience. These internal representations undergo "spontaneous" changes over time, spurring much interest in their cognitive significance and underlying mechanisms. We investigate a model suggesting that some of these changes could be a tradeoff of rapid learning.
Collapse
|
9
|
Moore JJ, Rashid SK, Johnson CD, Codrington N, Chklovskii DB, Basu J. Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3. RESEARCH SQUARE 2023:rs.3.rs-2733660. [PMID: 37131789 PMCID: PMC10153397 DOI: 10.21203/rs.3.rs-2733660/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Anatomically segregated apical and basal dendrites of pyramidal neurons receive functionally distinct inputs, but it is unknown if this results in compartment-level functional diversity during behavior. Here we imaged calcium signals from apical dendrites, soma, and basal dendrites of pyramidal neurons in area CA3 of mouse hippocampus during head-fixed navigation. To examine dendritic population activity, we developed computational tools to identify dendritic regions of interest and extract accurate fluorescence traces. We identified robust spatial tuning in apical and basal dendrites, similar to soma, though basal dendrites had reduced activity rates and place field widths. Across days, apical dendrites were more stable than soma or basal dendrites, resulting in better decoding of the animal's position. These population-level dendritic differences may reflect functionally distinct input streams leading to different dendritic computations in CA3. These tools will facilitate future studies of signal transformations between cellular compartments and their relation to behavior.
Collapse
Affiliation(s)
- Jason J Moore
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
- Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Shannon K Rashid
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Cara D. Johnson
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Naomi Codrington
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Dmitri B Chklovskii
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
- Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
10
|
Bilash OM, Chavlis S, Johnson CD, Poirazi P, Basu J. Lateral entorhinal cortex inputs modulate hippocampal dendritic excitability by recruiting a local disinhibitory microcircuit. Cell Rep 2023; 42:111962. [PMID: 36640337 DOI: 10.1016/j.celrep.2022.111962] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
The lateral entorhinal cortex (LEC) provides multisensory information to the hippocampus, directly to the distal dendrites of CA1 pyramidal neurons. LEC neurons perform important functions for episodic memory processing, coding for contextually salient elements of an environment or experience. However, we know little about the functional circuit interactions between the LEC and the hippocampus. We combine functional circuit mapping and computational modeling to examine how long-range glutamatergic LEC projections modulate compartment-specific excitation-inhibition dynamics in hippocampal area CA1. We demonstrate that glutamatergic LEC inputs can drive local dendritic spikes in CA1 pyramidal neurons, aided by the recruitment of a disinhibitory VIP interneuron microcircuit. Our circuit mapping and modeling further reveal that LEC inputs also recruit CCK interneurons that may act as strong suppressors of dendritic spikes. These results highlight a cortically driven GABAergic microcircuit mechanism that gates nonlinear dendritic computations, which may support compartment-specific coding of multisensory contextual features within the hippocampus.
Collapse
Affiliation(s)
- Olesia M Bilash
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete 70013, Greece
| | - Cara D Johnson
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete 70013, Greece.
| | - Jayeeta Basu
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Psychiatry, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|