1
|
Sapp C, Rich M, Hess K, Losco A, Zupancic A, Caldwell HK. Disruptions of the oxytocin system impair sociability and cognitive flexibility in a subchronic phencyclidine model of schizophrenia. Neuropharmacology 2025; 273:110442. [PMID: 40185363 DOI: 10.1016/j.neuropharm.2025.110442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Previous research suggests that the oxytocin (Oxt) system may play a role in the etiology of schizophrenia. To investigate, we used a subchronic phencyclidine (PCP) mouse model to test how disruption of Oxt or the Oxt receptor (Oxtr) affects schizophrenia-related behaviors. Specifically, we assessed how subchronic PCP impacted hyperlocomotion, sociability, and passive stress coping in male Oxt and Oxtr knockout (-/-) and wildtype (+/+) mice. Additionally, we evaluated immediate early gene activation in Oxtr -/- and +/+ mice to identify brain regions where the Oxt system might impact schizophrenia-associated behaviors. Lastly, we investigated cognitive flexibility in Oxtr -/- and +/+ mice. We found that subchronic PCP treatment decreased social interactions in Oxt -/- mice as compared to Oxt +/+ mice, with no genotypic differences in the Oxtr line of mice. Increased c-Fos expression was observed in Oxtr -/- mice relative to Oxtr +/+ controls in the medial amygdala and the paraventricular nucleus of the hypothalamus following a forced swim test. Finally, we found deficits in cognitive flexibility in Oxtr -/- mice treated with PCP, relative to Oxtr +/+ mice. These findings are consistent with the hypothesis that Oxt may buffer against some of the schizophrenia-associated symptoms induced by subchronic PCP treatment. Based on the data, we speculate that compensatory mechanisms may be able to accommodate the loss of the Oxt system, depending on the origin of the dysfunction and the behavioral endpoint in question. These findings also add support to data linking disruption of Oxt system signaling to schizophrenia.
Collapse
Affiliation(s)
- Coleman Sapp
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, and the Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| | - Megan Rich
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, and the Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA; School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Karla Hess
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, and the Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA; School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Allison Losco
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, and the Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA
| | - Abigail Zupancic
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, and the Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA
| | - Heather K Caldwell
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, and the Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA; School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
2
|
Wu X, Zhang W, Chen H, Weng J. Multifaceted paternal exposures before conception and their epigenetic impact on offspring. J Assist Reprod Genet 2024; 41:2931-2951. [PMID: 39230664 PMCID: PMC11621294 DOI: 10.1007/s10815-024-03243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
As scientific research progresses, there is an increasing understanding of the importance of paternal epigenetics in influencing the health and developmental path of offspring. Prior to conception, the environmental exposures and lifestyle choices of fathers can significantly influence the epigenetic state of sperm, including DNA methylation and histone changes, among other factors. These alterations in epigenetic patterns have the potential for transgenerational transmission potential and may exert profound effects on the biological characteristics of descendants. Paternal epigenetic changes not only affect the regulation of gene expression patterns in offspring but also increase the risk to certain diseases. It is crucial to comprehend the conditions that fathers are exposed to before conception and the potential outcomes of these conditions. This understanding is essential for assessing personal reproductive decisions and anticipating health risks for future generations. This review article systematically summarizes and analyzes current research findings regarding how paternal pre-pregnancy exposures influence offspring as well as elucidates underlying mechanisms, aiming to provide a comprehensive perspective for an enhanced understanding of the impact that paternal factors have on offspring health.
Collapse
Affiliation(s)
- Xiaojing Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Weiping Zhang
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Huijun Chen
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jianfei Weng
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Cui J, Huang N, Fan G, Pan T, Han K, Jiang C, Liu X, Wang F, Ma L, Le Q. Paternal cocaine-seeking motivation defines offspring's vulnerability to addiction by down-regulating GABAergic GABRG3 in the ventral tegmental area. Transl Psychiatry 2024; 14:107. [PMID: 38388464 PMCID: PMC10884401 DOI: 10.1038/s41398-024-02835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Epidemiological investigations indicate that parental drug abuse experiences significantly influenced the addiction vulnerability of offspring. Studies using animal models have shown that paternal cocaine use and highly motivated drug-seeking behavior are important determinants of offspring addiction susceptibility. However, the key molecules contributing to offspring addiction susceptibility are currently unclear. The motivation for cocaine-seeking behavior in offspring of male rats was compared between those whose fathers self-administered cocaine (SA) and those who were yoked with them and received non-contingent cocaine administrations (Yoke). We found that paternal experience with cocaine-seeking behavior, but not direct cocaine exposure, could lead to increased lever-pressing behavior in male F1 offspring. This effect was observed without significant changes to the dose-response relationship. The transcriptomes of ventral tegmental area (VTA) in offspring were analyzed under both naive state and after self-administration training. Specific transcriptomic changes in response to paternal cocaine-seeking experiences were found, which mainly affected biological processes such as synaptic connections and receptor signaling pathways. Through joint analysis of these candidate genes and parental drug-seeking motivation scores, we found that gamma-aminobutyric acid receptor subunit gamma-3 (Gabrg3) was in the hub position of the drug-seeking motivation-related module network and highly correlated with parental drug-seeking motivation scores. The downregulation of Gabrg3 expression, caused by paternal motivational cocaine-seeking, mainly occurred in GABAergic neurons in the VTA. Furthermore, down-regulating GABAergic Gabrg3 in VTA resulted in an increase in cocaine-seeking behavior in the Yoke F1 group. This down-regulation also reduced transcriptome differences between the Yoke and SA groups, affecting processes related to synaptic formation and neurotransmitter transmission. Taken together, we propose that paternal cocaine-seeking behavior, rather than direct drug exposure, significantly influences offspring addiction susceptibility through the downregulation of Gabrg3 in GABAergic neurons of the VTA, highlighting the importance of understanding specific molecular pathways in the intergenerational inheritance of addiction vulnerability.
Collapse
Affiliation(s)
- Jian Cui
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Nan Huang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Guangyuan Fan
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Pan
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Kunxiu Han
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Changyou Jiang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Feifei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China.
| | - Qiumin Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China.
| |
Collapse
|
4
|
Substance use, microbiome and psychiatric disorders. Pharmacol Biochem Behav 2022; 219:173432. [PMID: 35905802 DOI: 10.1016/j.pbb.2022.173432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/29/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
Accumulating evidence from several studies has shown association between substance use, dysregulation of the microbiome and psychiatric disorders such as depression, anxiety, and psychosis. Many of the abused substances such as cocaine and alcohol have been shown to alter immune signaling pathways and cause inflammation in both the periphery and the central nervous system (CNS). In addition, these substances of abuse also alter the composition and function of the gut microbiome which is known to play important roles such as the synthesis of neurotransmitters and metabolites, that affect the CNS homeostasis and consequent behavioral outcomes. The emerging interactions between substance use, microbiome and CNS neurochemical alterations could contribute to the development of psychiatric disorders. This review provides an overview of the associative effects of substance use such as alcohol, cocaine, methamphetamine, nicotine and opioids on the gut microbiome and psychiatric disorders involving anxiety, depression and psychosis. Understanding the relationship between substance use, microbiome and psychiatric disorders will provide insights for potential therapeutic targets, aimed at mitigating these adverse outcomes.
Collapse
|