1
|
Li X, Qi S, Jiang Y, Nie X, Wang W. Identification and validation of PARK7 as a novel mitochondria-related signature associated with immune microenvironment in asthma. Int Immunopharmacol 2025; 157:114750. [PMID: 40319751 DOI: 10.1016/j.intimp.2025.114750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/22/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Asthma is one of the most common respiratory diseases characterized by immune cell infiltration. However, the roles of mitochondria-related genes and their crosstalk with immune cell infiltration in asthma remain unclear. This study aimed to investigate the role and interaction of mitochondria-related genes and the immune cells in asthma through both bioinformatic analysis and experimental approaches. METHODS The microarray data GSE76262 was obtained from NCBI GEO datasets, and differentially expressed genes (DEGs) were acquired by GEO2R. DAVID database was used for Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Mitochondrial genes were downloaded from Human MitoCarta3.0, and then Mitochondria-related DEGs (MitoDEGs) were obtained. STRING database was used to construct the Protein-Protein Interaction network, and then the hub genes were identified. The receiver operating characteristic curves were used to assess the diagnostic effects of hub genes in asthma patients. The infiltration of immune cells was analyzed by using the ImmuCellAI database. The expression of hub MitoDEGs was validated in an HDM-induced animal model. The compound-23 was utilized to investigate the function of PARK7 both in vivo and in vitro. RESULTS Mitochondria were predicted to be involved in the pathology and physiology of asthma. The 47 MitoDEGs were identified, and three hub MitoDEGs (DNM1L, FIS1, and PARK7) were predicted to participate in asthma pathogenesis. Compared to DNM1L and FIS1, PARK7 had the most diagnostic effectiveness. The hub MitoDEGs were mainly positively associated with macrophages, monocytes, and CD8+T cells, while negatively associated with multiple CD4+T cells. Compared to the control group, the mRNA and protein expression levels of DNM1L, FIS1, and PARK7 were downregulated in the model group. Additionally, activating the function of PARK7 via compound-23 alleviated the mitochondrial damage, decreased the production of IL-25, IL-33, CCL17 and CCL20, subsequently improved the immune microenvironment and airway inflammation. CONCLUSION These results suggested that mitochondria-related genes were involved in the pathological processes of asthma, and verified the protective role of PARK7 in HDM-induced asthma models, which provided the potential insight into the clinical diagnosis and therapy of asthma.
Collapse
Affiliation(s)
- Xuhong Li
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China
| | - Shan Qi
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China
| | - Ying Jiang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China
| | - Xinqi Nie
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China.
| |
Collapse
|
2
|
Zheng J, Zhang J, Han J, Zhao Z, Lin K. The effect of salidroside in promoting endogenous neural regeneration after cerebral ischemia/reperfusion involves notch signaling pathway and neurotrophic factors. BMC Complement Med Ther 2024; 24:293. [PMID: 39090706 PMCID: PMC11295647 DOI: 10.1186/s12906-024-04597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Salidroside is the major bioactive and pharmacological active substance in Rhodiola rosea L. It has been reported to have neuroprotective effects on cerebral ischemia/reperfusion (I/R). However, whether salidroside can enhance neural regeneration after cerebral I/R is still unknown. This study investigated the effects of salidroside on the endogenous neural regeneration after cerebral I/R and the related mechanism. METHODS Focal cerebral I/R was induced in rats by transient middle cerebral artery occlusion/reperfusion (MCAO/R). The rats were intraperitoneally treated salidroside once daily for 7 consecutive days. Neurobehavioral assessments were performed at 3 days and 7 days after the injury. TTC staining was performed to assess cerebral infarct volume. To evaluate the survival of neurons, immunohistochemical staining of Neuronal Nuclei (NeuN) in the ischemic hemisphere were conducted. Also, immunofluorescence double or triple staining of the biomarkers of proliferating neural progenitor cells in Subventricular Zone (SVZ) and striatum of the ischemia hemisphere were performed to investigate the neurogenesis. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the expression of neurotrophic factors (NTFs) brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Expression of Notch1 and its target molecular Hes1 were also analyzed by western-blotting and RT-PCR. RESULTS Salidroside treatment ameliorated I/R induced neurobehavioral impairment, and reduced infarct volume. Salidroside also restored NeuN positive cells loss after I/R injury. Cerebral I/R injury significantly increased the expression of 5-Bromo-2'-Deoxyuridine (BrdU) and doublecotin (DCX), elevated the number of BrdU/Nestin/DCX triple-labeled cells in SVZ, and BrdU/Nestin/glial fibrillary acidic protein (GFAP) triple-labeled cells in striatum. Salidroside treatment further promoted the proliferation of BrdU/DCX labeled neuroblasts and BrdU/Nestin/GFAP labeled reactive astrocytes. Furthermore, salidroside elevated the mRNA expression and protein concentration of BDNF and NGF in ischemia periphery area, as well. Mechanistically, salidroside elevated Notch1/Hes1 mRNA expression in SVZ. The protein levels of them were also increased after salidroside administration. CONCLUSIONS Salidroside enhances the endogenous neural regeneration after cerebral I/R. The mechanism of the effect may involve the regulation of BDNF/NGF and Notch signaling pathway.
Collapse
Affiliation(s)
- Jiabing Zheng
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Jizhou Zhang
- Institute of Materia Medica, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, People's Republic of China
| | - Jing Han
- Institute of Materia Medica, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, People's Republic of China
| | - Zhichang Zhao
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Kan Lin
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
3
|
Zhao P, Shi W, Ye Y, Xu K, Hu J, Chao H, Tao Z, Xu L, Gu W, Zhang L, Wang T, Wang X, Ji J. Atox1 protects hippocampal neurons after traumatic brain injury via DJ-1 mediated anti-oxidative stress and mitophagy. Redox Biol 2024; 72:103156. [PMID: 38640584 PMCID: PMC11047792 DOI: 10.1016/j.redox.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
Regulation of the oxidative stress response is crucial for the management and prognosis of traumatic brain injury (TBI). The copper chaperone Antioxidant 1 (Atox1) plays a crucial role in regulating intracellular copper ion balance and impacting the antioxidant capacity of mitochondria, as well as the oxidative stress state of cells. However, it remains unknown whether Atox1 is involved in modulating oxidative stress following TBI. Here, we investigated the regulatory role of Atox1 in oxidative stress on neurons both in vivo and in vitro, and elucidated the underlying mechanism through culturing hippocampal HT-22 cells with Atox1 mutation. The expression of Atox1 was significantly diminished following TBI, while mice with overexpressed Atox1 exhibited a more preserved hippocampal structure and reduced levels of oxidative stress post-TBI. Furthermore, the mice displayed notable impairments in learning and memory functions after TBI, which were ameliorated by the overexpression of Atox1. In the stretch injury model of HT-22 cells, overexpression of Atox1 mitigated oxidative stress by preserving the normal morphology and network connectivity of mitochondria, as well as facilitating the elimination of damaged mitochondria. Mechanistically, co-immunoprecipitation and mass spectrometry revealed the binding of Atox1 to DJ-1. Knockdown of DJ-1 in HT-22 cells significantly impaired the antioxidant capacity of Atox1. Mutations in the copper-binding motif or sequestration of free copper led to a substantial decrease in the interaction between Atox1 and DJ-1, with overexpression of DJ-1 failing to restore the antioxidant capacity of Atox1 mutants. The findings suggest that DJ-1 mediates the ability of Atox1 to withstand oxidative stress. And targeting Atox1 could be a potential therapeutic approach for addressing post-traumatic neurological dysfunction.
Collapse
Affiliation(s)
- Pengzhan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenqian Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yangfan Ye
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingming Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Honglu Chao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - ZeQiang Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liuchao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyue Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Gusu School, Nanjing Medical University, Suzhou, China; Department of Neurosurgery, The Affiliated Kizilsu Kirghiz Autonomous Prefecture People's Hospital of Nanjing Medical University, Artux, Xinjiang, China.
| |
Collapse
|
4
|
Peng L, Zhu X, Wang C, Jiang Q, Yu S, Song G, Liu Q, Gong P. Indole-3-carbinol (I3C) reduces apoptosis and improves neurological function after cerebral ischemia-reperfusion injury by modulating microglia inflammation. Sci Rep 2024; 14:3145. [PMID: 38326384 PMCID: PMC10850550 DOI: 10.1038/s41598-024-53636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
Indole-3-carbinol(I3C) is a tumor chemopreventive substance that can be extracted from cruciferous vegetables. Indole-3-carbinol (I3C) has been shown to have antioxidant and anti-inflammatory effects. In this study, we investigated the cerebral protective effects of I3C in an in vivo rats model of middle cerebral artery occlusion (MCAO). 8-10 Week-Old male SD rat received I3C (150 mg/kg, once daily) for 3 days and underwent 3 h of middle cerebral artery occlusion (MCAO) followed by reperfusion. The results showed that I3C pretreatment (150 mg/kg, once daily) prevented CIRI-induced cerebral infarction in rats. I3C pretreatment also decreased the mRNA expression levels of several apoptotic proteins, including Bax, caspase-3 and caspase-9, by increasing the mRNA expression levels of the anti-apoptotic protein Bcl-2. Inhibited apoptosis in the brain cells of MCAO rats. In addition, we found that I3C pretreatment reduced neuronal loss, promoted neurological recovery after ischemia-reperfusion injury and increased seven-day survival in MCAO rats. I3C pretreatment also significantly reduced the expression of inducible nitric oxide synthase (INOS), interleukin-1β (IL-1β) and interleukin-6 (IL-6) mRNA in ischemic brain tissue; Increased expression of interleukin-4 (IL-4) and interleukin-10 (IL-10) mRNA. At the same time, I3C pretreatment significantly decreased the expression of the M1 microglial marker IBA1 after cerebral ischemia-reperfusion injury and increased the expression of these results in the M2 microglial marker CD206. I3C pretreatment also significantly decreased apoptosis and death of HAPI microglial cells after hypoxia induction, decreased interleukin-1β (IL-1β) and interleukin-6 (IL-6) mRNA The expression of interleukin-4 (IL-4) and interleukin-10 (IL-10) mRNAs was increased. These results suggest that I3C protects the brain from CIRI by regulating the anti-inflammatory and anti-apoptotic effects of microglia.
Collapse
Affiliation(s)
- Long Peng
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Neurosurgery, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, China
| | - Xingjia Zhu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chenxing Wang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Qiaoji Jiang
- Department of Neurosurgery, Affiliated Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224000, Jiangsu Province, China
| | - Shian Yu
- Department of Surgery, Infectious Disease Hospital Affiliated to Nanchang University (Nanchang Ninth Hospital), Nanchang, China
| | - Gaochao Song
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqian Liu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| | - Peipei Gong
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
5
|
Sandrelli F, Bisaglia M. Molecular and Physiological Determinants of Amyotrophic Lateral Sclerosis: What the DJ-1 Protein Teaches Us. Int J Mol Sci 2023; 24:ijms24087674. [PMID: 37108835 PMCID: PMC10144135 DOI: 10.3390/ijms24087674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset disease which causes the progressive degeneration of cortical and spinal motoneurons, leading to death a few years after the first symptom onset. ALS is mainly a sporadic disorder, and its causative mechanisms are mostly unclear. About 5-10% of cases have a genetic inheritance, and the study of ALS-associated genes has been fundamental in defining the pathological pathways likely also involved in the sporadic forms of the disease. Mutations affecting the DJ-1 gene appear to explain a subset of familial ALS forms. DJ-1 is involved in multiple molecular mechanisms, acting primarily as a protective agent against oxidative stress. Here, we focus on the involvement of DJ-1 in interconnected cellular functions related to mitochondrial homeostasis, reactive oxygen species (ROS) levels, energy metabolism, and hypoxia response, in both physiological and pathological conditions. We discuss the possibility that impairments in one of these pathways may affect the others, contributing to a pathological background in which additional environmental or genetic factors may act in favor of the onset and/or progression of ALS. These pathways may represent potential therapeutic targets to reduce the likelihood of developing ALS and/or slow disease progression.
Collapse
Affiliation(s)
| | - Marco Bisaglia
- Department of Biology, University of Padova, 35131 Padova, Italy
- Study Center for Neurodegeneration (CESNE), 35100 Padova, Italy
| |
Collapse
|