1
|
Lemmens MJDK, van Lanen RHGJ, Uher D, Colon AJ, Hoeberigs MC, Hoogland G, Roebroeck A, Ivanov D, Poser BA, Rouhl RPW, Hofman PAM, Gijselhart I, Drenthen GS, Jansen JFA, Backes WH, Rijkers K, Schijns OEMG. Ex vivo ultra-high field magnetic resonance imaging of human epileptogenic specimens from primarily the temporal lobe: A systematic review. Neuroradiology 2025:10.1007/s00234-024-03474-0. [PMID: 40056183 DOI: 10.1007/s00234-024-03474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/30/2024] [Indexed: 03/10/2025]
Abstract
PURPOSE Magnetic resonance imaging (MRI) is the preferred diagnostic tool for the detection of structural cerebral lesions in patients with epilepsy. Ultra-high field (UHF) MRI with field strengths ≥7 Tesla has been reported to improve the visualization and delineation of epileptogenic lesions. The use of ex vivo UHF MRI may expand our knowledge on the detection and detailed micromorphology of subtle epileptogenic lesions by bridging the gap between in vivo MRI and histopathology. METHODS A systematic review of available literature was conducted following PRISMA guidelines. A descriptive analysis of included articles was performed, focusing on (I) the ability of ex vivo UHF MRI to detect subtle abnormalities related to epilepsy, (II) different post-processing methods, and (III) concordance between UHF MRI and histopathology. RESULTS Eleven studies with focus on the depiction of focal cortical dysplasia (n = 4) or hippocampal sclerosis (n = 7) as causative lesion of drug-resistant epilepsy were included. Ex vivo UHF MRI proved its ability to visualize the anatomy of cortical and hippocampal structures in greater detail when compared to ex vivo conventional field strengths. Different MRI post-processing methods enabled differentiation between lesional subtypes and provided novel insights into (peri)lesional characteristics. Concordance between ex vivo UHF MRI findings and histopathology was high. CONCLUSION Acquisition of ex vivo UHF MRI and its image processing has the potential to depict epileptogenic abnormalities in greater detail with a spatial resolution approximating histological images. The translation of ex vivo UHF MRI features to in vivo clinical settings remains challenging and urges further exploration.
Collapse
Affiliation(s)
- Marie-Julie D K Lemmens
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands.
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| | - R H G J van Lanen
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
| | - D Uher
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
| | - A J Colon
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
- Centre d'Etude et de Traitement de l'Epilepsie, Centre Hospitalier Universitaire Martinique, Fort-de-France, France
| | - M C Hoeberigs
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
| | - G Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - D Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - B A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - R P W Rouhl
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - P A M Hofman
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - I Gijselhart
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - G S Drenthen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
| | - J F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - W H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - K Rijkers
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - O E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| |
Collapse
|
2
|
Foss KD, Billhymer AC. Magnetic resonance imaging in canine idiopathic epilepsy: a mini-review. Front Vet Sci 2024; 11:1427403. [PMID: 39021411 PMCID: PMC11251927 DOI: 10.3389/fvets.2024.1427403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Magnetic resonance imaging (MRI) in an integral part of the diagnostic workup in canines with idiopathic epilepsy (IE). While highly sensitive and specific in identifying structural lesions, conventional MRI is unable to detect changes at the microscopic level. Utilizing more advanced neuroimaging techniques may provide further information on changes at the neuronal level in the brain of canines with IE, thus providing crucial information on the pathogenesis of canine epilepsy. Additionally, earlier detection of these changes may aid clinicians in the development of improved and targeted therapies. Advances in MRI techniques are being developed which can assess metabolic, cellular, architectural, and functional alterations; as well alterations in neuronal tissue mechanical properties, some of which are currently being applied in research on canine IE. This mini-review focuses on novel MRI techniques being utilized to better understand canine epilepsy, which include magnetic resonance spectroscopy, diffusion-weighted imaging, diffusion tensor imaging, perfusion-weighted imaging, voxel based morphometry, and functional MRI; as well as techniques applied in human medicine and their potential use in veterinary species.
Collapse
Affiliation(s)
- Kari D. Foss
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | | |
Collapse
|
3
|
Desale P, Dhande R, Parihar P, Nimodia D, Bhangale PN, Shinde D. Navigating Neural Landscapes: A Comprehensive Review of Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) Applications in Epilepsy. Cureus 2024; 16:e56927. [PMID: 38665706 PMCID: PMC11043648 DOI: 10.7759/cureus.56927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
This review comprehensively explores the evolving role of neuroimaging, specifically magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS), in epilepsy research and clinical practice. Beginning with a concise overview of epilepsy, the discussion emphasizes the crucial importance of neuroimaging in diagnosing and managing this complex neurological disorder. The review delves into the applications of advanced MRI techniques, including high-field MRI, resting-state fMRI, and connectomics, highlighting their impact on refining our understanding of epilepsy's structural and functional dimensions. Additionally, it examines the integration of machine learning in the analysis of intricate neuroimaging data. Moving to the clinical domain, the review outlines the utility of neuroimaging in pre-surgical evaluations and the monitoring of treatment responses and disease progression. Despite significant strides, challenges and limitations are discussed in the routine clinical incorporation of neuroimaging. The review explores promising developments in MRI and MRS technology, potential advancements in imaging biomarkers, and the implications for personalized medicine in epilepsy management. The conclusion underscores the transformative potential of neuroimaging and advocates for continued exploration, collaboration, and technological innovation to propel the field toward a future where tailored, effective interventions improve outcomes for individuals with epilepsy.
Collapse
Affiliation(s)
- Prasad Desale
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Rajasbala Dhande
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pratapsingh Parihar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Devyansh Nimodia
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Paritosh N Bhangale
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Dhanajay Shinde
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
4
|
Mauri N, Richter H, Steffen F, Zölch N, Beckmann KM. Single-Voxel Proton Magnetic Resonance Spectroscopy of the Thalamus in Idiopathic Epileptic Dogs and in Healthy Control Dogs. Front Vet Sci 2022; 9:885044. [PMID: 35873693 PMCID: PMC9302964 DOI: 10.3389/fvets.2022.885044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022] Open
Abstract
The role of magnetic resonance spectroscopy (MRS) in the investigation of brain metabolites in epileptic syndromes in dogs has not been explored systematically to date. The aim of this study was to investigate metabolites in the thalamus in dogs affected by idiopathic epilepsy (IE) with and without antiepileptic drug treatment (AEDT) and to compare them to unaffected controls. Our hypothesis is that similar to humans with generalized epilepsy and loss of consciousness, N-acetyl aspartate (NAA) would be reduced, and glutamate–glutamine (Glx) would be increased in treated and untreated IE in comparison with the control group. In this prospective case–control study, Border Collie (BC) and Greater Swiss Mountain dog (GSMD) were divided into three groups: (1) healthy controls, IE with generalized tonic–clonic seizures with (2) and without (3) AEDT. A total of 41 BC and GSMD were included using 3 Tesla single-voxel proton MRS of the thalamus (PRESS localization, shortest TE, TR = 2000 ms, NSA = 240). After exclusion of 11 dogs, 30 dogs (18 IE and 12 healthy controls) remained available for analysis. Metabolite concentrations were estimated with LCModel using creatine as reference and compared using Kruskal–Wallis and Wilcoxon rank-sum tests. The Kruskal–Wallis test revealed significant differences in the NAA-to-creatine (p = 0.04) and Glx-to-creatine (p = 0.03) ratios between the three groups. The Wilcoxon rank-sum test further showed significant reduction in the NAA/creatine ratio in idiopathic epileptic dogs under AEDT compared to epileptic dogs without AEDT (p = 0.03) and compared to healthy controls (p = 0.03). In opposite to humans, Glx/creatine ratio was significantly reduced in dogs with IE under AEDT compared to epileptic dogs without AEDT (p = 0.03) and controls (p = 0.02). IE without AEDT and healthy controls did not show significant difference, neither in NAA/creatine (p = 0.60), nor in Glx-to-creatine (p = 0.55) ratio. In conclusion, MRS showed changes in dogs with IE and generalized seizures under AEDT, but not in those without AEDT. Based upon these results, MRS can be considered a useful advanced imaging technique for the evaluation of dogs with IE in the clinical and research settings.
Collapse
Affiliation(s)
- Nico Mauri
- Clinic for Diagnostic Imaging, Department of Diagnostics and Clinical Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Vetimage Diagnostik GmbH, Oberentfelden, Switzerland
| | - Henning Richter
- Clinic for Diagnostic Imaging, Department of Diagnostics and Clinical Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Frank Steffen
- Section of Neurology and Neurosurgery, Small Animal Clinic, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Niklaus Zölch
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Katrin M. Beckmann
- Section of Neurology and Neurosurgery, Small Animal Clinic, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- *Correspondence: Katrin M. Beckmann
| |
Collapse
|
5
|
Polyanskaya M, Demushkina A, Kostylev F, Vasilyev I, Kholin A, Zavadenko N, Alikhanov A. The presurgical evaluation of patients with drug-resistant epilepsy. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:12-20. [DOI: 10.17116/jnevro202212208112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Kilic H, Yilmaz K, Asgarova P, Kizilkilic O, Hatay GH, Ozturk-Isik E, Yalcinkaya C, Saltik S. Electrical status epilepticus in sleep: The role of thalamus in etiopathogenesis. Seizure 2021; 93:44-50. [PMID: 34687985 DOI: 10.1016/j.seizure.2021.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE In patients diagnosed with epilepsy, decreased ratio of N-acetyl aspartate to creatine (NAA/Cr) measured in magnetic resonance spectroscopy (MRS) has been accepted as a sign of neuronal cell loss or dysfunction. In this study, we aimed to determine whether a similar neuronal cell loss is present in a group of encephalopathy with electrical status epilepticus in sleep (ESES) patients METHODS: We performed this case-control study at a tertiary pediatric neurology center with patients with ESES. Inclusion criteria for the patient group were as follows: 1) a spike-wave index of at least 50%, 2) acquired neuropsychological regression, 3) normal cranial MRI. Eventually, a total of 21 patients with ESES and 17 control subjects were enrolled in the study. MRI of all control subjects was also within normal limits. 3D Slicer program was used for the analysis of thalamic and brain volumes. LCModel spectral fitting software was used to analyze single-voxel MRS data from the right and left thalamus of the subjects. RESULTS The mean age was 8.0 ± 1.88 years and 8.3 ± 1.70 years in ESES patients and the control subjects. After correcting for the main potential confounders (age and gender) with a linear regression model, NAA/Creatine ratio of the right thalamus was significantly lower in the ESES patient group compared to the healthy control group (p = 0.026). Likewise, the left thalamus NAA/Cr ratio was significantly lower in the ESES patient group than the healthy control group (p = 0.007). After correcting for age and gender, right thalamic volume was not statistically significantly smaller in ESES patients than in healthy controls (p = 0.337), but left thalamic volume was smaller in ESES patients than in healthy controls (p = 0.024). CONCLUSION In ESES patients, the NAA/Creatine ratio, which is an indicator of neuronal cell loss or dysfunction in the right and left thalamus, which appears regular on MRI, was found to be significantly lower than the healthy control group. This metabolic-induced thalamic dysfunction, which was reported for the first time up to date, may play a role in ESES epileptogenesis.
Collapse
Affiliation(s)
- Huseyin Kilic
- Department of Pediatric Neurology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Kubra Yilmaz
- Department of Pediatric Neurology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Parvana Asgarova
- Department of Neuroradiology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Osman Kizilkilic
- Department of Neuroradiology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gokçe Hale Hatay
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Esin Ozturk-Isik
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Cengiz Yalcinkaya
- Department of Neurology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sema Saltik
- Department of Pediatric Neurology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
7
|
Faheem MH, Dabour AS, Abdelhaie OM. Diagnostic and prognostic role of proton single-voxel spectroscopy (SVS) in non-lesional epilepsy pediatric patients: prospective controlled study. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2020. [DOI: 10.1186/s43055-020-00251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
We aimed to verify the diagnostic and prognostic role of proton single-voxel spectroscopy (SVS) in children with non-lesional epilepsy and its add-on value to conventional MR. The prospective controlled study carried out on the epileptic patients who were regularly following in the pediatric neurology clinic in our university hospital, over the period from July 2017 to July 2018. It compared SVS findings (NAA/Cr, NAA/Cho, and NAA/Cho+Cr ratios) between the case (50 patients) and control group (20 children), between the cases with different seizures semiology and between the patients with intractable and non-intractable epilepsy.
Results
NAA/Cr ratio showed a significant difference between the patients with intractable and non-intractable epilepsy in the basal ganglia (P value 0.005) and white matter (P value 0.043) with cutoff values of 1.5 and 1.9 respectively. A significant difference of NAA/Cho ratio was found between generalized seizures cases and other seizures semiology in basal ganglia (P value 0.012) and cortex (P value <.001). There was no significant difference between the patient and control groups or between generalized seizures cases and the control group.
Conclusion
Proton SVS has limited diagnostic value in non-lesional epilepsy pediatric patients, in differentiation between generalized seizures and other seizure types, but, it has a good prognostic role in predicting patients who will develop intractable epilepsy.
Collapse
|
8
|
Fitsiori A, Hiremath SB, Boto J, Garibotto V, Vargas MI. Morphological and Advanced Imaging of Epilepsy: Beyond the Basics. CHILDREN (BASEL, SWITZERLAND) 2019; 6:E43. [PMID: 30862078 PMCID: PMC6462967 DOI: 10.3390/children6030043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 12/26/2022]
Abstract
The etiology of epilepsy is variable and sometimes multifactorial. Clinical course and response to treatment largely depend on the precise etiology of the seizures. Along with the electroencephalogram (EEG), neuroimaging techniques, in particular, magnetic resonance imaging (MRI), are the most important tools for determining the possible etiology of epilepsy. Over the last few years, there have been many developments in data acquisition and analysis for both morphological and functional neuroimaging of people suffering from this condition. These innovations have increased the detection of underlying structural pathologies, which have till recently been classified as "cryptogenic" epilepsy. Cryptogenic epilepsy is often refractory to anti-epileptic drug treatment. In drug-resistant patients with structural or consistent functional lesions related to the epilepsy syndrome, surgery is the only treatment that can offer a seizure-free outcome. The pre-operative detection of the underlying structural condition increases the odds of successful surgical treatment of pharmacoresistant epilepsy. This article provides a comprehensive overview of neuroimaging techniques in epilepsy, highlighting recent advances and innovations and summarizes frequent etiologies of epilepsy in order to improve the diagnosis and management of patients suffering from seizures, especially young patients and children.
Collapse
Affiliation(s)
- Aikaterini Fitsiori
- Unit of Neurodiagnostic, Division of Neuroradiology, Geneva University Hospital, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| | | | - José Boto
- Unit of Neurodiagnostic, Division of Neuroradiology, Geneva University Hospital, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital and Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland.
| | - Maria Isabel Vargas
- Unit of Neurodiagnostic, Division of Neuroradiology, Geneva University Hospital, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| |
Collapse
|
9
|
Oldan JD, Shin HW, Khandani AH, Zamora C, Benefield T, Jewells V. Subsequent experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure 2018; 61:128-134. [DOI: 10.1016/j.seizure.2018.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 11/28/2022] Open
|
10
|
Dokumacı DŞ, Doğan F, Yıldırım A, Boyacı FN, Bozdoğan E, Koca B. Brain metabolite alterations in Eisenmenger syndrome: Evaluation with MR proton spectroscopy. Eur J Radiol 2016; 86:70-75. [PMID: 28027769 DOI: 10.1016/j.ejrad.2016.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Eisenmenger syndrome (ES) is a life-threatening disease characterized by pulmonary hypertension and cyanosis in patients with congenital heart diseases. The aim of this study was to determine the brain metabolite changes in Eisenmenger syndrome compared with a control group using MR proton spectroscopy. METHODS AND MATERIALS The study included 10 children (3 male, 7 female) with congenital heart diseases and a diagnosis of Eisenmenger syndrome. The control group consisted of 10 healthy volunteer children. All were examined with a 1.5T MRI scanner and single voxel spectroscopy was performed to obtain spectra from three different regions; left frontal subcortical white matter, left lentiform nucleus and left thalamus. Peak integral values obtained from the spectra were used as quantitative data. RESULTS The ages of the children with ES were between 5 and 16 years, and between 5 and 15 years in the control group. Periventricular white matter hyperintensities were observed in 3 patients. On MR spectroscopy study, significantly lower levels of Choline metabolite (Cho) were detected in the frontal subcortical region and thalamus regions of the patients compared with the control group. There was no statistically significant difference between the levels of other metabolites (NAA, Cr, mI and Glx). In the lentiform nucleus, although the average value of Cho in ES patients was lower than that of the control group, it was not statistically significant. CONCLUSION Cho metabolite was determined to have an important role in brain metabolism in Eisenmenger syndrome patients. Oral Cho treatment may help to extend survival.
Collapse
Affiliation(s)
- Dilek Şen Dokumacı
- Harran University School of Medicine, Department of Radiology, Sanliurfa, Turkey.
| | - Ferit Doğan
- Children Hospital, Department of Radiology, Sanliurfa, Turkey
| | - Ali Yıldırım
- Children Hospital, Department of Pediatric Cardiology, Sanliurfa, Turkey
| | | | - Erol Bozdoğan
- Harran University School of Medicine, Department of Radiology, Sanliurfa, Turkey
| | - Bülent Koca
- Harran University School of Medicine, Department of Pediatric Cardiology, Sanliurfa, Turkey
| |
Collapse
|
11
|
Diagnostic techniques to detect the epileptogenic zone: Pathophysiological and presurgical analysis of epilepsy in dogs and cats. Vet J 2016; 215:64-75. [DOI: 10.1016/j.tvjl.2016.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/24/2016] [Accepted: 03/05/2016] [Indexed: 12/17/2022]
|
12
|
Rincon SP, Blitstein MBK, Caruso PA, González RG, Thibert RL, Ratai EM. The Use of Magnetic Resonance Spectroscopy in the Evaluation of Pediatric Patients With Seizures. Pediatr Neurol 2016; 58:57-66. [PMID: 26948493 DOI: 10.1016/j.pediatrneurol.2016.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND The objective was to determine if it is useful to routinely add magnetic resonance spectroscopy (MRS) to magnetic resonance imaging (MRI) in the evaluation of seizure in the pediatric patient. Specifically, how often does MRS contribute information to conventional MRI? METHODS A retrospective search, over a period of 3 years, of patients <18 years of age who underwent both MRI and MRS as part of the evaluation of seizures yielded a total of 233 cases in 216 patients. The medical records were reviewed to determine how many patients carried a diagnosis relevant to seizures. The MRIs and MRSs were reviewed by two neuroradiologists and an MR physicist/spectroscopist who determined by consensus in how many cases MRS contributed information regarding management, diagnosis, or prognosis, in addition to the findings on MRI alone. RESULTS In 100 of 233 cases (43%), MRS contributed information additional to MRI. In 40 cases, MRS contributed information relevant to patient management by prompting an evaluation for an underlying inborn error of metabolism. MRS contributed information relevant to diagnosis in 24 of 100 cases (e.g., neoplasm versus dysplasia). MRS contributed information relevant to prognosis in 36 cases (e.g., hypoxic-ischemic injury). MRS added more information in cases where the patients had a diagnosis relevant to seizure before imaging. Interestingly, in 25 cases where the MRI was normal, MRS was found to be abnormal, which prompted evaluation for an inborn error of metabolism. CONCLUSIONS These results suggest that MRS is a useful evaluation tool in addition to MRI for children undergoing imaging for the evaluation of seizures.
Collapse
Affiliation(s)
- Sandra P Rincon
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Marisa B K Blitstein
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Paul A Caruso
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - R Gilberto González
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Ronald L Thibert
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Eva-Maria Ratai
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
13
|
Ratai EM, Gilberto González R. Clinical magnetic resonance spectroscopy of the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2016; 135:93-116. [PMID: 27432661 DOI: 10.1016/b978-0-444-53485-9.00005-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proton magnetic resonance spectroscopy (1H MRS) is a noninvasive imaging technique that can easily be added to the conventional magnetic resonance (MR) imaging sequences. Using MRS one can directly compare spectra from pathologic or abnormal tissue and normal tissue. Metabolic changes arising from pathology that can be visualized by MRS may not be apparent from anatomy that can be visualized by conventional MR imaging. In addition, metabolic changes may precede anatomic changes. Thus, MRS is used for diagnostics, to observe disease progression, monitor therapeutic treatments, and to understand the pathogenesis of diseases. MRS may have an important impact on patient management. The purpose of this chapter is to provide practical guidance in the clinical application of MRS of the brain. This chapter provides an overview of MRS-detectable metabolites and their significance. In addition some specific current clinical applications of MRS will be discussed, including brain tumors, inborn errors of metabolism, leukodystrophies, ischemia, epilepsy, and neurodegenerative diseases. The chapter concludes with technical considerations and challenges of clinical MRS.
Collapse
Affiliation(s)
- Eva-Maria Ratai
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, and Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA.
| | - R Gilberto González
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, and Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA
| |
Collapse
|
14
|
Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med 2015; 5:5/6/a022426. [PMID: 26033084 DOI: 10.1101/cshperspect.a022426] [Citation(s) in RCA: 445] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epilepsy is one of the most common and disabling neurologic conditions, yet we have an incomplete understanding of the detailed pathophysiology and, thus, treatment rationale for much of epilepsy. This article reviews the clinical aspects of seizures and epilepsy with the goal of providing neuroscientists an introduction to aspects that might be amenable to scientific investigation. Seizures and epilepsy are defined, diagnostic methods are reviewed, various clinical syndromes are discussed, and aspects of differential diagnosis, treatment, and prognosis are considered to enable neuroscientists to formulate basic and translational research questions.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Division of Pediatric Neurology, Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Lionel Carmant
- Division of Neurology, Department of Pediatrics, Sainte-Justine Hospital, Universite Montreal, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
15
|
Abstract
OBJECTIVE The purpose of this article is to describe an MRI protocol optimized for epilepsy evaluation, common causes of epilepsy visualized on MR images of patients evaluated for medically intractable partial epilepsy, and the basic concepts of advanced imaging techniques in the evaluation of epilepsy. CONCLUSION Epilepsy is one of the most common neurologic disorders in the United States. The long-term seizure-free success of epilepsy surgery is related to the ability to define and completely resect the epileptogenic zone. Detection of structural lesions at preoperative imaging requires not only a dedicated epilepsy protocol but also meticulous examination of the images by the interpreting radiologist with particular attention to subtle abnormalities that might otherwise go unreported.
Collapse
|