1
|
Bombardieri AM, Seners P, Wouters A, Zamarud A, Mlynash M, Yuen N, Albers GW, Sussman ES, Pulli B, Lansberg MG, Steinberg GK, Heit JJ. Advancing diagnostic precision of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: The potential for a vasospasm index score on perfusion imaging to detect vasospasm. Eur J Radiol 2024; 178:111578. [PMID: 38981177 DOI: 10.1016/j.ejrad.2024.111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND The occurrence of delayed cerebral ischemia and vasospasm following aneurysmal subarachnoid hemorrhage (aSAH) results in high morbidity and mortality, but the diagnosis remains challenging. This study aimed to identify neuroimaging perfusion parameters indicative of delayed cerebral ischemia in patients with suspected vasospasm. METHODS This is a case-control study. Cases were adult aSAH patients who underwent magnetic resonance perfusion or computed tomography perfusion (CTP) imaging ≤ 24 h before digital subtraction angiography performed for vasospasm diagnosis and treatment. Controls were patients without aSAH who underwent CTP. Quantitative perfusion parameters at different thresholds, including Tmax 4-6-8-10 s delay, cerebral blood flow and cerebral blood volume were measured and compared between cases and controls. The Vasospasm Index Score was calculated as the ratio of brain volume with time-to-max (Tmax) delay > 6 s over volume with Tmax > 4 s. RESULTS 54 patients with aSAH and 119 controls without aSAH were included. Perfusion parameters with the strongest prediction of vasospasm on cerebral angiography were the combination of the Vasospasm Index Score (Tmax6/Tmax4) + CBV ≤ 48 % (area under the curve value of 0.85 [95 % CI 0.78-0.91]) with a sensitivity of 63 % and specificity of 95 %. CONCLUSION The Vasospasm Index Score in combination with CBV ≤ 48 % on cerebral perfusion imaging reliably identified vasospasm as the cause of DCI on perfusion imaging.
Collapse
Affiliation(s)
- Anna Maria Bombardieri
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, USA.
| | - Pierre Seners
- Department of Neurology, Hôpital Fondation Rothschild, Paris, Île-de-France, France
| | - Anke Wouters
- Department of Neurology, University Hospitals Leuven, Leuven, Vlaams-Brabant, Belgium.
| | - Aroosa Zamarud
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Michael Mlynash
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole Yuen
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Greg W Albers
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric S Sussman
- Department of Neurosurgery, Hartford HealthCare Medical Group, Hartford, CT, USA
| | - Benjamin Pulli
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maarten G Lansberg
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary K Steinberg
- Department of Neurosurgery Stanford University School of Medicine, Stanford, CA, USA
| | - Jeremy J Heit
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Lauzier DC, Athiraman U. Role of microglia after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2024; 44:841-856. [PMID: 38415607 PMCID: PMC11318405 DOI: 10.1177/0271678x241237070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Subarachnoid hemorrhage is a devastating sequela of aneurysm rupture. Because it disproportionately affects younger patients, the population impact of hemorrhagic stroke from subarachnoid hemorrhage is substantial. Secondary brain injury is a significant contributor to morbidity after subarachnoid hemorrhage. Initial hemorrhage causes intracranial pressure elevations, disrupted cerebral perfusion pressure, global ischemia, and systemic dysfunction. These initial events are followed by two characterized timespans of secondary brain injury: the early brain injury period and the delayed cerebral ischemia period. The identification of varying microglial phenotypes across phases of secondary brain injury paired with the functions of microglia during each phase provides a basis for microglia serving a critical role in both promoting and attenuating subarachnoid hemorrhage-induced morbidity. The duality of microglial effects on outcomes following SAH is highlighted by the pleiotropic features of these cells. Here, we provide an overview of the key role of microglia in subarachnoid hemorrhage-induced secondary brain injury as both cytotoxic and restorative effectors. We first describe the ontogeny of microglial populations that respond to subarachnoid hemorrhage. We then correlate the phenotypic development of secondary brain injury after subarachnoid hemorrhage to microglial functions, synthesizing experimental data in this area.
Collapse
Affiliation(s)
- David C Lauzier
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Umeshkumar Athiraman
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Busse TL, Munthe S, Ketharanathan B, Bülow K, Jóhannsson B, Diaz A, Nielsen TH. Perfusion Computed Tomography as a Screening Tool for Pending Delayed Cerebral Ischemia in Comatose Patients After Aneurysmal Subarachnoid Hemorrhage: A Retrospective Cohort Study. Neurocrit Care 2024; 40:964-975. [PMID: 37821720 PMCID: PMC11147906 DOI: 10.1007/s12028-023-01855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage (aSAH) is frequently complicated by delayed cerebral ischemia (DCI), leading to poor outcomes. Early diagnosis of DCI is crucial for improving survival and outcomes but remains challenging in comatose patients. In this study, we aimed to evaluate computed tomography with angiography and perfusion (P-CT) as a screening modality on postictal days four and eight for impending DCI after aSAH in comatose patients using vasospasm with hypoperfusion (hVS) as a surrogate and DCI-related infarction as an outcome measure. Two objectives were set: (1) to evaluate the screening's ability to accurately risk stratify patients and (2) to assess the validity of P-CT screening. METHODS We conducted a retrospective review of the records of comatose patients with aSAH from January 2019 to December 2021 who were monitored with P-CT scans on days four and eight. The event rates of DCI-related infarction, hVS, and endovascular rescue therapy (ERT) were analyzed, and the sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) for DCI were calculated. DCI-related infarction was defined as new secondary cerebral infarction > 48 h < 6 weeks post aSAH not attributable to other causes, and hVS was defined as arterial narrowing with corresponding hypoperfusion on P-CT. RESULTS Fifty-six comatose patients were included, and 98 P-CT scans were performed. The incidence of DCI-related infarction was 40%. Screening P-CT on days four and eight found vasospasm in 23% of all patients, including 11% with hVS. A positive hVS on day four or eight revealed a relative risk of 2.4 [95% confidence interval (CI) 1.13-5.11, p = 0.03], sensitivity of 23% (95% CI 8-45, p = 0.03), specificity of 95% (95% CI 36-100, p = 0.03), PPV of 0.83 (95% CI 0.36-1.00, p = 0.03), and NPV of 0.65 (95% CI 0.50-0.78). Six positive P-CT scans led to digital subtraction angiography in five patients, three of whom received ERT. All ERT-intervened patients developed DCI-related infarction. CONCLUSIONS P-CT resulted in few interventions and often resulted in late detection of DCI at an irreversible stage. Although a positive P-CT result accurately predicts impending DCI-related infarction, screening on days four and eight alone in comatose patients with aSAH often fails to timely detect impending DCI. Based on our analysis, we cannot recommend P-CT as a screening modality. P-CT is likely best used as a confirmatory test prior to invasive interventions when guided by continuous multimodal monitoring; however, prospective studies with comparison groups are warranted. The need for a reliable continuous screening modality is evident because of the high rate of deterioration and narrow treatment window.
Collapse
Affiliation(s)
- Thor Löwe Busse
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark.
| | - Sune Munthe
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| | | | - Karsten Bülow
- Department of Anaesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark
| | - Bjarni Jóhannsson
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| | - Anabel Diaz
- Department of Radiology, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
4
|
Mittal AM, Nowicki KW, Mantena R, Cao C, Rochlin EK, Dembinski R, Lang MJ, Gross BA, Friedlander RM. Advances in biomarkers for vasospasm - Towards a future blood-based diagnostic test. World Neurosurg X 2024; 22:100343. [PMID: 38487683 PMCID: PMC10937316 DOI: 10.1016/j.wnsx.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Objective Cerebral vasospasm and the resultant delayed cerebral infarction is a significant source of mortality following aneurysmal SAH. Vasospasm is currently detected using invasive or expensive imaging at regular intervals in patients following SAH, thus posing a risk of complications following the procedure and financial burden on these patients. Currently, there is no blood-based test to detect vasospasm. Methods PubMed, Web of Science, and Embase databases were systematically searched to retrieve studies related to cerebral vasospasm, aneurysm rupture, and biomarkers. The study search dated from 1997 to 2022. Data from eligible studies was extracted and then summarized. Results Out of the 632 citations screened, only 217 abstracts were selected for further review. Out of those, only 59 full text articles met eligibility and another 13 were excluded. Conclusions We summarize the current literature on the mechanism of cerebral vasospasm and delayed cerebral ischemia, specifically studies relating to inflammation, and provide a rationale and commentary on a hypothetical future bloodbased test to detect vasospasm. Efforts should be focused on clinical-translational approaches to create such a test to improve treatment timing and prediction of vasospasm to reduce the incidence of delayed cerebral infarction.
Collapse
Affiliation(s)
- Aditya M. Mittal
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | | | - Rohit Mantena
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Catherine Cao
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Emma K. Rochlin
- Loyola University Stritch School of Medicine, Maywood, IL, USA
| | - Robert Dembinski
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Michael J. Lang
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Bradley A. Gross
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Robert M. Friedlander
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Hoh BL, Ko NU, Amin-Hanjani S, Chou SHY, Cruz-Flores S, Dangayach NS, Derdeyn CP, Du R, Hänggi D, Hetts SW, Ifejika NL, Johnson R, Keigher KM, Leslie-Mazwi TM, Lucke-Wold B, Rabinstein AA, Robicsek SA, Stapleton CJ, Suarez JI, Tjoumakaris SI, Welch BG. 2023 Guideline for the Management of Patients With Aneurysmal Subarachnoid Hemorrhage: A Guideline From the American Heart Association/American Stroke Association. Stroke 2023; 54:e314-e370. [PMID: 37212182 DOI: 10.1161/str.0000000000000436] [Citation(s) in RCA: 257] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
AIM The "2023 Guideline for the Management of Patients With Aneurysmal Subarachnoid Hemorrhage" replaces the 2012 "Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage." The 2023 guideline is intended to provide patient-centric recommendations for clinicians to prevent, diagnose, and manage patients with aneurysmal subarachnoid hemorrhage. METHODS A comprehensive search for literature published since the 2012 guideline, derived from research principally involving human subjects, published in English, and indexed in MEDLINE, PubMed, Cochrane Library, and other selected databases relevant to this guideline, was conducted between March 2022 and June 2022. In addition, the guideline writing group reviewed documents on related subject matter previously published by the American Heart Association. Newer studies published between July 2022 and November 2022 that affected recommendation content, Class of Recommendation, or Level of Evidence were included if appropriate. Structure: Aneurysmal subarachnoid hemorrhage is a significant global public health threat and a severely morbid and often deadly condition. The 2023 aneurysmal subarachnoid hemorrhage guideline provides recommendations based on current evidence for the treatment of these patients. The recommendations present an evidence-based approach to preventing, diagnosing, and managing patients with aneurysmal subarachnoid hemorrhage, with the intent to improve quality of care and align with patients' and their families' and caregivers' interests. Many recommendations from the previous aneurysmal subarachnoid hemorrhage guidelines have been updated with new evidence, and new recommendations have been created when supported by published data.
Collapse
|
6
|
Levinson S, Pendharkar AV, Gauden AJ, Heit JJ. Modern Imaging of Aneurysmal Subarachnoid Hemorrhage. Radiol Clin North Am 2023; 61:457-465. [PMID: 36931762 DOI: 10.1016/j.rcl.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
In this review, we discuss the imaging of aneurysmal subarachnoid hemorrhage (SAH). We discuss emergency brain imaging, aneurysm detection techniques, and the management of CTA-negative SAH. We also review the concepts of cerebral vasospasm and delayed cerebral ischemia that occurs after aneurysm rupture and their impact on patient outcomes. These pathologies are distinct, and the use of multimodal imaging modalities is essential for prompt diagnosis and management to minimize morbidity from these conditions. Lastly, new advances in artificial intelligence and advanced imaging modalities such as PET and MR imaging scans have been shown to improve the detection of aneurysms and potentially predict outcomes early in the course of SAH.
Collapse
Affiliation(s)
- Simon Levinson
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Arjun V Pendharkar
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew J Gauden
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeremy J Heit
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA; Stanford School of Medicine, 453 Quarry Road, Palo Alto, CA 94304, USA.
| |
Collapse
|
7
|
Wahood W, Breeding T, Mohamed Z, Haider AS, Lanzino G, Brinjikji W, Rabinstein AA. Trends in Utilization of Temporary and Permanent Cerebrospinal Fluid Diversion and Catheter Cerebral Angiography for Patients with Aneurysmal Subarachnoid Hemorrhage in the United States. World Neurosurg 2022; 164:e1161-e1178. [PMID: 35660669 DOI: 10.1016/j.wneu.2022.05.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION We sought to analyze the rate of utilization of methods of cerebrospinal fluid diversion over time in a nationally representative cohort of patients admitted with aneurysmal subarachnoid hemorrhage (aSAH). METHODS The Nationwide Inpatient Sample was queried for patients admitted with aSAH from 2006 to 2018. Patients who received external ventricular drainage (EVD), lumbar drainage, ventriculoperitoneal shunt (VPS), and cerebral angiography were then identified. A Cochrane-Armitage test was conducted to assess the linear trend of proportions of EVD, lumbar drains, VPS, and mean cerebral angiograms per admission. Four regression analyses were conducted to infer the association of baseline variables to EVD, lumbar drain, VPS, and mean number of cerebral angiographies. RESULTS A total of 133,567 admissions were identified from 2006-2018 involving aSAH. Of these, 41.82% received EVD, 6.22% received lumbar drainage, 10.58% received VPS, and 75.03% had cerebral angiograms. There was an average upward trend of 1.57% in annual EVD utilization, downward trend of -0.28% in utilization of lumbar drainage, no changes in VPS utilization, and an upward trend of 0.04 angiograms per year (P < 0.001). There was a higher proportion of Black patients treated with EVD and VPS in both urban teaching hospitals and large hospitals. CONCLUSIONS Our results show the temporal trends in utilization of temporary and permanent methods of cerebrospinal fluid diversion and catheter cerebral angiography among patients with aSAH in the United States. The underutilization of VPS following EVD and the differences in EVD and VPS utilization depending on race and hospital size deserve further exploration.
Collapse
Affiliation(s)
- Waseem Wahood
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida, USA.
| | - Tessa Breeding
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida, USA
| | - Zayn Mohamed
- University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Ali S Haider
- Texas A&M University College of Medicine, Bryan, Texas, USA
| | - Giuseppe Lanzino
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Waleed Brinjikji
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
8
|
Smith NM, Sweeney EM, Gupta A, Patsalides A, Sanelli P, Ivanidze J. Diagnostic accuracy of shuttle CT angiography (CTA) and helical CTA in the diagnosis of vasospasm. Clin Imaging 2021; 81:37-42. [PMID: 34598002 DOI: 10.1016/j.clinimag.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/14/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE To evaluate the diagnostic accuracy of computed tomography angiography (CTA) acquired with shuttle technique (CTAs) and helical CTA (CTAh) for vasospasm, using digital subtraction angiography (DSA) obtained within 24 h as reference standard. METHODS Thirty-six patients with suspected vasospasm in the setting of aneurysmal subarachnoid hemorrhage (ASAH, 30/36) or acute inflammatory/infectious conditions (6/36) who underwent CTAs (17/36) or CTAh (19/36) followed by DSA within 24 h were identified retrospectively. Presence of vasospasm in the proximal cerebral arterial segments was assessed qualitatively and semi-quantitatively on CTA and subsequent DSA. Sensitivity, specificity, and receiver operating characteristic (ROC) curves were calculated. Inter-rater variability was assessed using Cohen's kappa. RESULTS On CTAs, 35% of patients had low and 65% had high vasospasm burden. On CTAh, 37% had low and 63% had high vasospasm burden. ROC analysis demonstrated an AUC of 0.87 for CTAs (95%CI 0.67-1.00, p = 0.015) and 0.88 for CTAh (0.72-1.00, p = 0.028). Cohen's kappa was 0.843 (95%CI 0.548-1.000). Thresholding with Youden's J index, CTAs had a sensitivity of 85.71% (95%CI 48.69 to 99.27) and specificity of 66.67% (35.42 to 87.94). CTAh had sensitivity of 100% (56.55 to 100.00) and specificity of 78.57% (52.41 to 92.43). CONCLUSION CTAs and CTAh yielded similar sensitivity, specificity, and AUC values on ROC analysis for the detection of vasospasm using DSA as reference standard. Our findings suggest that CTAs is a promising alternative to CTAh especially in patients requiring serial imaging, given its potential advantages of decreased radiation exposure, contrast dose, and cost-effectiveness.
Collapse
Affiliation(s)
- Natasha M Smith
- Department of Radiology, New York Presbyterian, Weill Cornell Medical College, 525 East 68th Street New York, NY 10065, USA.
| | - Elizabeth M Sweeney
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, New York Presbyterian, Weill Cornell Medical College, 1300 York Ave., New York, NY 10065, USA.
| | - Ajay Gupta
- Department of Radiology, New York Presbyterian, Weill Cornell Medical College, 525 East 68th Street New York, NY 10065, USA.
| | - Athos Patsalides
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, 300 Community Drive, Manhasset, NY 11030, USA.
| | - Pina Sanelli
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, 300 Community Drive, Manhasset, NY 11030, USA.
| | - Jana Ivanidze
- Department of Radiology, New York Presbyterian, Weill Cornell Medical College, 525 East 68th Street New York, NY 10065, USA.
| |
Collapse
|