1
|
Wickborn K, van der Weijden C, de Vries E, Meijer T, Kramer M, Spikman J, Buunk A, van der Hoorn A. Timeline of cognitive impairments after radiotherapy for head and neck cancer: A review. Clin Transl Radiat Oncol 2025; 52:100890. [PMID: 39991091 PMCID: PMC11847131 DOI: 10.1016/j.ctro.2024.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 02/25/2025] Open
Abstract
Background With advances in cancer treatments, long-term impairments of survivors have become more apparent. Radiotherapy of tumors in or near the brain can potentially induce cognitive impairments, impacting the quality of life of survivors. Currently, there is a lack of comprehensive information on the timeline of cognitive impairments following radiotherapy for head and neck cancer (HNC). To address this gap, we conducted a literature review on cognitive impairments observed after radiotherapy for HNC. Methods The literature review was conducted using PubMed, Web of Science, PsycINFO, and Google Scholar. Search terms included the following keywords: head and neck tumors, radiotherapy, treatment responses, cognitive impairments, as well as variants and related subcategories. Result Our review encompassed 23 studies involving a total of 1059 HNC patients, predominantly nasopharyngeal carcinoma. Overall, studies indicated a decline in cognitive performance post-radiotherapy compared to baseline scores, control groups, or normative data. The literature on acute effects is scarce and studies with complete neuropsychological assessments are missing. Cognitive impairments were prevalent in the majority of patients at six to 12 months post-radiotherapy, with memory deficits being the most prominent. Long-term assessments demonstrated that these cognitive deficits persisted even beyond seven years, suggesting a potentially irreversible decline in cognition following radiotherapy. Conclusion Cognitive impairments are frequently observed at least six months after radiotherapy. Standardized cognitive assessments are imperative to evaluate impairments in individual patients. Future research in HNC should integrate neuropsychological evaluations to enhance our understanding of domain-specific impairments and the complete timeline of cognitive changes after radiotherapy.
Collapse
Affiliation(s)
- K. Wickborn
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - C.W.J. van der Weijden
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - E.F.J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - T.W.H. Meijer
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - M.C.A. Kramer
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - J.M. Spikman
- Department of Neurology, Unit Clinical Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - A.M. Buunk
- Department of Neurology, Unit Clinical Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - A. van der Hoorn
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Voon NS, Manan HA, Yahya N. Remote assessment of cognition and quality of life following radiotherapy for nasopharyngeal carcinoma: deep-learning-based predictive models and MRI correlates. J Cancer Surviv 2024; 18:1297-1308. [PMID: 37010777 PMCID: PMC10069366 DOI: 10.1007/s11764-023-01371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023]
Abstract
PURPOSE Irradiation of the brain regions from nasopharyngeal carcinoma (NPC) radiotherapy (RT) is frequently unavoidable, which may result in radiation-induced cognitive deficit. Using deep learning (DL), the study aims to develop prediction models in predicting compromised cognition in patients following NPC RT using remote assessments and determine their relation to the quality of life (QoL) and MRI changes. METHODS Seventy patients (20-76 aged) with MRI imaging (pre- and post-RT (6 months-1 year)) and complete cognitive assessments were recruited. Hippocampus, temporal lobes (TLs), and cerebellum were delineated and dosimetry parameters were extracted. Assessments were given post-RT via telephone (Telephone Interview Cognitive Status (TICS), Telephone Montreal Cognitive Assessment (T-MoCA), Telephone Mini Addenbrooke's Cognitive Examination (Tele-MACE), and QLQ-H&N 43). Regression and deep neural network (DNN) models were used to predict post-RT cognition using anatomical and treatment dose features. RESULTS Remote cognitive assessments were inter-correlated (r > 0.9). TLs showed significance in pre- and post-RT volume differences and cognitive deficits, that are correlated with RT-associated volume atrophy and dose distribution. Good classification accuracy based on DNN area under receiver operating curve (AUROC) for cognitive prediction (T-MoCA AUROC = 0.878, TICS AUROC = 0.89, Tele-MACE AUROC = 0.919). CONCLUSION DL-based prediction models assessed using remote assessments can assist in predicting cognitive deficit following NPC RT. Comparable results of remote assessments in assessing cognition suggest its possibility in replacing standard assessments. IMPLICATIONS FOR CANCER SURVIVORS Application of prediction models in individual patient enables tailored interventions to be provided in managing cognitive changes following NPC RT.
Collapse
Affiliation(s)
- Noor Shatirah Voon
- Diagnostic Imaging and Radiotherapy, Centre for Diagnostic, Therapeutic and Investigative Sciences (CODTIS), Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, 50300, Kuala Lumpur, Malaysia
- National Cancer Institute, Ministry of Health, Jalan P7, Presint 7, 62250, Putrajaya, Malaysia
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Noorazrul Yahya
- Diagnostic Imaging and Radiotherapy, Centre for Diagnostic, Therapeutic and Investigative Sciences (CODTIS), Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Du F, Zheng S, Shao K, Yang Y, Chen W, Bai X, Hua Y. Specific-CT brain template construction and retrospective dosimetric comparison study in brain for nasopharyngeal carcinoma patients treated with IMRT or VMAT. Am J Cancer Res 2024; 14:1662-1674. [PMID: 38726278 PMCID: PMC11076250 DOI: 10.62347/hacn9549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/12/2024] [Indexed: 05/12/2024] Open
Abstract
The current Radiotherapy (RT) technology still inevitably irradiated normal brain tissue, causing implicit radiation-induced injury. This study investigates the precise localization and the corresponding radiation dosage of brain regions susceptible to damage in nasopharyngeal carcinoma (NPC) patients following RT. Utilizing the Advanced Normalization Tools (ANTs) package, a computed tomography (CT) brain template was created in the standard Montreal Neurological Institute (MNI) space, based on 803 Chinese NPC patients (T0~T4) who underwent RT. With this template, all patients' CT and RTdose data were registered to the MNI space, and the RTdose distribution characteristics in normal brain tissues were compared for NPC patients treated with Intensity-modulated radiotherapy (IMRT) or Volumetric Modulated Arc Therapy (VMAT), with patients' age and gender as covariates. Analysis of the average dosages indicated that certain areas within the Limbic, Temporal, and Posterior Lobes, the Brainstem, and the Cerebellum Posterior Lobe were exposed to doses exceeding 50 Gy. Inter-group analysis revealed that IMRT delivered higher doses than VMAT to brain regions anterior to the nasopharyngeal tumor, whereas VMAT affected the posterior regions more. Interestingly, VMAT showed a drawback in preserving the normal brain tissues for T4-stage patients. This revealed that the two treatment modalities have unique characteristics in preserving normal brain tissue, each with advantages. With better localization precision, the created CT brain template in MNI space may be beneficial for NPC patients' toxicity and dosimetric analyses.
Collapse
Affiliation(s)
- Fenglei Du
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhou 310022, Zhejiang, China
| | - Shuang Zheng
- School of Media and Design, Hangzhou Dianzi UniversityHangzhou 310018, Zhejiang, China
| | - Kainan Shao
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhou 310022, Zhejiang, China
- Department of Radiation Oncology, Zhejiang Provincial People’s HospitalHangzhou 314408, Zhejiang, China
| | - Yiwei Yang
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhou 310022, Zhejiang, China
| | - Wei Chen
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhou 310022, Zhejiang, China
- School of Nuclear Science and Technology, University of South ChinaHengyang 421001, Hunan, China
| | - Xue Bai
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhou 310022, Zhejiang, China
| | - Yonghong Hua
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhou 310022, Zhejiang, China
| |
Collapse
|
4
|
Lin S, Lv X, Lin X, Chen S, Li Y, Xu M, Qiu Y, Tang L. Modulation Effects of the CEP128 Gene on Radiotherapy-Related Brain Injury: A Longitudinal Structural Study Using Multi-Parametric Brain MR Images. J Magn Reson Imaging 2024; 59:648-658. [PMID: 37249021 DOI: 10.1002/jmri.28824] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND The promoter variant rs17111237 in the CEP128 closely relates to radiotherapy (RT)-related brain necrosis in nasopharyngeal carcinoma (NPC) patients. PURPOSE To explore RT-related dynamic alterations in brain morphology and their potential genetic mechanism, and to explore the modulatory effects of CEP128 genetic variants on RT-related brain morphological alterations in NPC patients. STUDY TYPE Prospective, longitudinal. POPULATION One hundred one patients with histopathologic ally-proven NPC (age 41.64 ± 9.63, 46 male), analyzed at baseline (pre-RT), 3-months post-RT and 6 months post-RT, and 19 sex-, age- and education-matched healthy controls. FIELD STRENGTH/SEQUENCE 3D gradient echo brain volume (3D-BRAVO) and diffusion-weighted single-shot spin-echo echo-planar sequences at 3.0 T. ASSESSMENT rs17111237 in CEP128 was detected by Sanger sequencing. Structural and diffusion images were processed with FreeSurfer and FSL. Morphometric similarity network (MSN) was constructed with nine cortical indices derived from structural and diffusion images. STATISTICAL TESTS One-way ANOVA, chi-square test. Pearson's correlation analysis was conducted to measure the relationship between CEP128 gene-expression level in human brain and MSN alterations. Repeated analysis of variance performed to assess group differences in MSN and the modulatory effects of the CEP128 gene within patients. Significance level: P < 0.05, false-discovery rate correction. RESULTS RT-related significant widespread MSN alterations were observed in the cortices of NPC patients. Notably, regional MSN alterations had a weak but significant negative correlation with the cortical pattern of CEP128 gene expression (r = -0.152). Furthermore, rs17111237 in the CEP128 had significant modulatory effects on the observed MSN alterations in NPC patients, with the modulatory effects being most obvious at 3 months post-RT. CONCLUSIONS MSN has potential to serve as a sensitive biomarker to detect RT-related brain injury. Inter-brain regional and inter-patient variability of RT-related brain injuries may be attributed to the cortical expression of the CEP128 gene and the modulatory effects of the promoter variant rs17111237 in CEP128. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaofei Lv
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yanqing Li
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Manxi Xu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Linquan Tang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
5
|
Murdaugh DL, Milner D, Cardenas CE, Heinzman KA, Cooper CA, Tabb JN, Bhatia S, McDonald AM. Volumetric brain assessment of long-term head and neck cancer survivors. Radiother Oncol 2024; 191:110068. [PMID: 38142935 PMCID: PMC10922648 DOI: 10.1016/j.radonc.2023.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Radiation therapy (RT) for locally advanced head and neck cancer (HNC) often exposes subcortical brain structures to radiation. We performed this study to assess region-specific brain volumetrics in a population of long term HNC survivors. METHODS AND MATERIALS Forty HNC survivors were enrolled at a mean of 6.4 years from completion of RT. Patients underwent a research MRI protocol that included a 3D T1- weighted whole-brain scan on a 3 Tesla MRI scanner. Voxel based morphometry was performed using the Computational Anatomy Toolbox with the Neuromorphometrics atlas. Healthy controls from the Human Connectome Project were used as a comparison cohort. Study participants also completed a comprehensive neurocognitive assessment. RESULTS The final study cohort consisted of 38 participants after excluding 2 participants due to image quality. HNC survivors displayed widespread reduction in gray matter (GM) brain region volumes that included bilateral medial frontal cortex, temporal lobe, hippocampus, supplemental motor area, and cerebellum. Greater radiation exposure was associated with reduced GM volume in the left ventral diencephalon (r = -0.512, p = 0.003). Associations between cognition and regional GM volumes were identified for motor coordination and bilateral cerebellum (left, r = 0.444, p = 0.009; right, r = 0.372, p = 0.030), confrontation naming and left amygdala (r = 0.382, p = 0.026), verbal memory and bilateral thalamus (left, r = 0.435, p = 0.010; right, r = 0.424, p = 0.012), right amygdala (r = 0.339, p = 0.050), and right putamen (r = 0.364, p = 0.034). CONCLUSIONS Reductions in GM were observed within this cohort of primarily non-nasopharyngeal HNC survivors as compared to a control sample. GM volumes were associated with performance in multiple cognitive domains. Results of this exploratory study support the need for investigation of anatomic brain changes as an important translational corollary to cognitive problems among HNC survivors.
Collapse
Affiliation(s)
- Donna L Murdaugh
- University of Alabama at Birmingham, Department of Radiation Oncology, United States; University of Alabama at Birmingham, Institute for Cancer Outcomes and Survivorship, United States; University of Alabama at Birmingham, Department of Pediatrics, United States
| | - Desmin Milner
- University of Alabama at Birmingham, Department of Radiology, United States
| | - Carlos E Cardenas
- University of Alabama at Birmingham, Department of Radiation Oncology, United States
| | - Katherine A Heinzman
- University of Alabama at Birmingham, Department of Radiation Oncology, United States; University of Alabama at Birmingham, Institute for Cancer Outcomes and Survivorship, United States
| | - Courtney A Cooper
- University of Alabama at Birmingham, Department of Radiation Oncology, United States; University of Alabama at Birmingham, Institute for Cancer Outcomes and Survivorship, United States
| | - Jazmyne N Tabb
- Brookwood Baptist Medical Center, Birmingham, AL, United States
| | - Smita Bhatia
- University of Alabama at Birmingham, Institute for Cancer Outcomes and Survivorship, United States; University of Alabama at Birmingham, Department of Pediatrics, United States
| | - Andrew M McDonald
- University of Alabama at Birmingham, Department of Radiation Oncology, United States; University of Alabama at Birmingham, Institute for Cancer Outcomes and Survivorship, United States.
| |
Collapse
|
6
|
Iyizoba-Ebozue Z, Prestwich R, Brown S, Hall E, Lilley J, Lowe M, Thomson DJ, Slevin F, Boele F, Murray L. Neurocognitive function following (chemo)radiotherapy for nasopharyngeal cancer and other head and neck cancers: A systematic review. Radiother Oncol 2023; 188:109863. [PMID: 37619657 DOI: 10.1016/j.radonc.2023.109863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
When radiotherapy is used in the treatment of head and neck cancers, the brain commonly receives incidental doses of radiotherapy with potential for neurocognitive changes and subsequent impact on quality of life. This has not been widely investigated to date. A systematic search of MEDLINE, EMBASE, Psycinfo Info and the Cochrane Central Register of Controlled Trials (CENTRAL) electronic databases was conducted. Of 2077 records screened, 20 were eligible comprising 1308 patients. There were no randomised studies and 73.3% of included patients were from single center studies. IMRT was delivered in 72.6% of patients, and chemotherapy used in 61%. There was considerable heterogeneity in methods. Narrative synthesis was therefore carried out. Most studies demonstrated inferior neurocognitive outcomes when compared to control groups at 12 months and beyond radiotherapy. Commonly affected neurocognitive domains were memory and language which appeared related to radiation dose to hippocampus, temporal lobe, and cerebellum. Magnetic Resonance Imaging could be valuable in the detection of early microstructural and functional changes, which could be indicative of future neurocognitive changes. In studies investigating quality of life, the presence of neurocognitive impairment was associated with inferior quality of life outcomes. (Chemo)radiotherapy for head and neck cancer appears to be associated with a risk of long-term neurocognitive impairment. Few studies were identified, with substantial variation in methodology, thus limiting conclusions. High quality large prospective head and neck cancer studies using standardised, sensitive, and reliable neurocognitive tests are needed.
Collapse
Affiliation(s)
| | - Robin Prestwich
- Department of Clinical Oncology, Leeds Cancer Centre, Leeds, UK
| | - Sarah Brown
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research
| | - Emma Hall
- The Institute of Cancer Research, London, UK
| | - John Lilley
- Department of Radiotherapy Physics, Leeds Cancer Centre, Leeds, UK
| | - Matthew Lowe
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - David J Thomson
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Manchester Academic Health Sciences Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Finbar Slevin
- Department of Clinical Oncology, Leeds Cancer Centre, Leeds, UK; Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Florien Boele
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Louise Murray
- Department of Clinical Oncology, Leeds Cancer Centre, Leeds, UK; Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| |
Collapse
|
7
|
Voon NS, Manan HA, Yahya N. Role of resting-state functional MRI in detecting brain functional changes following radiotherapy for head and neck cancer: a systematic review and meta-analysis. Strahlenther Onkol 2023; 199:706-717. [PMID: 37280382 DOI: 10.1007/s00066-023-02089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/23/2023] [Indexed: 06/08/2023]
Abstract
PURPOSE Increasing evidence implicates changes in brain function following radiotherapy for head and neck cancer as precursors for brain dysfunction. These changes may thus be used as biomarkers for early detection. This review aimed to determine the role of resting-state functional magnetic resonance imaging (rs-fMRI) in detecting brain functional changes. METHODS A systematic search was performed in the PubMed, Scopus, and Web of Science (WoS) databases in June 2022. Patients with head and neck cancer treated with radiotherapy and periodic rs-fMRI assessments were included. A meta-analysis was performed to determine the potential of rs-fMRI for detecting brain changes. RESULTS Ten studies with a total of 513 subjects (head and neck cancer patients, n = 437; healthy controls, n = 76) were included. A significance of rs-fMRI for detecting brain changes in the temporal and frontal lobes, cingulate cortex, and cuneus was demonstrated in most studies. These changes were reported to be associated with dose (6/10 studies) and latency (4/10 studies). A strong effect size (r = 0.71, p < 0.001) between rs-fMRI and brain changes was also reported, suggesting rs-fMRI's capability for monitoring brain alterations. CONCLUSION Resting-state functional MRI is a promising tool for detecting brain functional changes following head and neck radiotherapy. These changes are correlated with latency and prescription dose.
Collapse
Affiliation(s)
- Noor Shatirah Voon
- Diagnostic Imaging and Radiotherapy, Centre of Diagnostic, Therapeutic and Investigative Sciences, Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, 50300, Kuala Lumpur, Malaysia
- Department of Radiotherapy & Oncology, National Cancer Institute, Putrajaya, Malaysia
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Noorazrul Yahya
- Diagnostic Imaging and Radiotherapy, Centre of Diagnostic, Therapeutic and Investigative Sciences, Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Zhuang Y, Guo L, Huang W, Bo G, Zhang J, Zhu Z, Feng Y. Altered resting-state hippocampal functional connectivity in breast cancer survivors with chemotherapy-induced amenorrhea. Brain Behav 2023; 13:e3039. [PMID: 37157937 PMCID: PMC10275533 DOI: 10.1002/brb3.3039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/14/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
INTRODUCTION Amenorrhea induced decrease of hormones is associated with cognitive impairment. This study aimed to evaluate hippocampal functional connectivity patterns in chemotherapy-induced amenorrhea (CIA) breast cancer (BC) patients, to evaluate the relationship between the functional connectivity features and hormone levels. METHOD Neuropsychological test, functional magnetic resonance imaging, and assessment of hormone levels were conducted in 21 premenopausal BC patients before chemotherapy (t0 ) and 1 week after completing chemotherapy (t1 ). Twenty matched healthy controls (HC) were also included and underwent the same assessments at similar time intervals. Mixed effect analysis and paired t-test were used to compare differences in brain functional connectivity. RESULTS Voxel-based paired t-tests revealed increased functional connectivity of the right and left hippocampus with the left fusiform gyrus, inferior and middle temporal gyrus, inferior occipital gyrus, left lingual gyrus, and parahippocampal gyrus after chemotherapy (p < .001) in CIA patients. Repeated measures analysis revealed significant group-by-time interactions in the left hippocampus with the bilateral fusiform gyrus, right parahippocampal gyrus, left inferior temporal gyrus, and left inferior occipital gyrus (p < .001). Premenopausal BC patients had no significant differences in cognitive function compared with HC at baseline. However, the CIA patients had high levels of self-rating depression scale, self-rating anxiety scale, total cholesterol, and triglycerides. Further, the CIA patients showed significant differences in hormone and fasting plasma glucose levels and cognitive performances between t0 and t1 (p < .05). Functional connectivity changes between the left hippocampus and the left inferior occipital gyrus was negatively correlated with E2 and luteinizing hormone changes (p < .05). CONCLUSION The CIA patients had cognitive dysfunction mainly in memory and visual mobility. Chemotherapy may affect hippocampal-posterior cortical circuit which mediates visual processing in CIA patients. Moreover, E2 may be involved in this process.
Collapse
Affiliation(s)
- Yingying Zhuang
- Department of Medical ImagingMedical Imaging Center, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'anJiangsuChina
| | - Lili Guo
- Department of Medical ImagingMedical Imaging Center, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'anJiangsuChina
| | - Wei Huang
- Department of Medical ImagingMedical Imaging Center, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'anJiangsuChina
| | - Genji Bo
- Department of Medical ImagingMedical Imaging Center, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'anJiangsuChina
| | - Jiandong Zhang
- Department of Medical ImagingMedical Imaging Center, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'anJiangsuChina
| | - Zhaohuan Zhu
- Department of Medical ImagingMedical Imaging Center, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'anJiangsuChina
| | - Yun Feng
- Department of Medical ImagingMedical Imaging Center, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'anJiangsuChina
| |
Collapse
|
9
|
Shao K, Zheng S, Wang Y, Bai X, Luo H, Du F. A detailed dosimetric comparative study of IMRT and VMAT in normal brain tissues for nasopharyngeal carcinoma patients treated with radiotherapy. FRONTIERS IN RADIOLOGY 2023; 3:1190763. [PMID: 37492390 PMCID: PMC10365280 DOI: 10.3389/fradi.2023.1190763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 07/27/2023]
Abstract
Background Radiotherapy (RT) is the primary treatment for nasopharyngeal carcinoma (NPC). However, it can cause implicit RT-induced injury by irradiating normal brain tissue. To date, there have been no detailed reports on the radiated exact location in the brain, the corresponding radiation dose, and their relationship. Methods We analyzed 803 Chinese NPC patients treated with RT and used a CT brain template in a Montreal Neurological Institute (MNI) space to compare the group differences in RT dose distribution for different RT technologies (IMRT or VMAT). Results Brain regions that received high doses (>50 Gy) of radiation were mainly located in parts of the temporal and limbic lobes, where radioactive damage often occurs. Brain regions that accepted higher doses with IMRT were mainly located near the anterior region of the nasopharyngeal tumor, while brain regions that accepted higher doses with VMAT were mainly located near the posterior region of the tumor. No significant difference was detected between IMRT and VMAT for T1 stage patients. For T2 stage patients, differences were widely distributed, with VMAT showing a significant dose advantage in protecting the normal brain tissue. For T3 stage patients, VMAT showed an advantage in the superior temporal gyrus and limbic lobe, while IMRT showed an advantage in the posterior cerebellum. For T4 stage patients, VMAT showed a disadvantage in protecting the normal brain tissue. These results indicate that IMRT and VMAT have their own advantages in sparing different organs at risk (OARs) in the brain for different T stages of NPC patients treated with RT. Conclusion Our approach for analyzing dosimetric characteristics in a standard MNI space for Chinese NPC patients provides greater convenience in toxicity and dosimetry analysis with superior localization accuracy. Using this method, we found interesting differences from previous reports: VMAT showed a disadvantage in protecting the normal brain tissue for T4 stage NPC patients.
Collapse
Affiliation(s)
- Kainan Shao
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shuang Zheng
- School of Media and Design, Hangzhou Dianzi University, Hangzhou, China
| | - Yajuan Wang
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xue Bai
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, China
| | - Hongying Luo
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, China
- Faculty of Nuclear Science and Technology, University of South China, Hengyang, China
| | - Fenglei Du
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
10
|
Zhang X, Pan J, Lin Y, Fu G, Xu P, Liang J, Ye C, Peng J, Lv X, Yang Y, Feng Y. Structural network alterations in patients with nasopharyngeal carcinoma after radiotherapy: A 1-year longitudinal study. Front Neurosci 2022; 16:1059320. [DOI: 10.3389/fnins.2022.1059320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
This longitudinal study explored the changed patterns of structural brain network after radiotherapy (RT) in patients with nasopharyngeal carcinoma (NPC). Diffusion tensor imaging (DTI) data were gathered from 35 patients with NPC at four time points: before RT (baseline), 0∼3 (acute), 6 (early delayed), and 12 months (late-delayed) after RT. The graph theory was used to characterize the dynamic topological properties after RT and the significant changes were detected over time at the global, regional and modular levels. Significantly altered regional metrics (nodal efficiency and degree centrality) were distributed in the prefrontal, temporal, parietal, frontal, and subcortical regions. The module, that exhibited a significantly altered within-module connectivity, had a high overlap with the default mode network (DMN). In addition, the global, regional and modular metrics showed a tendency of progressive decrease at the acute and early delayed stages, and a partial/full recovery at the late-delayed stage. This changed pattern illustrated that the radiation-induced brain damage began at the acute reaction stage and were aggravated at the early-delayed stage, and then partially recovered at the late-delayed stage. Furthermore, the spearman’s correlations between the abnormal nodal metrics and temporal dose were calculated and high correlations were found at the temporal (MTG.R and HES.L), subcortical (INS.R), prefrontal (ORBinf.L and ACG.L), and parietal (IPL.R) indicating that these regions were more sensitive to dose and should be mainly considered in radiotherapy treatment plan.
Collapse
|
11
|
Nan F, Gao JM, Li L, Zhang YM, Zhang Y. Interaction of chemotherapy and radiotherapy in altering the shape of subcortical structures in patients with nasopharyngeal carcinoma. Front Oncol 2022; 12:952983. [PMID: 36172168 PMCID: PMC9510391 DOI: 10.3389/fonc.2022.952983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Neuroimaging studies have found significant structural alterations of the cerebral cortex in patients with nasopharyngeal carcinoma (NPC) following radiotherapy (RT) or concomitant chemoradiotherapy (CCRT), while their effects on the shape of subcortical structures remain largely unknown. In this study, we investigated the subcortical shape alterations between three groups: 56 untreated NPC patients (pre-RT group), 37 RT-treated NPC patients (post-RT group), and 108 CCRT-treated NPC patients (post-CCRT group). Using FSL-FIRST, we found that, compared with the pre-RT group, the post-CCRT group exhibited significant inward atrophy in the bilateral thalamus, bilateral putamen, left pallidum, and left caudate and outward inflation in the left caudate, while the post-RT group only exhibited inward atrophy in the bilateral thalamus. In addition, greater maximum dosage of RT for temporal lobes was associated with more severe inward atrophy of the bilateral thalamus in treated NPC patients. These results indicated that there may be an interaction between RT and CT that can cause subcortical damage.
Collapse
Affiliation(s)
- Feibiao Nan
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian-ming Gao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - You-ming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: You-ming Zhang, ; Yuanchao Zhang,
| | - Yuanchao Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: You-ming Zhang, ; Yuanchao Zhang,
| |
Collapse
|
12
|
Lin X, Li Z, Chen S, Yang Y, He H, Lv X, Qiu Y. Divergent white matter changes in patients with nasopharyngeal carcinoma post-radiotherapy with different outcomes: a potential biomarker for prediction of radiation necrosis. Eur Radiol 2022; 32:7036-7047. [PMID: 35687134 DOI: 10.1007/s00330-022-08907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To investigate the effects of standard radiotherapy on temporal white matter (WM) and its relationship with radiation necrosis (RN) in patients with nasopharyngeal carcinoma (NPC), and to determine the predictive value of WM volume alterations at the early stage for RN occurrence at the late-delay stage. METHODS Seventy-four treatment-naive NPC patients treated with standard radiotherapy were longitudinally followed up for 36 months. Structural MRIs were collected at multiple time points during the first year post-radiotherapy. Longitudinal structural images were processed using FreeSurfer. Linear mixed models were used to delineate divergent trajectories of temporal WM changes between patients who developed RN and who did not. Four machine learning methods were used to construct predictive models for RN with temporal WM volume alterations at early-stage. RESULTS The superior temporal gyrus (STG) had divergent atrophy trajectories in NPC patients with different outcomes (RN vs. NRN) post-radiotherapy. Patients with RN showed more rapid atrophy than those with NRN. A predictive model constructed with temporal WM volume alterations at early-stage post-radiotherapy had good performance for RN; the areas under the curve (AUC) were 0.879 and 0.806 at 1-3 months and 6 months post-radiotherapy, respectively. Moreover, the predictive model constructed with absolute temporal volume at 1-3 months post-radiotherapy also presented good performance; the AUC was 0.842, which was verified by another independent dataset (AUC = 0.773). CONCLUSIONS NPC patients with RN had more sharp atrophy in the STG than those with NRN. Temporal WM volume at early-stage post-radiotherapy may serve as an in vivo biomarker to identify and predict RN occurrence. KEY POINTS • The STG had divergent atrophy trajectories in NPC patients with different outcomes (RN vs. NRN) post-radiotherapy. • Although both groups exhibited time-dependent atrophy in the STG, the patients with RN showed a more rapid volume decrease than those with NRN. • Temporal WM volume alteration (or absolute volume) at the early stage could predict RN occurrence at the late-delay stage after radiotherapy.
Collapse
Affiliation(s)
- Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Zhipeng Li
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Yadi Yang
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Haoqiang He
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Xiaofei Lv
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
13
|
Rydén I, Fernström E, Lannering B, Kalm M, Blomstrand M, Hellström P, Björk-Eriksson T, Jarfelt M. Neuropsychological functioning in childhood cancer survivors following cranial radiotherapy - results from a long-term follow-up clinic. Neurocase 2022; 28:163-172. [PMID: 35549827 DOI: 10.1080/13554794.2022.2049825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Treatment of malignant childhood posterior fossa tumors (CPFT) often includes surgical resection and craniospinal radiotherapy (CSI). Nasopharyngeal tumors in childhood (CNPHT) are often treated with surgery and radiotherapy (RT), leading to incidental brain irradiation. RT to the developing brain is associated with risks for cognitive impairments. We studied cognitive functioning, health-related quality of life (HRQOL), fatigue, and psychological distress, in adult survivors of CPFT and CNPHT, representing two groups, which had received high and low radiation dose-exposure to the brain, respectively. Cognitive tests were used to compare CPFT (n = 12) and CNPHT (n = 7) survivors to matched healthy controls (n = 28). HRQOL data was compared to the general population (GP) (n = 1415-1459). Average follow-up was 23 (CPFT) and 19 years (CNPHT). CPFT survivors had significant deficits in all cognitive domains. CNPHT survivors showed results below the control group but differed statistically only on one executive test. HRQOL-ratings indicated that both groups had similar self-reported cognitive problems. CPFT survivors reported more emotional problems and fatigue. Anxiety was seen in both CPFT and CNPHT survivors. This study confirmed long-term cognitive sequelae after RT in adult survivors of CPFT,and possible RT-induced cognitive deficits in adult CNPHT survivors.
Collapse
Affiliation(s)
- Isabelle Rydén
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Erik Fernström
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Birgitta Lannering
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Marie Kalm
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Blomstrand
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Per Hellström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Thomas Björk-Eriksson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Marianne Jarfelt
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
14
|
Voon NS, Abdul Manan H, Yahya N. Cognitive Decline following Radiotherapy of Head and Neck Cancer: Systematic Review and Meta-Analysis of MRI Correlates. Cancers (Basel) 2021; 13:cancers13246191. [PMID: 34944811 PMCID: PMC8699377 DOI: 10.3390/cancers13246191] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy for head and neck cancers exposes small parts of the brain to radiation, resulting in radiation-induced changes in cerebral tissue. In this review, we determine the correlation between cognitive deterioration in patients with head and neck cancer after radiotherapy and magnetic resonance imaging (MRI) changes. Systematic searches were performed in PubMed, Scopus, and Cochrane databases in February 2021. Studies of head and neck cancer patients treated with radiotherapy and periodical cognitive and MRI assessments were included. Meta-analysis was performed to analyse the correlation of Montreal Cognitive Assessment (MoCA) scores to MRI structural and functional changes. Seven studies with a total of 404 subjects (irradiated head and neck patients, n = 344; healthy control, n = 60) were included. Most studies showed the significance of MRI in detecting microstructural and functional changes in association with neurocognitive function. The changes were seen in various brain areas, predominantly the temporal region, which also shows dose dependency (6/7 studies). An effect size (r = 0.43, p < 0.001) was reported on the correlation of MoCA scores to MRI structural and functional changes with significant correlations shown among patients treated with head and neck radiotherapy. However, the effect size appears modest.
Collapse
Affiliation(s)
- Noor Shatirah Voon
- Diagnostic Imaging and Radiotherapy, Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur 50300, Malaysia;
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Noorazrul Yahya
- Diagnostic Imaging and Radiotherapy, Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur 50300, Malaysia;
- Correspondence:
| |
Collapse
|
15
|
Zheng Z, Wang B, Zhao Q, Zhang Y, Wei J, Meng L, Xin Y, Jiang X. Research progress on mechanism and imaging of temporal lobe injury induced by radiotherapy for head and neck cancer. Eur Radiol 2021; 32:319-330. [PMID: 34327577 DOI: 10.1007/s00330-021-08164-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Radiotherapy (RT) is an effective treatment for head and neck cancer (HNC). Radiation-induced temporal lobe injury (TLI) is a serious complication of RT. Late symptoms of radiation-induced TLI are irreversible and manifest as memory loss, cognitive impairment, and even temporal lobe necrosis (TLN). It is currently believed that the mechanism of radiation-induced TLI involves microvascular injury, neuron and neural stem cell injury, glial cell damage, inflammation, and the production of free radicals. Significant RT-related structural changes and dose-dependent changes in gray matter (GM) and white matter (WM) volume and morphology were observed through computed tomography (CT) and magnetic resonance imaging (MRI) which were common imaging assessment tools. Diffusion tensor imaging (DTI), dispersion kurtosis imaging (DKI), susceptibility-weighted imaging (SWI), resting-state functional magnetic resonance (rs-fMRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET) can be used for early diagnosis and prognosis evaluation according to functional, molecular, and cellular processes of TLI. Early diagnosis of TLI is helpful to reduce the incidence of TLN and its related complications. This review summarizes the clinical features, mechanisms, and imaging of radiation-induced TLI in HNC patients. KEY POINTS: • Radiation-induced temporal lobe injury (TLI) is a clinical complication and its symptoms mainly include memory impairment, headache, and cognitive impairment. • The mechanisms of TLI include microvascular injury, cell injury, and inflammatory and free radical injury. Significant RT-related structural changes and dose-dependent changes in TL volume and morphology were observed through CT and MRI. • SWI, MRS, DTI, and DKI and other imaging examinations can detect anatomical and functional, molecular, and cellular changes of TLI.
Collapse
Affiliation(s)
- Zhuangzhuang Zheng
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Bin Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yuyu Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China. .,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
16
|
Lv X, Guo Z, Tang L, Li Z, Lin X, Li J, Han L, Qiu Y, Mai H. Divergent effects of irradiation on brain cortical morphology in patients with nasopharyngeal carcinoma: one-year follow-up study using structural magnetic resonance imaging. Quant Imaging Med Surg 2021; 11:2307-2320. [PMID: 34079703 DOI: 10.21037/qims-20-662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Increasing evidence indicates that radiotherapy (RT)-induced brain cortical deficits may play a critical role in developing radiation encephalopathy in patients with nasopharyngeal carcinoma (NPC). However, the evolutional processes of RT-induced cortical injury have not been sufficiently investigated. This study investigates RT-induced effects on cortical morphology using longitudinal structural magnetic resonance imaging (MRI) in NPC patients. Methods Using MRI-based morphometry with surface-based measures, we evaluated the longitudinal alterations of cortical volume (CV), cortical thickness (CT), and cortical surface area (CSA) in 104 NPC patients at pre-RT (n=104), within 3 months post-RT (n=92), 6 months post-RT (n=71), and 9-12 months post-RT (n=52). Twenty healthy controls were also evaluated in parallel. Linear mixed models were used to investigate the trajectories of RT-related changes in cortical brain morphology and its association with irradiation dose, with healthy controls data being used to construct a normal age-related benchmark. The level of statistical significance was set at P<0.05, corrected for multiple comparisons. Results The results showed that RT-related longitudinal alterations in cortical morphology underwent two diverse patterns during the first year of follow up in NPC patients. The temporal cortices (including the bilateral superior temporal gyrus, middle temporal gyrus, temporal pole, parahippocampal and fusiform gyrus, and the right inferior temporal and right transverse temporal gyrus), the basal occipital cortices (the right lingual gyrus and lateral occipital gyrus), and the basal frontal cortices (the right lateral orbitofrontal gyrus) showed time-dependent attenuation in cortical morphology indices. Furthermore, these effects on multiple cortices were dose-dependent, suggesting they were RT-associated. In contrast, in the left rostral middle frontal gyrus, there was a time-dependent increase in CT. Conclusions Our preliminary findings revealed divergent effects of irradiation on cortical brain morphology. These results contribute to a more comprehensive understanding of the underlying neural mechanisms of irradiation-related neurotoxic effects on cortical brain morphology and will help guide the investigation of critically neuroprotective strategies.
Collapse
Affiliation(s)
- Xiaofei Lv
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zheng Guo
- Department of Oncology, The First Affiliated Hospital of Ganzhou Medical University, Ganzhou, China
| | - Linquan Tang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zhipeng Li
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiaoshan Lin
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Lujun Han
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yingwei Qiu
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Haiqiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
17
|
Qiu Y, Guo Z, Lin X, Li J, Li Z, Han L, Yang Y, Lv X. Standard radiotherapy for patients with nasopharyngeal carcinoma results in progressive tract-specific brain white matter alterations: A one-year follow-up via diffusion tensor imaging. Radiother Oncol 2021; 159:255-264. [PMID: 33839204 DOI: 10.1016/j.radonc.2021.03.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/19/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND PURPOSE Radiation therapy (RT)-induced neurocognitive disability may be mediated by brain tissue damage. The aim of the present study was to investigate the effects of standard RT on normal brain tissue via in vivo neuroimaging in patients with nasopharyngeal carcinoma (NPC). MATERIALS AND METHODS A total of 146 newly diagnosed NPC patients who were treated with standard RT were longitudinally followed up at multiple time points during the first year post-RT, with 19 comparable healthy controls followed up in parallel serving as normal age-related benchmarks. Magnetic resonance diffusion tensor imaging was used to evaluate longitudinal brain white matter tract changes in NPC patients. The relationships between RT-related white matter changes, hippocampal atrophy, and cognitive impairment were also assessed. RESULTS Bilateral cingulate angular bundle (CAB) fibers had progressive diffusion reduction [radial diffusivity (RD) and mean diffusivity] over time (P < 0.05, corrected for multiple comparisons) in NPC patients during the first year after RT. RT-associated progressive RD reduction in the left CAB correlated with longitudinal atrophy of the ipsilateral hippocampus (P = 0.033). Additionally, RT-associated progressive RD reduction in the left CAB correlated with progressive cognitive impairment in NPC patients post-RT (P = 0.048). CONCLUSION We present evidence of progressive RT-associated changes in the bilateral CAB in NPC patients, which may underlie RT-related cognitive impairment. These findings illustrate that the use of white matter tract alterations as potential biomarkers to detect RT-related brain injury in NPC patients may be useful for better understanding the pathogenesis of RT-induced cognitive decline.
Collapse
Affiliation(s)
- Yingwei Qiu
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangdong, China
| | - Zheng Guo
- Department of Oncology, The First Affiliated Hospital of Ganzhou Medical University, China
| | - Xiaoshan Lin
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangdong, China
| | - Jing Li
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, China
| | - Zhipeng Li
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, China
| | - Lujun Han
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, China
| | - Yadi Yang
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, China
| | - Xiaofei Lv
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, China.
| |
Collapse
|
18
|
Damico NJ, Wu AK, Kharouta MZ, Eitan T, Pidikiti R, Jesseph FB, Smith M, Langmack C, Mattson DL, Dobbins D, Mansur DB, Machtay MX, Dorth JA, Choi S, Yao M, Bhatt AD. Proton Beam Therapy in the Treatment of Periorbital Malignancies. Int J Part Ther 2021; 7:42-51. [PMID: 33829072 PMCID: PMC8019573 DOI: 10.14338/ijpt-20-00025.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose Periorbital tumor location presents a significant challenge with 3-dimensional conformal radiation therapy or intensity modulated radiation therapy due to high tumor dose needed in the setting of close proximity to orbital structures with lower tolerance. Proton beam therapy (PBT) is felt to be an effective modality in such cases due to its sharp dose gradient. Materials and Methods We reviewed our institutional PBT registry and identified 17 patients with tumor epicenters within 2 cm of the eye and optic apparatus treated with passive scatter PBT with comparison volumetric arc therapy plans available. Maximum and mean doses to organs at risk of interest, including optic nerves, optic chiasm, lens, eye ball, pituitary, cochlea, lacrimal gland, and surrounding brain, were compared using the paired Wilcoxon signed rank test. Overall survival was determined using the Kaplan-Meier method. Results Median age was 67. Median follow-up was 19.7 months. Fourteen patients underwent upfront resection and received postoperative radiation and 3 received definitive radiation. One patient received elective neck radiation, 2 underwent reirradiation, and 3 had concurrent chemotherapy. There was a statistically significant reduction in mean dose to the optic nerves and chiasm, brain, pituitary gland, lacrimal glands, and cochlea as well as in the maximum dose to the optic nerves and chiasm, pituitary gland, lacrimal glands, and cochlea with PBT. The 18-month cumulative incidence of local failure was 19.1% and 1-year overall survival was 80.9%. Conclusion Proton beam therapy resulted in significant dose reductions to several periorbital and optic structures compared with volumetric arc therapy. Proton beam therapy appears to be the optimal radiation modality in such cases to minimize risk of toxicity to periorbital organs at risk.
Collapse
Affiliation(s)
- Nicholas J Damico
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Anna K Wu
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Michael Z Kharouta
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Tal Eitan
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Rajesh Pidikiti
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Frederick B Jesseph
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Mark Smith
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Christian Langmack
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Diana L Mattson
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Donald Dobbins
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - David B Mansur
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Mitchell X Machtay
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Jennifer A Dorth
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Serah Choi
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Min Yao
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Aashish D Bhatt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| |
Collapse
|
19
|
Chen Q, Lv X, Zhang S, Lin J, Song J, Cao B, Weng Y, Li L, Huang R. Altered properties of brain white matter structural networks in patients with nasopharyngeal carcinoma after radiotherapy. Brain Imaging Behav 2021; 14:2745-2761. [PMID: 31900892 DOI: 10.1007/s11682-019-00224-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previous neuroimaging studies revealed radiation-induced brain injury in patients with nasopharyngeal carcinoma (NPC) in the years after radiotherapy (RT). These injuries may be associated with structural and functional alterations. However, differences in the brain structural connectivity of NPC patients at different times after RT, especially in the early-delayed period, remain unclear. We acquired diffusion tensor imaging (DTI) data from three groups of NPC patients, 25 in the pre-RT (before RT) group, 22 in the early-delayed (1-6 months) period (post-RT-ED) group, and 33 in the late-delayed (>6 months) period (post-RT-LD) group. Then, we constructed brain white matter (WM) structural networks and used graph theory to compare their between-group differences. The NPC patients in the post-RT-ED group showed decreased global properties when compared with the pre-RT group. We also detected the nodes with between-group differences in nodal parameters. The nodes that differed between the post-RT-ED and pre-RT groups were mainly located in the default mode (DMN) and central executive networks (CEN); those that differed between the post-RT-LD and pre-RT groups were located in the limbic system; and those that differed between the post-RT-LD and post-RT-ED groups were mainly in the DMN. These findings may indicate that radiation-induced brain injury begins in the early-delayed period and that a reorganization strategy begins in the late-delayed period. Our findings may provide new insight into the pathogenesis of radiation-induced brain injury in normal-appearing brain tissue from the network perspective.
Collapse
Affiliation(s)
- Qinyuan Chen
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Xiaofei Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Shufei Zhang
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jiabao Lin
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jie Song
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Bolin Cao
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yihe Weng
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Li Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Ruiwang Huang
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
20
|
Lin X, Tang L, Li M, Wang M, Guo Z, Lv X, Qiu Y. Irradiation-related longitudinal white matter atrophy underlies cognitive impairment in patients with nasopharyngeal carcinoma. Brain Imaging Behav 2021; 15:2426-2435. [PMID: 33474681 DOI: 10.1007/s11682-020-00441-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2020] [Indexed: 11/24/2022]
Abstract
To longitudinally investigate alterations in cerebral white matter volume as a function of irradiation dose and time after standard radiotherapy in nasopharyngeal carcinoma patients and to determine how these alterations are related to radiotherapy-associated neurocognitive dysfunction.A total of 120 nasopharyngeal carcinoma patients were included in the present study. Longitudinal structural magnetic resonance imaging was performed at pre-radiotherapy and 1-3, 6, and 9-12 months post-radiotherapy. Twenty healthy controls were recruited and followed up with in parallel. Structural images were processed via FreeSurfer. The Montreal Cognitive Assessment was performed to evaluate cognitive function of the participants. Linear mixed models and general linear models were used to evaluate different trajectories and the relationship between white matter volume and cognition in patients and controls within approximately 12 months of follow-up.Selective and time-dependent white matter atrophy was observed in the right parahippocampal gyrus, right inferior temporal gyrus, right middle temporal gyrus, right fusiform gyrus, and left insular cortex in post-radiotherapy patients compared to the controls. Moreover, radiotherapy-associated white matter atrophy in the right parahippocampal gyrus exhibited a dose-dependent pattern, whereas radiotherapy-associated white matter atrophy in the right inferior temporal gyrus was correlated with progressive cognitive impairment in patients.Taken together, our findings illustrate that white matter volume alterations can be used as a potential biomarker to detect radiotherapy-related subtle brain injury in nasopharyngeal carcinoma patients, which may help further elucidate the pathogenesis of radiation-induced cognitive decline and facilitate studies on cognition-sparing radiotherapy.
Collapse
Affiliation(s)
- Xiaoshan Lin
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Linquan Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Mengjie Li
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - MingLi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zheng Guo
- Department of Oncology, The First Affiliated Hospital of Ganzhou Medical University, Ganzhou, Jiangxi, People's Republic of China
| | - Xiaofei Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China. .,Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.
| | - Yingwei Qiu
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
21
|
Sharma MB, Jensen K, Amidi A, Eskildsen SF, Johansen J, Grau C. Late toxicity in the brain after radiotherapy for sinonasal cancer: Neurocognitive functioning, MRI of the brain and quality of life. Clin Transl Radiat Oncol 2020; 25:52-60. [PMID: 33024844 PMCID: PMC7530204 DOI: 10.1016/j.ctro.2020.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Compared with matched normative data, impaired cognitive function was substantial. Several correlations between radiation dose and cognitive impairment were present. Radiation-induced white matter hyperintensities were present in 2/27 participants. One participant displayed radiation-induced necrosis in the temporal lobe. The domains affecting quality of life the most were fatigue and quality of sleep.
Purpose The aim of the study was to evaluate neurocognitive late effects, structural alterations and associations between cognitive impairment and radiation doses as well as cerebral tissue damage after radiotherapy for sinonasal cancer. Furthermore, the aim was to report quality of life (QoL) and self-reported cognitive capacity. Materials and methods Recurrence-free patients previously treated with intensity-modulated radiotherapy with a curative intent were eligible for the study. Study examinations comprised comprehensive neurocognitive testing, MRI of the brain, and self-reported outcomes. Results A total of 27 patients were included. Median age was 67 years (range 47–83). The majority of test outcomes were below normative values in any degree, and 37% of the participants had clinically significant neurocognitive impairment when compared with normative data. Correlations between absorbed doses to specific substructures of the brain and neurocognitive outcomes were present for Wechsler’s Adult Intelligence Scale-digit span and Controlled Oral Word Association Test-S. Structural MRI revealed macroscopic abnormalities in three patients; infarction (n = 1), diffuse white matter intensities (n = 2) and necrosis (n = 1). In the analysis of atrophy of cerebral tissue, no correlations were present with neither radiation dose to cerebral substructures nor neurocognitive impairment. The global QoL of the cohort was 75. The most affected outcomes were ‘fatigue’, ‘insomnia’, and ‘drowsiness’. A total of 59% of participants reported significantly impaired quality of sleep. Self-reported cognitive function revealed that ‘memory’ was the most affected cognitive domain. For the domains of ‘memory’ and ‘language’, self-reported functioning was associated with objectively measured neurocognitive outcomes. Conclusion Cerebral toxicity after radiotherapy for sinonasal cancer was substantial. Clinically significant cognitive impairment was present in more than one third of the participants, and several dose–response associations were present. Furthermore, the presence of macroscopic radiation sequelae indicated considerable impact of radiotherapy on brain tissue.
Collapse
Affiliation(s)
- M B Sharma
- Department of Oncology, Aarhus University Hospital, Palle Juul Jensen Boulevard 99, DK-8200 Aarhus N, Denmark
| | - K Jensen
- Danish Center for Particle Therapy, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, B420, 8200 Aarhus N, Denmark
| | - A Amidi
- Unit for Psychooncology and Health Psychology, Department of Psychology, Aarhus University, Bartholins Allé 9, Build. 1351, 8000 Aarhus C, Denmark
| | - S F Eskildsen
- Center of Functionally Integrative Neuroscience, Aarhus University, Nørrebrogade 44, Build. 1A, 8000 Aarhus C, Denmark
| | - J Johansen
- Department of Oncology, Odense University Hospital, J.B. Winsløvs Vej 4, 5000 Odense, Denmark
| | - C Grau
- Department of Oncology, Aarhus University Hospital, Palle Juul Jensen Boulevard 99, DK-8200 Aarhus N, Denmark.,Danish Center for Particle Therapy, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, B420, 8200 Aarhus N, Denmark
| |
Collapse
|
22
|
BVAN08 enhances radiosensitivity via downregulation of DNA-PKcs towards hepatic tumor xenograft. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Wu G, Luo SS, Balasubramanian PS, Dai GM, Li RR, Huang WY, Chen F. Early Stage Markers of Late Delayed Neurocognitive Decline Using Diffusion Kurtosis Imaging of Temporal Lobe in Nasopharyngeal Carcinoma Patients. J Cancer 2020; 11:6168-6177. [PMID: 32922556 PMCID: PMC7477416 DOI: 10.7150/jca.48759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose: To determine whether the early assessment of temporal lobe microstructural changes using diffusion kurtosis imaging (DKI) can predict late delayed neurocognitive decline after radiotherapy in nasopharyngeal carcinoma (NPC) patients. Methods and Materials: Fifty-four NPC patients undergoing intensity-modulated radiotherapy (IMRT) participated in a prospective DKI magnetic resonance (MR) imaging study. MR imaging was acquired prior to IMRT (-0), 1 month (-1), and 3 (-3) months after IMRT. Kurtosis (Kmean, Kax, Krad) and Diffusivity (Dmean, Dax, Drad) variables in the temporal lobe gray and white matter were computed. Neurocognitive function tests (MoCA) were administered pre-radiotherapy and at 2 years post-IMRT follow-up. All the patients were divided into neurocognitive function decline (NFD group) and neurocognitive function non-decline groups (NFND group) according to whether the MoCA score declined ≥3 2 years after IMRT. All the DKI metrics were compared between the two groups, and the best imaging marker was chosen for predicting a late delayed neurocognitive decline. Results: Kurtosis (Kmean-1, Kmean-3, Kax-1, Kax-3, Krad-1, and Krad-3) and Diffusivity (Dmean-1 and Dmean-3) of white matter were significantly different between the two groups (p<0.05). Axial Kurtosis (Kax-1, Kax-3) of gray matter was significantly different between the two groups (p<0.05). By receiver operating characteristic (ROC) curves, Kmean-1 of white matter performed best in predicting of MoCA scores delayed decline (p<0.05). The radiation dose was also significantly different between NFD and NFND group (p=0.031). Conclusions: Temporal lobe white matter is more vulnerable to microstructural changes and injury following IMRT in NPC. Metrics derived from DKI should be considered as imaging markers for predicting a late delayed neurocognitive decline. Both temporal lobe white and gray matter show microstructural changes detectable by DKI. The Kmean early after radiotherapy has the best prediction performance.
Collapse
Affiliation(s)
- Gang Wu
- Department of Radiation Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Shi-shi Luo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | | | - Gan-mian Dai
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Rui-rui Li
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Wei-yuan Huang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
24
|
Sharma MB, Jensen K, Urbak SF, Funding M, Johansen J, Bechtold D, Amidi A, Eskildsen SF, Jørgensen JOL, Grau C. A multidimensional cohort study of late toxicity after intensity modulated radiotherapy for sinonasal cancer. Radiother Oncol 2020; 151:58-65. [PMID: 32697945 DOI: 10.1016/j.radonc.2020.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE To evaluate the occurrence of late toxicity after curatively intended intensity modulated radiotherapy (IMRT) for sinonasal cancer and assess dose-response associations. METHODS Patients treated with IMRT in 2008-2016 were included. Cross sectional examinations of toxicity from the optic pathway, the brain, the pituitary gland and the nose were performed along with quality of life - (QoL) and dose-response analyses. RESULTS Twenty-seven patients were enrolled; median age was 67 years (range 47-83). Five patients (19%) had radiation-related ocular toxicity. The risk of visual acuity impairment increased with increasing dose (grade 2 odds ration (OR) 1.12, p = 0.01; grade 3 OR 1.14, p = 0.02) and dose constraint violations (grade 2, OR = 21, p < 0.01; grade 3, OR = 41, p < 0.01). Six patients (22%) exhibited evidence of radiation-related hypopituitarism, but no dose-response association was detected. Seventeen patients (63%) had impaired olfactory function. The risk of olfactory impairment increased with higher stage (OR = 3.32, p = 0.03). Three patients (11%) had structural abnormalities in irradiated areas of the brain, and impaired cognitive function was present in 17 patients (63%). Cognitive, physical, role functioning as well as fatigue and insomnia were affected the most in QOL analyses. Fifteen patients (56%) had grade 2 radiation-related impairment in at least one organ. Grade 3 toxicity was only present in patients with toxicities in >3 organs and in patients initially treated for T4 tumours. Three patients (11%) had radiation-related impaired function in all examined OARs. CONCLUSION Late toxicity after radiotherapy was substantial in all examined organs, with dose-response associations between visual acuity impairment and the optic nerve. The results have led to changed praxis for follow-up examinations in Denmark.
Collapse
Affiliation(s)
| | - Kenneth Jensen
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Steen Fiil Urbak
- Department of Ophthalmology, Aarhus University Hospital, Denmark
| | - Mikkel Funding
- Department of Ophthalmology, Aarhus University Hospital, Denmark
| | | | - Dorte Bechtold
- Department of Ophthalmology, Odense University Hospital, Denmark
| | - Ali Amidi
- Unit for Psychooncology and Health Psychology, Department of Psychology, Aarhus University, Denmark
| | | | | | - Cai Grau
- Department of Oncology, Aarhus University Hospital, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| |
Collapse
|
25
|
Wu G, Li RR, Balasubramanian PS, Li MM, Yang K, Huang WY, Chen F. Temporal lobe microstructural abnormalities in patients with nasopharyngeal carcinoma quantitatively evaluated by high-resolution DWI and DKI after concurrent chemoradiotherapy. Clin Transl Radiat Oncol 2019; 21:36-43. [PMID: 31970294 PMCID: PMC6965203 DOI: 10.1016/j.ctro.2019.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
DKI could detect early radiation-induced microstructural abnormalities after CCRT. The ADC, Dmean, and FA of temporal lobe showed a unique time-dependent trajectory. Kmean might be more sensitive to detection of effects in the late delayed phases. White and grey matter all underwent microstructural changes after radiotherapy.
Purpose To investigate temporal lobe microstructural abnormalities and neurocognitive function impairment after concurrent chemoradiotherapy (CCRT) in patients with nasopharyngeal carcinoma (NPC). Methods NPC patients who underwent CCRT were enrolled. High-resolution diffusion-weighted imaging (DWI) magnetic resonance imaging (MRI) and diffusion-kurtosis imaging (DKI) MRI, were performed 5 times per patient (once pre-CCRT, 1 week post-CCRT, 3 months post-CCRT, 6 months post-CCRT, and 12 months post-CCRT). Neurocognitive function was evaluated by Montreal Neurocognitive Assessment (MoCA) twice per patient, once pre-CCRT, and once 12-months after CCRT. Results Of 111 patients, 56 completed the entire protocol. The MRI derived apparent diffusion coefficient (ADC), mean of diffusion coefficient (Dmean) and fractional anisotropy (FA) values were significantly decreased (p < 0.05) over the 0–3 month period following CCRT and significantly increased (p < 0.05) over the 3–12 month period following CCRT. The mean of kurtosis coefficient (Kmean) continued to decline over a year post-CCRT. All parameters reveal more pronounced changes in white matter (WM) than in grey matter (GM). MoCA also declined after CCRT (p < 0.001). MoCA showed significant positive correlation with Kmean-WM-6 m, Kmean-WM-12 m and ΔKmean-WM. Conclusions High-resolution DWI and DKI should be considered as a promising method for the investigation of temporal lobe microstructural change in NPC patients after CCRT.
Collapse
Affiliation(s)
- Gang Wu
- Department of Radiation Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Rui-Rui Li
- Department of Radiology, Hainan Hospital of Hainan Medical College (Hainan General Hospital), Haikou, China
| | | | - Meng-Meng Li
- Department of Research and Education, Hainan Hospital of Hainan Medical College (Hainan General Hospital), Haikou, China
| | - Kai Yang
- Department of Radiology, Hainan Hospital of Hainan Medical College (Hainan General Hospital), Haikou, China
| | - Wei-Yuan Huang
- Department of Radiology, Hainan Hospital of Hainan Medical College (Hainan General Hospital), Haikou, China.,Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Feng Chen
- Department of Radiology, Hainan Hospital of Hainan Medical College (Hainan General Hospital), Haikou, China
| |
Collapse
|
26
|
Yang Y, Lin X, Li J, Han L, Li Z, Liu S, Hou G, Xie C, Lv X, Qiu Y. Aberrant Brain Activity at Early Delay Stage Post-radiotherapy as a Biomarker for Predicting Neurocognitive Dysfunction Late-Delayed in Patients With Nasopharyngeal Carcinoma. Front Neurol 2019; 10:752. [PMID: 31379710 PMCID: PMC6660255 DOI: 10.3389/fneur.2019.00752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Increasing evidence indicates that early radiation-induced subtle cerebral changes may be the precursors to permanent brain dysfunction at the late-delayed (LDS) post-radiotherapy (RT) stage. In this study, we aim to track the RT-related longitudinal brain activity in nasopharyngeal carcinoma (NPC) patients and to determine whether early abnormal brain activity can predict late neurocognitive dysfunction after RT. Methods: Thirty-three NPC patients were finally included and longitudinally followed up at the following time points: prior to treatment initiation, early-delayed stage (EDS, 1-3 months), and LDS (six months) after RT. Fifteen comparable healthy controls (HCs) were finally included and followed up in parallel. Montreal Cognitive Assessment (MoCA) was used to assess the general cognitive function. Brain activity was recorded via resting-state fMRI and regional homogeneity (ReHo). A whole-brain voxel-wise-based one-way repeated-measure analysis of variance (ANOVA) was conducted to evaluate the longitudinal ReHo changes among the three time points for NPC patients and HCs, respectively. Results were reported at the significant level of a threshold of two-tailed voxel-wise P < 0.01 and cluster level P < 0.05 with Gaussian Random Field (GRF) correction. Finally, the efficacies of the aberrant ReHo at EDS for predicting the cognitive impairment at LDS in NPC patients were evaluated. Results: Significant differences were detected in ReHo among the three time points in NPC patients but not in HCs. Aberrant ReHo was distributed in the bilateral cerebellum, the right temporal lobe, and the left insular areas, which showed different dynamic changes patterns over time. Logistic regression model combining the mean ReHo, age, and irradiation dose on the bilateral temporal lobe had the highest diagnostic efficiency according to the area under the curve (AUC) score (AUC = 0.752, P = 0.023). Conclusions: The post-RT brain activity revealed by ReHo in NPC patients was dynamic, complex, and multifactorial. Furthermore, the combination of the aberrant ReHo at EDS, age, and irradiation dose may serve as a potential biomarker of the RT-induced cognitive impairments at LDS.
Collapse
Affiliation(s)
- Yadi Yang
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiaoshan Lin
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Lujun Han
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zhipeng Li
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Shiliang Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Gangqiang Hou
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Chuanmiao Xie
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiaofei Lv
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yingwei Qiu
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
Zhang Y, Yi X, Gao J, Li L, Liu L, Qiu T, Zhang J, Zhang Y, Liao W. Chemotherapy Potentially Facilitates the Occurrence of Radiation Encephalopathy in Patients With Nasopharyngeal Carcinoma Following Radiotherapy: A Multiparametric Magnetic Resonance Imaging Study. Front Oncol 2019; 9:567. [PMID: 31334108 PMCID: PMC6618298 DOI: 10.3389/fonc.2019.00567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Radiation encephalopathy (RE) is deemed to be a disease induced only by radiotherapy (RT), with the effects of chemotherapeutic agents on the brains of nasopharyngeal carcinoma (NPC) patients being largely overlooked. In this study, we investigated structural and functional brain alterations in NPC patients following RT with or without chemotherapy. Fifty-six pre-RT, 37 post-RT, and 108 post-CCRT (concomitant chemo-radiotherapy) NPC patients were enrolled in this study. A surface-based local gyrification index (LGI) was obtained from high resolution MRI and was used to evaluate between-group differences in cortical folding. Seed-based functional connectivity (FC) analysis of resting-state fMRI data was also conducted to investigate the functional significance of the cortical folding alterations. Compared with the Pre-RT group, patients in the Post-CCRT group showed LGI reductions in widespread brain regions including the bilateral temporal lobes, insula, frontal lobes, and parietal lobes. Compared with the Post-RT group, patients in the Post-CCRT group showed LGI reductions in the right insula, which extended to the adjacent frontal lobe. Seed-based FC analysis showed that patients in the Post-CCRT group had lower FC between the insula and the left middle frontal gyrus than patients in the Pre-RT group. The follow-up results showed that patients in the Post-CCRT group had a much higher RE incidence rate (20.4%) than patients in the Post-RT group (2.7%; P = 0.01). These findings indicate that chemotherapy potentially facilitated the occurrence of RE in NPC patients who underwent radiotherapy.
Collapse
Affiliation(s)
- Youming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianming Gao
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Imaging Diagnosis and Interventional Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lizhi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Imaging Diagnosis and Interventional Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ting Qiu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinlei Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|