1
|
Harkos C, Hadjigeorgiou AG, Voutouri C, Kumar AS, Stylianopoulos T, Jain RK. Using mathematical modelling and AI to improve delivery and efficacy of therapies in cancer. Nat Rev Cancer 2025; 25:324-340. [PMID: 39972158 DOI: 10.1038/s41568-025-00796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 02/21/2025]
Abstract
Mathematical modelling has proven to be a valuable tool in predicting the delivery and efficacy of molecular, antibody-based, nano and cellular therapy in solid tumours. Mathematical models based on our understanding of the biological processes at subcellular, cellular and tissue level are known as mechanistic models that, in turn, are divided into continuous and discrete models. Continuous models are further divided into lumped parameter models - for describing the temporal distribution of medicine in tumours and normal organs - and distributed parameter models - for studying the spatiotemporal distribution of therapy in tumours. Discrete models capture interactions at the cellular and subcellular levels. Collectively, these models are useful for optimizing the delivery and efficacy of molecular, nanoscale and cellular therapy in tumours by incorporating the biological characteristics of tumours, the physicochemical properties of drugs, the interactions among drugs, cancer cells and various components of the tumour microenvironment, and for enabling patient-specific predictions when combined with medical imaging. Artificial intelligence-based methods, such as machine learning, have ushered in a new era in oncology. These data-driven approaches complement mechanistic models and have immense potential for improving cancer detection, treatment and drug discovery. Here we review these diverse approaches and suggest ways to combine mechanistic and artificial intelligence-based models to further improve patient treatment outcomes.
Collapse
Affiliation(s)
- Constantinos Harkos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Andreas G Hadjigeorgiou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Ashwin S Kumar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Arshadi S, Pishevar A, Javanbakht M, Javanmard SH. Chemotaxis effects on the vascular tumor growth: Phase-field model and simulations. Math Biosci 2025; 380:109366. [PMID: 39681157 DOI: 10.1016/j.mbs.2024.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
In this paper, we propose a vascular tumor growth model that combines a phase-field tumor model with a phase-field angiogenesis model. By incorporating various tumor cell species, we capture the instabilities of the tumor in the presence of evolving neovasculature. The model not only considers different dynamics of tumor cell phase conversions, movement, and pressure effects but also provides a comprehensive representation of angiogenesis, encompassing chemotaxis of endothelial cells, sprouting, anastomoses, and blood flow in capillaries. This study evaluates the impact of chemotaxis on tumor cell movement in both avascular and vascular tumor growth scenarios. The results highlight the acceleration of tumor growth when angiogenesis is stimulated. Additionally, the investigation explores various initial distances of the tumor from neighboring vessels, revealing a critical threshold distance beyond which the angiogenesis factor fails to stimulate angiogenesis, resulting in the tumor maintaining a stable state. The integration of chemotaxis into the growth model induces instabilities, leading to increased nutrient availability and faster growth for the tumor. Furthermore, the study considers anti-angiogenesis therapy as an ideal approach, assuming complete inhibition of angiogenesis from the early stages. In this scenario, the tumor persists in a steady state, adhering to the avascular size limit in the absence of neovasculature. Conversely, when considering chemotaxis, anti-angiogenesis therapy loses efficiency, enabling unrestrained tumor growth towards neighboring vessels. This work sheds light on the intricate interplay among chemotaxis, angiogenesis, and anti-angiogenesis therapy in the context of vascular tumor growth, providing valuable insights for the development of targeted treatment strategies.
Collapse
Affiliation(s)
- Soroosh Arshadi
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ahmadreza Pishevar
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mahdi Javanbakht
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Rey JA, Spanick KG, Cabral G, Rivera-Santiago IN, Nagaraja TN, Brown SL, Ewing JR, Sarntinoranont M. Heterogeneous Mechanical Stress and Interstitial Fluid Flow Predictions Derived from DCE-MRI for Rat U251N Orthotopic Gliomas. Ann Biomed Eng 2024; 52:3053-3066. [PMID: 39048699 DOI: 10.1007/s10439-024-03569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Mechanical stress and fluid flow influence glioma cell phenotype in vitro, but measuring these quantities in vivo continues to be challenging. The purpose of this study was to predict these quantities in vivo, thus providing insight into glioma physiology and potential mechanical biomarkers that may improve glioma detection, diagnosis, and treatment. Image-based finite element models of human U251N orthotopic glioma in athymic rats were developed to predict structural stress and interstitial flow in and around each animal's tumor. In addition to accounting for structural stress caused by tumor growth, our approach has the advantage of capturing fluid pressure-induced structural stress, which was informed by in vivo interstitial fluid pressure (IFP) measurements. Because gliomas and the brain are soft, elevated IFP contributed substantially to tumor structural stress, even inverting this stress from compressive to tensile in the most compliant cases. The combination of tumor growth and elevated IFP resulted in a concentration of structural stress near the tumor boundary where it has the greatest potential to influence cell proliferation and invasion. MRI-derived anatomical geometries and tissue property distributions resulted in heterogeneous interstitial fluid flow with local maxima near cerebrospinal fluid spaces, which may promote tumor invasion and hinder drug delivery. In addition, predicted structural stress and interstitial flow varied markedly between irradiated and radiation-naïve animals. Our modeling suggests that relative to tumors in stiffer tissues, gliomas experience unusual mechanical conditions with potentially important biological (e.g., proliferation and invasion) and clinical consequences (e.g., drug delivery and treatment monitoring).
Collapse
Affiliation(s)
- Julian A Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, 497 Wertheim, PO Box 116250, Gainesville, FL, 32611, USA
| | | | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Isabel N Rivera-Santiago
- Department of Mechanical and Aerospace Engineering, University of Florida, 497 Wertheim, PO Box 116250, Gainesville, FL, 32611, USA
| | - Tavarekere N Nagaraja
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Stephen L Brown
- Department of Radiology, Michigan State University, East Lansing, MI, USA
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, USA
| | - James R Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, 497 Wertheim, PO Box 116250, Gainesville, FL, 32611, USA.
| |
Collapse
|
4
|
Lorenzo G, Ahmed SR, Hormuth DA, Vaughn B, Kalpathy-Cramer J, Solorio L, Yankeelov TE, Gomez H. Patient-Specific, Mechanistic Models of Tumor Growth Incorporating Artificial Intelligence and Big Data. Annu Rev Biomed Eng 2024; 26:529-560. [PMID: 38594947 DOI: 10.1146/annurev-bioeng-081623-025834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Despite the remarkable advances in cancer diagnosis, treatment, and management over the past decade, malignant tumors remain a major public health problem. Further progress in combating cancer may be enabled by personalizing the delivery of therapies according to the predicted response for each individual patient. The design of personalized therapies requires the integration of patient-specific information with an appropriate mathematical model of tumor response. A fundamental barrier to realizing this paradigm is the current lack of a rigorous yet practical mathematical theory of tumor initiation, development, invasion, and response to therapy. We begin this review with an overview of different approaches to modeling tumor growth and treatment, including mechanistic as well as data-driven models based on big data and artificial intelligence. We then present illustrative examples of mathematical models manifesting their utility and discuss the limitations of stand-alone mechanistic and data-driven models. We then discuss the potential of mechanistic models for not only predicting but also optimizing response to therapy on a patient-specific basis. We describe current efforts and future possibilities to integrate mechanistic and data-driven models. We conclude by proposing five fundamental challenges that must be addressed to fully realize personalized care for cancer patients driven by computational models.
Collapse
Affiliation(s)
- Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Syed Rakin Ahmed
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard Graduate Program in Biophysics, Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David A Hormuth
- Livestrong Cancer Institutes, University of Texas, Austin, Texas, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
| | - Brenna Vaughn
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | | | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Thomas E Yankeelov
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, Texas, USA
- Department of Biomedical Engineering, Department of Oncology, and Department of Diagnostic Medicine, University of Texas, Austin, Texas, USA
- Livestrong Cancer Institutes, University of Texas, Austin, Texas, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
| | - Hector Gomez
- School of Mechanical Engineering and Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| |
Collapse
|
5
|
Harkos C, Stylianopoulos T. Investigating the synergistic effects of immunotherapy and normalization treatment in modulating tumor microenvironment and enhancing treatment efficacy. J Theor Biol 2024; 583:111768. [PMID: 38401748 DOI: 10.1016/j.jtbi.2024.111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
We developed a comprehensive mathematical model of cancer immunotherapy that takes into account: i) Immune checkpoint blockers (ICBs) and the interactions between cancer cells and the immune system, ii) characteristics of the tumor microenvironment, such as the tumor hydraulic conductivity, interstitial fluid pressure, and vascular permeability, iii) spatial and temporal variations of the modeled components within the tumor and the surrounding host tissue, iv) the transport of modeled components through the vasculature and between the tumor-host tissue with convection and diffusion, and v) modeling of the tumor draining lymph nodes were the antigen presentation and the development of cytotoxic immune cells take place. Our model successfully reproduced experimental data from various murine tumor types and predicted immune system profiling, which is challenging to achieve experimentally. It showed that combination of ICB therapy and normalization treatments, that aim to improve tumor perfusion, decreases interstitial fluid pressure and increases the concentration of both innate and adaptive immune cells at the tumor center rather than the periphery. Furthermore, using the model, we investigated the impact of modeled components on treatment outcomes. The analysis found that the number of functional vessels inside the tumor region and the ICB dose administered have the largest impact on treatment outcomes.
Collapse
Affiliation(s)
- Constantinos Harkos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
6
|
Wang R, Bashyam V, Yang Z, Yu F, Tassopoulou V, Chintapalli SS, Skampardoni I, Sreepada LP, Sahoo D, Nikita K, Abdulkadir A, Wen J, Davatzikos C. Applications of generative adversarial networks in neuroimaging and clinical neuroscience. Neuroimage 2023; 269:119898. [PMID: 36702211 PMCID: PMC9992336 DOI: 10.1016/j.neuroimage.2023.119898] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/16/2022] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Generative adversarial networks (GANs) are one powerful type of deep learning models that have been successfully utilized in numerous fields. They belong to the broader family of generative methods, which learn to generate realistic data with a probabilistic model by learning distributions from real samples. In the clinical context, GANs have shown enhanced capabilities in capturing spatially complex, nonlinear, and potentially subtle disease effects compared to traditional generative methods. This review critically appraises the existing literature on the applications of GANs in imaging studies of various neurological conditions, including Alzheimer's disease, brain tumors, brain aging, and multiple sclerosis. We provide an intuitive explanation of various GAN methods for each application and further discuss the main challenges, open questions, and promising future directions of leveraging GANs in neuroimaging. We aim to bridge the gap between advanced deep learning methods and neurology research by highlighting how GANs can be leveraged to support clinical decision making and contribute to a better understanding of the structural and functional patterns of brain diseases.
Collapse
Affiliation(s)
- Rongguang Wang
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA.
| | - Vishnu Bashyam
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Zhijian Yang
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Fanyang Yu
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Vasiliki Tassopoulou
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Sai Spandana Chintapalli
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Ioanna Skampardoni
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA; School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Lasya P Sreepada
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Dushyant Sahoo
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Konstantina Nikita
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Ahmed Abdulkadir
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA; Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Junhao Wen
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Christos Davatzikos
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
7
|
Urcun S, Baroli D, Rohan PY, Skalli W, Lubrano V, Bordas SP, Sciumè G. Non-operable glioblastoma: Proposition of patient-specific forecasting by image-informed poromechanical model. BRAIN MULTIPHYSICS 2023. [DOI: 10.1016/j.brain.2023.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
8
|
Jørgensen ACS, Hill CS, Sturrock M, Tang W, Karamched SR, Gorup D, Lythgoe MF, Parrinello S, Marguerat S, Shahrezaei V. Data-driven spatio-temporal modelling of glioblastoma. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221444. [PMID: 36968241 PMCID: PMC10031411 DOI: 10.1098/rsos.221444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we summarize the scope, drawbacks and assets. We highlight the potential clinical applications of each modelling technique and discuss the connections between the mathematical models and the molecular and imaging data used to inform them. By doing so, we aim to prime cancer researchers with current and emerging computational tools for understanding tumour progression. By providing an in-depth picture of the different modelling techniques, we also aim to assist researchers who seek to build and develop their own models and the associated inference frameworks. Our article thus strikes a unique balance. On the one hand, we provide a comprehensive overview of the available modelling techniques and their applications, including key mathematical expressions. On the other hand, the content is accessible to mathematicians and biomedical scientists alike to accommodate the interdisciplinary nature of cancer research.
Collapse
Affiliation(s)
| | - Ciaran Scott Hill
- Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Marc Sturrock
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Wenhao Tang
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Saketh R. Karamched
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London (UCL), London WC1E 6BT, UK
| | - Dunja Gorup
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London (UCL), London WC1E 6BT, UK
| | - Mark F. Lythgoe
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London (UCL), London WC1E 6BT, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Samuel Marguerat
- Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
9
|
Static-Dynamic coordinated Transformer for Tumor Longitudinal Growth Prediction. Comput Biol Med 2022; 148:105922. [DOI: 10.1016/j.compbiomed.2022.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/18/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022]
|
10
|
Coupling solid and fluid stresses with brain tumour growth and white matter tract deformations in a neuroimaging-informed model. Biomech Model Mechanobiol 2022; 21:1483-1509. [PMID: 35908096 PMCID: PMC9626445 DOI: 10.1007/s10237-022-01602-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/17/2022] [Indexed: 11/29/2022]
Abstract
Brain tumours are among the deadliest types of cancer, since they display a strong ability to invade the surrounding tissues and an extensive resistance to common therapeutic treatments. It is therefore important to reproduce the heterogeneity of brain microstructure through mathematical and computational models, that can provide powerful instruments to investigate cancer progression. However, only a few models include a proper mechanical and constitutive description of brain tissue, which instead may be relevant to predict the progression of the pathology and to analyse the reorganization of healthy tissues occurring during tumour growth and, possibly, after surgical resection. Motivated by the need to enrich the description of brain cancer growth through mechanics, in this paper we present a mathematical multiphase model that explicitly includes brain hyperelasticity. We find that our mechanical description allows to evaluate the impact of the growing tumour mass on the surrounding healthy tissue, quantifying the displacements, deformations, and stresses induced by its proliferation. At the same time, the knowledge of the mechanical variables may be used to model the stress-induced inhibition of growth, as well as to properly modify the preferential directions of white matter tracts as a consequence of deformations caused by the tumour. Finally, the simulations of our model are implemented in a personalized framework, which allows to incorporate the realistic brain geometry, the patient-specific diffusion and permeability tensors reconstructed from imaging data and to modify them as a consequence of the mechanical deformation due to cancer growth.
Collapse
|
11
|
de Melo Quintela B, Hervas-Raluy S, Manuel Garcia Aznar J, Walker D, Wertheim KY, Viceconti M. A Theoretical Analysis of the Scale Separation in a Model to Predict Solid Tumour Growth. J Theor Biol 2022; 547:111173. [DOI: 10.1016/j.jtbi.2022.111173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/27/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022]
|
12
|
Fekonja LS, Wang Z, Cacciola A, Roine T, Aydogan DB, Mewes D, Vellmer S, Vajkoczy P, Picht T. Network analysis shows decreased ipsilesional structural connectivity in glioma patients. Commun Biol 2022; 5:258. [PMID: 35322812 PMCID: PMC8943189 DOI: 10.1038/s42003-022-03190-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Gliomas that infiltrate networks and systems, such as the motor system, often lead to substantial functional impairment in multiple systems. Network-based statistics (NBS) allow to assess local network differences and graph theoretical analyses enable investigation of global and local network properties. Here, we used network measures to characterize glioma-related decreases in structural connectivity by comparing the ipsi- with the contralesional hemispheres of patients and correlated findings with neurological assessment. We found that lesion location resulted in differential impairment of both short and long connectivity patterns. Network analysis showed reduced global and local efficiency in the ipsilesional hemisphere compared to the contralesional hemispheric networks, which reflect the impairment of information transfer across different regions of a network. Tumors and their location distinctly alter both local and global brain connectivity within the ipsilesional hemisphere of glioma patients.
Collapse
Affiliation(s)
- Lucius S Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany.
| | - Ziqian Wang
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Timo Roine
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - D Baran Aydogan
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Department of Psychiatry, Helsinki University and Helsinki University Hospital, Helsinki, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Darius Mewes
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Vellmer
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| |
Collapse
|
13
|
Harkos C, Svensson SF, Emblem KE, Stylianopoulos T. Inducing Biomechanical Heterogeneity in Brain Tumor Modeling by MR Elastography: Effects on Tumor Growth, Vascular Density and Delivery of Therapeutics. Cancers (Basel) 2022; 14:cancers14040884. [PMID: 35205632 PMCID: PMC8870149 DOI: 10.3390/cancers14040884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Biomechanical forces aggravate brain tumor progression. In this study, magnetic resonance elastography (MRE) is employed to extract tissue biomechanical properties from five glioblastoma patients and a healthy subject, and data are incorporated in a mathematical model that simulates tumor growth. Mathematical modeling enables further understanding of glioblastoma development and allows patient-specific predictions for tumor vascularity and delivery of drugs. Incorporating MRE data results in a more realistic intratumoral distribution of mechanical stress and anisotropic tumor growth and a better description of subsequent events that are closely related to the development of stresses, including heterogeneity of the tumor vasculature and intrapatient variations in tumor perfusion and delivery of drugs. Abstract The purpose of this study is to develop a methodology that incorporates a more accurate assessment of tissue mechanical properties compared to current mathematical modeling by use of biomechanical data from magnetic resonance elastography. The elastography data were derived from five glioblastoma patients and a healthy subject and used in a model that simulates tumor growth, vascular changes due to mechanical stresses and delivery of therapeutic agents. The model investigates the effect of tumor-specific biomechanical properties on tumor anisotropic growth, vascular density heterogeneity and chemotherapy delivery. The results showed that including elastography data provides a more realistic distribution of the mechanical stresses in the tumor and induces anisotropic tumor growth. Solid stress distribution differs among patients, which, in turn, induces a distinct functional vascular density distribution—owing to the compression of tumor vessels—and intratumoral drug distribution for each patient. In conclusion, incorporating elastography data results in a more accurate calculation of intratumoral mechanical stresses and enables a better mathematical description of subsequent events, such as the heterogeneous development of the tumor vasculature and intrapatient variations in tumor perfusion and delivery of drugs.
Collapse
Affiliation(s)
- Constantinos Harkos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus;
| | - Siri Fløgstad Svensson
- Division of Radiology and Nuclear Medicine, Department of Diagnostic Physics, Oslo University Hospital, 0372 Oslo, Norway; (S.F.S.); (K.E.E.)
- Department of Physics, The Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Kyrre E. Emblem
- Division of Radiology and Nuclear Medicine, Department of Diagnostic Physics, Oslo University Hospital, 0372 Oslo, Norway; (S.F.S.); (K.E.E.)
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus;
- Correspondence:
| |
Collapse
|
14
|
Rey JA, Ewing JR, Sarntinoranont M. A computational model of glioma reveals opposing, stiffness-sensitive effects of leaky vasculature and tumor growth on tissue mechanical stress and porosity. Biomech Model Mechanobiol 2021; 20:1981-2000. [PMID: 34363553 DOI: 10.1007/s10237-021-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
A biphasic computational model of a growing, vascularized glioma within brain tissue was developed to account for unique features of gliomas, including soft surrounding brain tissue, their low stiffness relative to brain tissue, and a lack of draining lymphatics. This model is the first to couple nonlinear tissue deformation with porosity and tissue hydraulic conductivity to study the mechanical interaction of leaky vasculature and solid growth in an embedded glioma. The present model showed that leaky vasculature and elevated interstitial fluid pressure produce tensile stress within the tumor in opposition to the compressive stress produced by tumor growth. This tensile effect was more pronounced in softer tissue and resulted in a compressive stress concentration at the tumor rim that increased when tumor was softer than host. Aside from generating solid stress, fluid pressure-driven tissue deformation decreased the effective stiffness of the tumor while growth increased it, potentially leading to elevated stiffness in the tumor rim. A novel prediction of reduced porosity at the tumor rim was corroborated by direct comparison with estimates from our in vivo imaging studies. Antiangiogenic and radiation therapy were simulated by varying vascular leakiness and tissue hydraulic conductivity. These led to greater solid compression and interstitial pressure in the tumor, respectively, the former of which may promote tumor infiltration of the host. Our findings suggest that vascular leakiness has an important influence on in vivo solid stress, stiffness, and porosity fields in gliomas given their unique mechanical microenvironment.
Collapse
Affiliation(s)
- Julian A Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, PO BOX 116250, Gainesville, FL, 32611, USA
| | - James R Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, PO BOX 116250, Gainesville, FL, 32611, USA.
| |
Collapse
|
15
|
Nagaraja TN, Elmghirbi R, Brown SL, Rey JA, Schultz L, Mukherjee A, Cabral G, Panda S, Lee IY, Sarntinoranont M, Keenan KA, Knight RA, Ewing JR. Imaging acute effects of bevacizumab on tumor vascular kinetics in a preclinical orthotopic model of U251 glioma. NMR IN BIOMEDICINE 2021; 34:e4516. [PMID: 33817893 PMCID: PMC8978145 DOI: 10.1002/nbm.4516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 05/05/2023]
Abstract
The effect of a human vascular endothelial growth factor antibody on the vasculature of human tumor grown in rat brain was studied. Using dynamic contrast-enhanced magnetic resonance imaging, the effects of intravenous bevacizumab (Avastin; 10 mg/kg) were examined before and at postadministration times of 1, 2, 4, 8, 12 and 24 h (N = 26; 4-5 per time point) in a rat model of orthotopic, U251 glioblastoma (GBM). The commonly estimated vascular parameters for an MR contrast agent were: (i) plasma distribution volume (vp ), (ii) forward volumetric transfer constant (Ktrans ) and (iii) reverse transfer constant (kep ). In addition, extracellular distribution volume (VD ) was estimated in the tumor (VD-tumor ), tumor edge (VD-edge ) and the mostly normal tumor periphery (VD-peri ), along with tumor blood flow (TBF), peri-tumoral hydraulic conductivity (K) and interstitial flow (Flux) and tumor interstitial fluid pressure (TIFP). Studied as % changes from baseline, the 2-h post-treatment time point began showing significant decreases in vp , VD-tumor, VD-edge and VD-peri , as well as K, with these changes persisting at 4 and 8 h in vp , K, VD-tumor, -edge and -peri (t-tests; p < 0.05-0.01). Decreases in Ktrans were observed at the 2- and 4-h time points (p < 0.05), while interstitial volume fraction (ve ; = Ktrans /kep ) showed a significant decrease only at the 2-h time point (p < 0.05). Sustained decreases in Flux were observed from 2 to 24 h (p < 0.01) while TBF and TIFP showed delayed responses, increases in the former at 12 and 24 h and a decrease in the latter only at 12 h. These imaging biomarkers of tumor vascular kinetics describe the short-term temporal changes in physical spaces and fluid flows in a model of GBM after Avastin administration.
Collapse
Affiliation(s)
| | - Rasha Elmghirbi
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Julian A. Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Lonni Schultz
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Abir Mukherjee
- Department of Pathology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Swayamprava Panda
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ian Y. Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Kelly A. Keenan
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Robert A. Knight
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - James R. Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
16
|
Falco J, Agosti A, Vetrano IG, Bizzi A, Restelli F, Broggi M, Schiariti M, DiMeco F, Ferroli P, Ciarletta P, Acerbi F. In Silico Mathematical Modelling for Glioblastoma: A Critical Review and a Patient-Specific Case. J Clin Med 2021; 10:2169. [PMID: 34067871 PMCID: PMC8156762 DOI: 10.3390/jcm10102169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/24/2021] [Accepted: 05/14/2021] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma extensively infiltrates the brain; despite surgery and aggressive therapies, the prognosis is poor. A multidisciplinary approach combining mathematical, clinical and radiological data has the potential to foster our understanding of glioblastoma evolution in every single patient, with the aim of tailoring therapeutic weapons. In particular, the ultimate goal of biomathematics for cancer is the identification of the most suitable theoretical models and simulation tools, both to describe the biological complexity of carcinogenesis and to predict tumor evolution. In this report, we describe the results of a critical review about different mathematical models in neuro-oncology with their clinical implications. A comprehensive literature search and review for English-language articles concerning mathematical modelling in glioblastoma has been conducted. The review explored the different proposed models, classifying them and indicating the significative advances of each one. Furthermore, we present a specific case of a glioblastoma patient in which our recently proposed innovative mechanical model has been applied. The results of the mathematical models have the potential to provide a relevant benefit for clinicians and, more importantly, they might drive progress towards improving tumor control and patient's prognosis. Further prospective comparative trials, however, are still necessary to prove the impact of mathematical neuro-oncology in clinical practice.
Collapse
Affiliation(s)
- Jacopo Falco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (J.F.); (I.G.V.); (F.R.); (M.B.); (M.S.); (F.D.); (P.F.)
| | - Abramo Agosti
- MOX, Department of Mathematics, Politecnico di Milano, 20133 Milan, Italy; (A.A.); (P.C.)
| | - Ignazio G. Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (J.F.); (I.G.V.); (F.R.); (M.B.); (M.S.); (F.D.); (P.F.)
| | - Alberto Bizzi
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Francesco Restelli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (J.F.); (I.G.V.); (F.R.); (M.B.); (M.S.); (F.D.); (P.F.)
| | - Morgan Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (J.F.); (I.G.V.); (F.R.); (M.B.); (M.S.); (F.D.); (P.F.)
| | - Marco Schiariti
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (J.F.); (I.G.V.); (F.R.); (M.B.); (M.S.); (F.D.); (P.F.)
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (J.F.); (I.G.V.); (F.R.); (M.B.); (M.S.); (F.D.); (P.F.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- Department of Neurological Surgery, Johns Hopkins Medical School, Baltimora, MD 21205, USA
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (J.F.); (I.G.V.); (F.R.); (M.B.); (M.S.); (F.D.); (P.F.)
| | - Pasquale Ciarletta
- MOX, Department of Mathematics, Politecnico di Milano, 20133 Milan, Italy; (A.A.); (P.C.)
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (J.F.); (I.G.V.); (F.R.); (M.B.); (M.S.); (F.D.); (P.F.)
| |
Collapse
|
17
|
Knobe S, Dzierma Y, Wenske M, Berdel C, Fleckenstein J, Melchior P, Palm J, Nuesken FG, Hunt A, Engwer C, Surulescu C, Yilmaz U, Reith W, Rübe C. Feasibility and clinical usefulness of modelling glioblastoma migration in adjuvant radiotherapy. Z Med Phys 2021; 32:149-158. [PMID: 33966944 PMCID: PMC9948823 DOI: 10.1016/j.zemedi.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is one of the most common primary brain tumours in adults, with a dismal prognosis despite aggressive multimodality treatment by a combination of surgery and adjuvant radiochemotherapy. A detailed knowledge of the spreading of glioma cells in the brain might allow for more targeted escalated radiotherapy, aiming to reduce locoregional relapse. Recent years have seen the development of a large variety of mathematical modelling approaches to predict glioma migration. The aim of this study is hence to evaluate the clinical applicability of a detailed micro- and meso-scale mathematical model in radiotherapy. First and foremost, a clinical workflow is established, in which the tumour is automatically segmented as input data and then followed in time mathematically based on the diffusion tensor imaging data. The influence of several free model parameters is individually evaluated, then the full model is retrospectively validated for a collective of 3 GBM patients treated at our institution by varying the most important model parameters to achieve optimum agreement with the tumour development during follow-up. Agreement of the model predictions with the real tumour growth as defined by manual contouring based on the follow-up MRI images is analyzed using the dice coefficient. The tumour evolution over 103-212 days follow-up could be predicted by the model with a dice coefficient better than 60% for all three patients. In all cases, the final tumour volume was overestimated by the model by a factor between 1.05 and 1.47. To evaluate the quality of the agreement between the model predictions and the ground truth, we must keep in mind that our gold standard relies on a single observer's (CB) manually-delineated tumour contours. We therefore decided to add a short validation of the stability and reliability of these contours by an inter-observer analysis including three other experienced radiation oncologists from our department. In total, a dice coefficient between 63% and 89% is achieved between the four different observers. Compared with this value, the model predictions (62-66%) perform reasonably well, given the fact that these tumour volumes were created based on the pre-operative segmentation and DTI.
Collapse
Affiliation(s)
- Sven Knobe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany.
| | - Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Michael Wenske
- Institute for Analysis and Numerics, University of Muenster, Muenster, Germany
| | - Christian Berdel
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Jochen Fleckenstein
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Patrick Melchior
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Jan Palm
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Frank G. Nuesken
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | | | - Christian Engwer
- Institute for Analysis and Numerics, University of Muenster, Muenster, Germany
| | - Christina Surulescu
- Felix Klein Centre for Mathematics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Umut Yilmaz
- Department of Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Wolfgang Reith
- Department of Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Christian Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
18
|
D'Souza S, Hirt L, Ormond DR, Thompson JA. Retrospective analysis of hemispheric structural network change as a function of location and size of glioma. Brain Commun 2021; 3:fcaa216. [PMID: 33501423 PMCID: PMC7811759 DOI: 10.1093/braincomms/fcaa216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
Gliomas are neoplasms that arise from glial cell origin and represent the largest fraction of primary malignant brain tumours (77%). These highly infiltrative malignant cell clusters modify brain structure and function through expansion, invasion and intratumoral modification. Depending on the growth rate of the tumour, location and degree of expansion, functional reorganization may not lead to overt changes in behaviour despite significant cerebral adaptation. Studies in simulated lesion models and in patients with stroke reveal both local and distal functional disturbances, using measures of anatomical brain networks. Investigations over the last two decades have sought to use diffusion tensor imaging tractography data in the context of intracranial tumours to improve surgical planning, intraoperative functional localization, and post-operative interpretation of functional change. In this study, we used diffusion tensor imaging tractography to assess the impact of tumour location on the white matter structural network. To better understand how various lobe localized gliomas impact the topology underlying efficiency of information transfer between brain regions, we identified the major alterations in brain network connectivity patterns between the ipsilesional versus contralesional hemispheres in patients with gliomas localized to the frontal, parietal or temporal lobe. Results were indicative of altered network efficiency and the role of specific brain regions unique to different lobe localized gliomas. This work draws attention to connections and brain regions which have shared structural susceptibility in frontal, parietal and temporal lobe glioma cases. This study also provides a preliminary anatomical basis for understanding which affected white matter pathways may contribute to preoperative patient symptomology.
Collapse
Affiliation(s)
- Shawn D'Souza
- MD Program, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lisa Hirt
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.,Masters of Science in Modern Human Anatomy Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - David R Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.,Masters of Science in Modern Human Anatomy Program, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
19
|
Elazab A, Wang C, Gardezi SJS, Bai H, Hu Q, Wang T, Chang C, Lei B. GP-GAN: Brain tumor growth prediction using stacked 3D generative adversarial networks from longitudinal MR Images. Neural Netw 2020; 132:321-332. [DOI: 10.1016/j.neunet.2020.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 08/27/2020] [Accepted: 09/06/2020] [Indexed: 01/28/2023]
|
20
|
Kara E, Rahman A, Aulisa E, Ghosh S. Tumor ablation due to inhomogeneous anisotropic diffusion in generic three-dimensional topologies. Phys Rev E 2020; 102:062425. [PMID: 33466110 DOI: 10.1103/physreve.102.062425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/23/2020] [Indexed: 11/07/2022]
Abstract
In recent decades computer-aided technologies have become prevalent in medicine, however, cancer drugs are often only tested on in vitro cell lines from biopsies. We derive a full three-dimensional model of inhomogeneous -anisotropic diffusion in a tumor region coupled to a binary population model, which simulates in vivo scenarios faster than traditional cell-line tests. The diffusion tensors are acquired using diffusion tensor magnetic resonance imaging from a patient diagnosed with glioblastoma multiform. Then we numerically simulate the full model with finite element methods and produce drug concentration heat maps, apoptosis hotspots, and dose-response curves. Finally, predictions are made about optimal injection locations and volumes, which are presented in a form that can be employed by doctors and oncologists.
Collapse
Affiliation(s)
- Erdi Kara
- Department of Mathematics and Statistics, Texas Tech University, Lubbock TX
| | - Aminur Rahman
- Department of Applied Mathematics, University of Washington, Seattle WA
| | - Eugenio Aulisa
- Department of Mathematics and Statistics, Texas Tech University, Lubbock TX
| | - Souparno Ghosh
- Department of Statistics, University of Nebraska - Lincoln, Lincoln NB
| |
Collapse
|
21
|
Decompressive craniectomy of post-traumatic brain injury: an in silico modelling approach for intracranial hypertension management. Sci Rep 2020; 10:18673. [PMID: 33122800 PMCID: PMC7596483 DOI: 10.1038/s41598-020-75479-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022] Open
Abstract
Traumatic brain injury (TBI) causes brain edema that induces increased intracranial pressure and decreased cerebral perfusion. Decompressive craniectomy has been recommended as a surgical procedure for the management of swollen brain and intracranial hypertension. Proper location and size of a decompressive craniectomy, however, remain controversial and no clinical guidelines are available. Mathematical and computational (in silico) models can predict the optimum geometric conditions and provide insights for the brain mechanical response following a decompressive craniectomy. In this work, we present a finite element model of post-traumatic brain injury and decompressive craniectomy that incorporates a biphasic, nonlinear biomechanical model of the brain. A homogenous pressure is applied in the brain to represent the intracranial pressure loading caused by the tissue swelling and the models calculate the deformations and stresses in the brain as well as the herniated volume of the brain tissue that exits the skull following craniectomy. Simulations for different craniectomy geometries (unilateral, bifrontal and bifrontal with midline bar) and sizes are employed to identify optimal clinical conditions of decompressive craniectomy. The reported results for the herniated volume of the brain tissue as a function of the intracranial pressure loading under a specific geometry and size of craniectomy are exceptionally relevant for decompressive craniectomy planning.
Collapse
|
22
|
Elazab A, Wang C, Safdar Gardezi SJ, Bai H, Wang T, Lei B, Chang C. Glioma Growth Prediction via Generative Adversarial Learning from Multi-Time Points Magnetic Resonance Images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:1750-1753. [PMID: 33018336 DOI: 10.1109/embc44109.2020.9175817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gliomas are the most dominant and lethal type of brain tumors. Growth prediction is significant to quantify tumor aggressiveness, improve therapy planning, and estimate patients' survival time. This is commonly addressed in literature using mathematical models guided by multi-time point scans of multi/single-modal data for the same subject. However, these models are mechanism-based and heavily rely on complicated mathematical formulations of partial differential equations with few parameters that are insufficient to capture different patterns and other characteristics of gliomas. In this paper, we propose a 3D generative adversarial networks (GANs) for glioma growth prediction. Specifically, we stack 2 GANs with conditional initialization of segmented feature maps. Furthermore, we employ Dice loss in our objective function and devised 3D U-Net architecture for better image generation. The proposed method is trained and validated using 3D patch-based strategy on real magnetic resonance images of 9 subjects with 3 time points. Experimental results show that the proposed method can be successfully used for glioma growth prediction with satisfactory performance.
Collapse
|
23
|
From tumour perfusion to drug delivery and clinical translation of in silico cancer models. Methods 2020; 185:82-93. [PMID: 32147442 DOI: 10.1016/j.ymeth.2020.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
In silico cancer models have demonstrated great potential as a tool to improve drug design, optimise the delivery of drugs to target sites in the host tissue and, hence, improve therapeutic efficacy and patient outcome. However, there are significant barriers to the successful translation of in silico technology from bench to bedside. More precisely, the specification of unknown model parameters, the necessity for models to adequately reflect in vivo conditions, and the limited amount of pertinent validation data to evaluate models' accuracy and assess their reliability, pose major obstacles in the path towards their clinical translation. This review aims to capture the state-of-the-art in in silico cancer modelling of vascularised solid tumour growth, and identify the important advances and barriers to success of these models in clinical oncology. Particular emphasis has been put on continuum-based models of cancer since they - amongst the class of mechanistic spatio-temporal modelling approaches - are well-established in simulating transport phenomena and the biomechanics of tissues, and have demonstrated potential for clinical translation. Three important avenues in in silico modelling are considered in this contribution: first, since systemic therapy is a major cancer treatment approach, we start with an overview of the tumour perfusion and angiogenesis in silico models. Next, we present the state-of-the-art in silico work encompassing the delivery of chemotherapeutic agents to cancer nanomedicines through the bloodstream, and then review continuum-based modelling approaches that demonstrate great promise for successful clinical translation. We conclude with a discussion of what we view to be the key challenges and opportunities for in silico modelling in personalised and precision medicine.
Collapse
|
24
|
Witulla B, Goerig N, Putz F, Frey B, Engelhorn T, Dörfler A, Uder M, Fietkau R, Bert C, Laun FB. On PTV definition for glioblastoma based on fiber tracking of diffusion tensor imaging data. PLoS One 2020; 15:e0227146. [PMID: 31905221 PMCID: PMC6944332 DOI: 10.1371/journal.pone.0227146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/11/2019] [Indexed: 01/20/2023] Open
Abstract
Radiotherapy (RT) is commonly applied for the treatment of glioblastoma multiforme (GBM). Following the planning target volume (PTV) definition procedure standardized in guidelines, a 20% risk of missing non-local recurrences is present. Purpose of this study was to evaluate whether diffusion tensor imaging (DTI)-based fiber tracking may be beneficial for PTV definition taking into account the prediction of distant recurrences. 56 GBM patients were examined with magnetic resonance imaging (MRI) including DTI performed before RT after resection of the primary tumor. Follow-up MRIs were acquired in three month intervals. For the seven patients with a distant recurrence, fiber tracking was performed with three algorithms and it was evaluated whether connections existed from the primary tumor region to the distant recurrence. It depended strongly on the used tracking algorithm and the used tracking parameters whether a connection was observed. Most of the connections were weak and thus not usable for PTV definition. Only in one of the seven patients with a recurring tumor, a clear connection was present. It seems unlikely that DTI-based fiber tracking can be beneficial for predicting distant recurrences in the planning of PTVs for glioblastoma multiforme.
Collapse
Affiliation(s)
- Barbara Witulla
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Goerig
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| | - Frederik Bernd Laun
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
25
|
D’Souza S, Ormond DR, Costabile J, Thompson JA. Fiber-tract localized diffusion coefficients highlight patterns of white matter disruption induced by proximity to glioma. PLoS One 2019; 14:e0225323. [PMID: 31751402 PMCID: PMC6874090 DOI: 10.1371/journal.pone.0225323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023] Open
Abstract
Gliomas account for 26.5% of all primary central nervous system tumors. Recent studies have used diffusion tensor imaging (DTI) to extract white matter fibers and the diffusion coefficients derived from MR processing to provide useful, non-invasive insights into the extent of tumor invasion, axonal integrity, and gross differentiation of glioma from metastasis. Here, we extend this work by examining whether a tract-based analysis can improve non-invasive localization of tumor impact on white matter integrity. This study retrospectively analyzed preoperative magnetic resonance sequences highlighting contrast enhancement and DTI scans of 13 subjects that were biopsy-confirmed to have either high or low-grade glioma. We reconstructed the corticospinal tract and superior longitudinal fasciculus by applying atlas-based regions of interest to fibers derived from whole-brain deterministic streamline tractography. Within-subject comparison of hemispheric diffusion coefficients (e.g., fractional anisotropy and mean diffusivity) indicated higher levels of white matter degradation in the ipsilesional hemisphere. Novel application of along-tract analyses revealed that tracts traversing the tumor region showed significant white matter degradation compared to the contralesional hemisphere and ipsilesional tracts displaced by the tumor.
Collapse
Affiliation(s)
- Shawn D’Souza
- Department of Molecular Biology, University of Colorado, Boulder, CO, United States of America
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - D. Ryan Ormond
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Jamie Costabile
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - John A. Thompson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
26
|
An optimized generic cerebral tumor growth modeling framework by coupling biomechanical and diffusive models with treatment effects. Appl Soft Comput 2019. [DOI: 10.1016/j.asoc.2019.04.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|