1
|
Tang L, Wu T, Hu R, Gu Q, Yang X, Mao H. Hemodynamic property incorporated brain tumor segmentation by deep learning and density-based analysis of dynamic susceptibility contrast-enhanced magnetic resonance imaging (MRI). Quant Imaging Med Surg 2024; 14:2774-2787. [PMID: 38617153 PMCID: PMC11007532 DOI: 10.21037/qims-23-1471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/04/2024] [Indexed: 04/16/2024]
Abstract
Background Magnetic resonance imaging (MRI) is a primary non-invasive imaging modality for tumor segmentation, leveraging its exceptional soft tissue contrast and high resolution. Current segmentation methods typically focus on structural MRI, such as T1-weighted post-contrast-enhanced or fluid-attenuated inversion recovery (FLAIR) sequences. However, these methods overlook the blood perfusion and hemodynamic properties of tumors, readily derived from dynamic susceptibility contrast (DSC) enhanced MRI. This study introduces a novel hybrid method combining density-based analysis of hemodynamic properties in time-dependent perfusion imaging with deep learning spatial segmentation techniques to enhance tumor segmentation. Methods First, a U-Net convolutional neural network (CNN) is employed on structural images to delineate a region of interest (ROI). Subsequently, Hierarchical Density-Based Scans (HDBScan) are employed within the ROI to augment segmentation by exploring intratumoral hemodynamic heterogeneity through the investigation of tumor time course profiles unveiled in DSC MRI. Results The approach was tested and evaluated using a cohort of 513 patients from the open-source University of Pennsylvania glioblastoma database (UPENN-GBM) dataset, achieving a 74.83% Intersection over Union (IoU) score when compared to structural-only segmentation. The algorithm also exhibited increased precision and localized predictions of heightened segmentation boundary complexity, resulting in a 146.92% increase in contour complexity (ICC) compared to the reference standard provided by the UPENN-GBM dataset. Importantly, segmenting tumors with the developed new approach uncovered a negative correlation of the tumor volume with the scores in the Karnofsky Performance Scale (KPS) clinically used for assessing the functional status of patients (-0.309), which is not observed with the prevailing segmentation standard. Conclusions This work demonstrated that including hemodynamic properties of tissues from DSC MRI can improve existing structural or morphological feature-based tumor segmentation techniques with additional information on tumor biology and physiology. This approach can also be applied to other clinical indications that use perfusion MRI for diagnosis or treatment monitoring.
Collapse
Affiliation(s)
- Leonardo Tang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Tianhe Wu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Ranliang Hu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Quanquan Gu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Powell SJ, Withey SB, Sun Y, Grist JT, Novak J, MacPherson L, Abernethy L, Pizer B, Grundy R, Morgan PS, Jaspan T, Bailey S, Mitra D, Auer DP, Avula S, Arvanitis TN, Peet A. Applying machine learning classifiers to automate quality assessment of paediatric dynamic susceptibility contrast (DSC-) MRI data. Br J Radiol 2023; 96:20201465. [PMID: 36802769 PMCID: PMC10161906 DOI: 10.1259/bjr.20201465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVE Investigate the performance of qualitative review (QR) for assessing dynamic susceptibility contrast (DSC-) MRI data quality in paediatric normal brain and develop an automated alternative to QR. METHODS 1027 signal-time courses were assessed by Reviewer 1 using QR. 243 were additionally assessed by Reviewer 2 and % disagreements and Cohen's κ (κ) were calculated. The signal drop-to-noise ratio (SDNR), root mean square error (RMSE), full width half maximum (FWHM) and percentage signal recovery (PSR) were calculated for the 1027 signal-time courses. Data quality thresholds for each measure were determined using QR results. The measures and QR results trained machine learning classifiers. Sensitivity, specificity, precision, classification error and area under the curve from a receiver operating characteristic curve were calculated for each threshold and classifier. RESULTS Comparing reviewers gave 7% disagreements and κ = 0.83. Data quality thresholds of: 7.6 for SDNR; 0.019 for RMSE; 3 s and 19 s for FWHM; and 42.9 and 130.4% for PSR were produced. SDNR gave the best sensitivity, specificity, precision, classification error and area under the curve values of 0.86, 0.86, 0.93, 14.2% and 0.83. Random forest was the best machine learning classifier, giving sensitivity, specificity, precision, classification error and area under the curve of 0.94, 0.83, 0.93, 9.3% and 0.89. CONCLUSION The reviewers showed good agreement. Machine learning classifiers trained on signal-time course measures and QR can assess quality. Combining multiple measures reduces misclassification. ADVANCES IN KNOWLEDGE A new automated quality control method was developed, which trained machine learning classifiers using QR results.
Collapse
Affiliation(s)
- Stephen J Powell
- Physical Sciences for Health CDT, University of Birmingham, Birmingham, United Kingdom.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stephanie B Withey
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.,Department of Oncology, Birmingham Children's Hospital, Birmingham, United Kingdom.,RRPPS, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Yu Sun
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.,School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - James T Grist
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jan Novak
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.,Department of Oncology, Birmingham Children's Hospital, Birmingham, United Kingdom.,Department of Psychology, Aston Brain Centre, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Lesley MacPherson
- Radiology, Birmingham Children's Hospital, Birmingham, United Kingdom
| | - Laurence Abernethy
- Radiology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Barry Pizer
- Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Richard Grundy
- The Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Paul S Morgan
- The Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, United Kingdom.,Medical Physics, Nottingham University Hospitals, Nottingham, United Kingdom.,NIHR Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Tim Jaspan
- The Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, United Kingdom.,Radiology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Simon Bailey
- Sir James Spence Institute of Child Health, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Dipayan Mitra
- Neuroradiology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Dorothee P Auer
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - Shivaram Avula
- Radiology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Theodoros N Arvanitis
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.,Department of Oncology, Birmingham Children's Hospital, Birmingham, United Kingdom.,Institute of Digital Healthcare, WMG, University of Warwick, Coventry, United Kingdom
| | - Andrew Peet
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.,Department of Oncology, Birmingham Children's Hospital, Birmingham, United Kingdom
| |
Collapse
|
3
|
Tippareddy C, Onyewadume L, Sloan AE, Wang GM, Patil NT, Hu S, Barnholtz-Sloan JS, Boyacıoğlu R, Gulani V, Sunshine J, Griswold M, Ma D, Badve C. Novel 3D magnetic resonance fingerprinting radiomics in adult brain tumors: a feasibility study. Eur Radiol 2023; 33:836-844. [PMID: 35999374 DOI: 10.1007/s00330-022-09067-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/16/2022] [Accepted: 07/27/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To test the feasibility of using 3D MRF maps with radiomics analysis and machine learning in the characterization of adult brain intra-axial neoplasms. METHODS 3D MRF acquisition was performed on 78 patients with newly diagnosed brain tumors including 33 glioblastomas (grade IV), 6 grade III gliomas, 12 grade II gliomas, and 27 patients with brain metastases. Regions of enhancing tumor, non-enhancing tumor, and peritumoral edema were segmented and radiomics analysis with gray-level co-occurrence matrices and gray-level run-length matrices was performed. Statistical analysis was performed to identify features capable of differentiating tumors based on type, grade, and isocitrate dehydrogenase (IDH1) status. Receiver operating curve analysis was performed and the area under the curve (AUC) was calculated for tumor classification and grading. For gliomas, Kaplan-Meier analysis for overall survival was performed using MRF T1 features from enhancing tumor region. RESULTS Multiple MRF T1 and T2 features from enhancing tumor region were capable of differentiating glioblastomas from brain metastases. Although no differences were identified between grade 2 and grade 3 gliomas, differentiation between grade 2 and grade 4 gliomas as well as between grade 3 and grade 4 gliomas was achieved. MRF radiomics features were also able to differentiate IDH1 mutant from the wild-type gliomas. Radiomics T1 features for enhancing tumor region in gliomas correlated to overall survival (p < 0.05). CONCLUSION Radiomics analysis of 3D MRF maps allows differentiating glioblastomas from metastases and is capable of differentiating glioblastomas from metastases and characterizing gliomas based on grade, IDH1 status, and survival. KEY POINTS • 3D MRF data analysis using radiomics offers novel tissue characterization of brain tumors. • 3D MRF with radiomics offers glioma characterization based on grade, IDH1 status, and overall patient survival.
Collapse
Affiliation(s)
- Charit Tippareddy
- Department of Radiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Seidman Cancer Center and Case Comprehensive Cancer Center, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Louisa Onyewadume
- Department of Neurosurgery, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Andrew E Sloan
- Departments of Neurosurgery and Pathology, Seidman Cancer Center and Case Comprehensive Cancer Center, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Gi-Ming Wang
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Nirav T Patil
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Siyuan Hu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Jill S Barnholtz-Sloan
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rasim Boyacıoğlu
- Department of Radiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Seidman Cancer Center and Case Comprehensive Cancer Center, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Vikas Gulani
- Department of Radiology, Michigan Institute of Imaging Technology and Translation, Michigan Medicine, Ann Arbor, MI, USA
| | - Jeffrey Sunshine
- Department of Radiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Seidman Cancer Center and Case Comprehensive Cancer Center, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Mark Griswold
- Department of Radiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Seidman Cancer Center and Case Comprehensive Cancer Center, 11100 Euclid Ave, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Dan Ma
- Department of Radiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Seidman Cancer Center and Case Comprehensive Cancer Center, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Chaitra Badve
- Department of Radiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Seidman Cancer Center and Case Comprehensive Cancer Center, 11100 Euclid Ave, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Merkaj S, Bahar RC, Zeevi T, Lin M, Ikuta I, Bousabarah K, Cassinelli Petersen GI, Staib L, Payabvash S, Mongan JT, Cha S, Aboian MS. Machine Learning Tools for Image-Based Glioma Grading and the Quality of Their Reporting: Challenges and Opportunities. Cancers (Basel) 2022; 14:cancers14112623. [PMID: 35681603 PMCID: PMC9179416 DOI: 10.3390/cancers14112623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Technological innovation has enabled the development of machine learning (ML) tools that aim to improve the practice of radiologists. In the last decade, ML applications to neuro-oncology have expanded significantly, with the pre-operative prediction of glioma grade using medical imaging as a specific area of interest. We introduce the subject of ML models for glioma grade prediction by remarking upon the models reported in the literature as well as by describing their characteristic developmental workflow and widely used classifier algorithms. The challenges facing these models-including data sources, external validation, and glioma grade classification methods -are highlighted. We also discuss the quality of how these models are reported, explore the present and future of reporting guidelines and risk of bias tools, and provide suggestions for the reporting of prospective works. Finally, this review offers insights into next steps that the field of ML glioma grade prediction can take to facilitate clinical implementation.
Collapse
Affiliation(s)
- Sara Merkaj
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
- Department of Neurosurgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Ryan C. Bahar
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | - Tal Zeevi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
- Visage Imaging, Inc., 12625 High Bluff Dr, Suite 205, San Diego, CA 92130, USA
| | - Ichiro Ikuta
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | | | - Gabriel I. Cassinelli Petersen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | - Lawrence Staib
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | - John T. Mongan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave., San Francisco, CA 94143, USA; (J.T.M.); (S.C.)
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave., San Francisco, CA 94143, USA; (J.T.M.); (S.C.)
| | - Mariam S. Aboian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
- Correspondence: ; Tel.: +650-285-7577
| |
Collapse
|
5
|
Zhang L, Wang Y, Peng Z, Weng Y, Fang Z, Xiao F, Zhang C, Fan Z, Huang K, Zhu Y, Jiang W, Shen J, Zhan R. The progress of multimodal imaging combination and subregion based radiomics research of cancers. Int J Biol Sci 2022; 18:3458-3469. [PMID: 35637947 PMCID: PMC9134904 DOI: 10.7150/ijbs.71046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/18/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, with the standardization of radiomics methods; development of tools; and popularization of the concept, radiomics has been widely used in all aspects of tumor diagnosis; treatment; and prognosis. As the study of radiomics in cancer has become more advanced, the currently used methods have revealed their shortcomings. The performance of cancer radiomics based on single-modality medical images, which based on their imaging principles, only partially reflects tumor information, has been necessarily compromised. Using the whole tumor as a region of interest to extract radiomic features inevitably leads to the loss of intra-tumoral heterogeneity of, which also affects the performance of radiomics. Radiomics of multimodal images extracts various aspects of information from images of each modality and then integrates them together for model construction; thus, avoiding missing information. Subregional segmentation based on multimodal medical image combinations allows radiomics features acquired from subregions to retain tumor heterogeneity, further improving the performance of radiomics. In this review, we provide a detailed summary of the current research on the radiomics of multimodal images of cancer and tumor subregion-based radiomics, and then raised some of the research problems and also provide a thorough discussion on these issues.
Collapse
Affiliation(s)
- Luyuan Zhang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Zhouying Peng
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yuxiang Weng
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zebin Fang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Xiao
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Zhang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zuoxu Fan
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kaiyuan Huang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhu
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Jian Shen
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Renya Zhan
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Liu H, Yuan H, Wang Y, Huang W, Xue H, Zhang X. Prediction of venous thromboembolism with machine learning techniques in young-middle-aged inpatients. Sci Rep 2021; 11:12868. [PMID: 34145330 PMCID: PMC8213829 DOI: 10.1038/s41598-021-92287-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/28/2021] [Indexed: 01/30/2023] Open
Abstract
Accumulating studies appear to suggest that the risk factors for venous thromboembolism (VTE) among young-middle-aged inpatients are different from those among elderly people. Therefore, the current prediction models for VTE are not applicable to young-middle-aged inpatients. The aim of this study was to develop and externally validate a new prediction model for young-middle-aged people using machine learning methods. The clinical data sets linked with 167 inpatients with deep venous thrombosis (DVT) and/or pulmonary embolism (PE) and 406 patients without DVT or PE were compared and analysed with machine learning techniques. Five algorithms, including logistic regression, decision tree, feed-forward neural network, support vector machine, and random forest, were used for training and preparing the models. The support vector machine model had the best performance, with AUC values of 0.806-0.944 for 95% CI, 59% sensitivity and 99% specificity, and an accuracy of 87%. Although different top predictors of adverse outcomes appeared in the different models, life-threatening illness, fibrinogen, RBCs, and PT appeared to be more consistently featured by the different models as top predictors of adverse outcomes. Clinical data sets of young and middle-aged inpatients can be used to accurately predict the risk of VTE with a support vector machine model.
Collapse
Affiliation(s)
- Hua Liu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Hua Yuan
- School of Nursing, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yongmei Wang
- The Second Hospital of Jilin University, Changchun, 130000, Jilin, People's Republic of China
| | - Weiwei Huang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Hui Xue
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China.
| | - Xiuying Zhang
- School of Nursing, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
7
|
Shi C, Zhou Z, Lin H, Gao J. Imaging Beyond Seeing: Early Prognosis of Cancer Treatment. SMALL METHODS 2021; 5:e2001025. [PMID: 34927817 DOI: 10.1002/smtd.202001025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Indexed: 06/14/2023]
Abstract
Assessing cancer response to therapeutic interventions has been realized as an important course to early predict curative efficacy and treatment outcomes due to tumor heterogeneity. Compared to the traditional invasive tissue biopsy method, molecular imaging techniques have fundamentally revolutionized the ability to evaluate cancer response in a spatiotemporal manner. The past few years has witnessed a paradigm shift on the efforts from manufacturing functional molecular imaging probes for seeing a tumor to a vantage stage of interpreting the tumor response during different treatments. This review is to stand by the current development of advanced imaging technologies aiming to predict the treatment response in cancer therapy. Special interest is placed on the systems that are able to provide rapid and noninvasive assessment of pharmacokinetic drug fates (e.g., drug distribution, release, and activation) and tumor microenvironment heterogeneity (e.g., tumor cells, macrophages, dendritic cells (DCs), T cells, and inflammatory cells). The current status, practical significance, and future challenges of the emerging artificial intelligence (AI) technology and machine learning in the applications of medical imaging fields is overviewed. Ultimately, the authors hope that this review is timely to spur research interest in molecular imaging and precision medicine.
Collapse
Affiliation(s)
- Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
Radiomic analysis of magnetic resonance fingerprinting in adult brain tumors. Eur J Nucl Med Mol Imaging 2020; 48:683-693. [PMID: 32979059 DOI: 10.1007/s00259-020-05037-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This is a radiomics study investigating the ability of texture analysis of MRF maps to improve differentiation between intra-axial adult brain tumors and to predict survival in the glioblastoma cohort. METHODS Magnetic resonance fingerprinting (MRF) acquisition was performed on 31 patients across 3 groups: 17 glioblastomas, 6 low-grade gliomas, and 8 metastases. Using regions of interest for the solid tumor and peritumoral white matter on T1 and T2 maps, second-order texture features were calculated from gray-level co-occurrence matrices and gray-level run length matrices. Selected features were compared across the three tumor groups using Wilcoxon rank-sum test. Receiver operating characteristic curve analysis was performed for each feature. Kaplan-Meier method was used for survival analysis with log rank tests. RESULTS Low-grade gliomas and glioblastomas had significantly higher run percentage, run entropy, and information measure of correlation 1 on T1 than metastases (p < 0.017). The best separation of all three tumor types was seen utilizing inverse difference normalized and homogeneity values for peritumoral white matter in both T1 and T2 maps (p < 0.017). In solid tumor T2 maps, lower values in entropy and higher values of maximum probability and high-gray run emphasis were associated with longer survival in glioblastoma patients (p < 0.05). Several texture features were associated with longer survival in glioblastoma patients on peritumoral white matter T1 maps (p < 0.05). CONCLUSION Texture analysis of MRF-derived maps can improve our ability to differentiate common adult brain tumors by characterizing tumor heterogeneity, and may have a role in predicting outcomes in patients with glioblastoma.
Collapse
|