1
|
Dudink I, Sutherland AE, Castillo-Melendez M, Ahmadzadeh E, White TA, Malhotra A, Coleman HA, Parkington HC, Dean JM, Pham Y, Yawno T, Sepehrizadeh T, Jenkin G, Camm EJ, Allison BJ, Miller SL. Fetal growth restriction adversely impacts trajectory of hippocampal neurodevelopment and function. Brain Pathol 2025:e13330. [PMID: 39780443 DOI: 10.1111/bpa.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
The last pregnancy trimester is critical for fetal brain development but is a vulnerable period if the pregnancy is compromised by fetal growth restriction (FGR). The impact of FGR on the maturational development of neuronal morphology is not known, however, studies in fetal sheep allow longitudinal analysis in a long gestation species. Here we compared hippocampal neuron dendritogenesis in FGR and control fetal sheep at three timepoints equivalent to the third trimester of pregnancy, complemented by magnetic resonance image for brain volume, and electrophysiology for synaptic function. We hypothesized that the trajectory of hippocampal neuronal dendrite outgrowth would be decreased in the growth-restricted fetus, with implications for hippocampal volume, connectivity, and function. In control animals, total dendrite length increased with advancing gestation, but not in FGR, resulting in a significantly reduced trajectory of dendrite outgrowth in FGR fetuses for total length, branching, and complexity. Ex vivo electrophysiology analysis shows that paired-pulse facilitation was reduced in FGR compared to controls for cornu ammonis 1 hippocampal outputs, reflecting synaptic dysfunction. Hippocampal brain-derived neurotrophic factor density decreased over late gestation in FGR fetuses but not in controls. This study reveals that FGR is associated with a significant deviation in the trajectory of dendrite outgrowth of hippocampal neurons. Where dendrite length significantly increased over the third trimester of pregnancy in control brains, there was no corresponding increase over time in FGR brains, and the trajectory of dendrite outgrowth in FGR offspring was significantly reduced compared to controls. Reduced hippocampal dendritogenesis in FGR offspring has severe implications for the development of hippocampal connectivity and long-term function.
Collapse
Affiliation(s)
- Ingrid Dudink
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, VIC, Australia
| | - Elham Ahmadzadeh
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Tegan A White
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, VIC, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Clayton, VIC, Australia
| | - Harold A Coleman
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | | | - Justin M Dean
- Department of Physiology, Faculty of Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, VIC, Australia
| | - Tamara Yawno
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | - Tara Sepehrizadeh
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Emily J Camm
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Chincarini G, Walker DW, Wong F, Richardson SJ, Cumberland A, Tolcos M. Thyroid hormone analogues: Promising therapeutic avenues to improve the neurodevelopmental outcomes of intrauterine growth restriction. J Neurochem 2024; 168:2335-2350. [PMID: 38742992 DOI: 10.1111/jnc.16124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Intrauterine growth restriction (IUGR) is a pregnancy complication impairing fetal growth and development. The compromised development is often attributed to disruptions of oxygen and nutrient supply from the placenta, resulting in a number of unfavourable physiological outcomes with impaired brain and organ growth. IUGR is associated with compromised development of both grey and white matter, predisposing the infant to adverse neurodevelopmental outcomes, including long-lasting cognitive and motor difficulties. Cerebral thyroid hormone (TH) signalling, which plays a crucial role in regulating white and grey matter development, is dysregulated in IUGR, potentially contributing to the neurodevelopmental delays associated with this condition. Notably, one of the major TH transporters, monocarboxylate transporter-8 (MCT8), is deficient in the fetal IUGR brain. Currently, no effective treatment to prevent or reverse IUGR exists. Management strategies involve close antenatal monitoring, management of maternal risk factors if present and early delivery if IUGR is found to be severe or worsening in utero. The overall goal is to determine the most appropriate time for delivery, balancing the risks of preterm birth with further fetal compromise due to IUGR. Drug candidates have shown either adverse effects or little to no benefits in this vulnerable population, urging further preclinical and clinical investigation to establish effective therapies. In this review, we discuss the major neuropathology of IUGR driven by uteroplacental insufficiency and the concomitant long-term neurobehavioural impairments in individuals born IUGR. Importantly, we review the existing clinical and preclinical literature on cerebral TH signalling deficits, particularly the impaired expression of MCT8 and their correlation with IUGR. Lastly, we discuss the current evidence on MCT8-independent TH analogues which mimic the brain actions of THs by being metabolised in a similar manner as promising, albeit underappreciated approaches to promote grey and white matter development and improve the neurobehavioural outcomes following IUGR.
Collapse
Affiliation(s)
- Ginevra Chincarini
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
- Monash Newborn Health, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia
| | - Flora Wong
- Monash Newborn Health, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia
| | | | - Angela Cumberland
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
3
|
Malhotra A, Rocha AKAA, Yawno T, Sutherland AE, Allison BJ, Nitsos I, Pham Y, Jenkin G, Castillo-Melendez M, Miller SL. Neuroprotective effects of maternal melatonin administration in early-onset placental insufficiency and fetal growth restriction. Pediatr Res 2024; 95:1510-1518. [PMID: 38225450 PMCID: PMC11126390 DOI: 10.1038/s41390-024-03027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Early-onset fetal growth restriction (FGR) is associated with adverse outcomes. We hypothesised that maternal melatonin administration will improve fetal brain structure in FGR. METHODS Surgery was performed on twin-bearing ewes at 88 days (0.6 gestation), and FGR induced in one twin via single umbilical artery ligation. Melatonin was administered intravenously (6 mg/day) to a group of ewes commencing on day of surgery until 127 days (0.85 gestation), when the ewe/fetuses were euthanized, and fetal brains collected. RESULTS Study groups were control (n = 5), FGR (n = 5), control+melatonin (control+MLT; n = 6) and FGR+melatonin (FGR + MLT; n = 6). Melatonin administration did not significantly alter fetal body or brain weights. Myelin (CNPase+) fibre density was reduced in FGR vs. control animals in most brain regions examined (p < 0.05) and melatonin treatment restored CNPase fibre density. Similar but less pronounced effect was seen with mature myelin (MBP+) staining. Significant differences in activated microglia (Iba-1) activity were seen between lamb groups (MLT mitigated FGR effect) in periventricular white matter, subventricular zone and external capsule (p < 0.05). Similar effects were seen in astrogliosis (GFAP) in intragyral white matter and cortex. CONCLUSIONS Maternal melatonin administration in early onset FGR led to improved myelination of white matter brain regions, possibly mediated by decreased inflammation. IMPACT Maternal melatonin administration might lead to neuroprotection in the growth-restricted fetus, possibly via dampening neuroinflammation and enhancing myelination. This preclinical study adds to the body of work on this topic, and informs clinical translation. Neuroprotection likely to improve long-term outcomes of this vulnerable infant group.
Collapse
Affiliation(s)
- Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia.
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.
| | - Anna K A A Rocha
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Tamara Yawno
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Ilias Nitsos
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Love SA, Haslin E, Bellardie M, Andersson F, Barantin L, Filipiak I, Adriaensen H, Fazekas CL, Leroy L, Zelena D, Morisse M, Elleboudt F, Moussu C, Lévy F, Nowak R, Chaillou E. Maternal deprivation and milk replacement affect the integrity of gray and white matter in the developing lamb brain. Dev Neurobiol 2022; 82:214-232. [DOI: 10.1002/dneu.22869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Scott A. Love
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | | | | | | | | | | | | | - Csilla L. Fazekas
- Institute of Experimental Medicine Budapest Hungary
- János Szentágothai Doctoral School of Neurosciences Semmelweis University Budapest Hungary
| | - Laurène Leroy
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | - Dóra Zelena
- Institute of Experimental Medicine Budapest Hungary
- Centre for Neuroscience, Szentágothai Research Centre Institute of Physiology Medical School University of Pécs Pécs Hungary
| | - Mélody Morisse
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | | | | | - Frédéric Lévy
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | - Raymond Nowak
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | | |
Collapse
|
5
|
Seewoo BJ, Feindel KW, Won Y, Joos AC, Figliomeni A, Hennessy LA, Rodger J. White Matter Changes Following Chronic Restraint Stress and Neuromodulation: A Diffusion Magnetic Resonance Imaging Study in Young Male Rats. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:153-166. [PMID: 36325163 PMCID: PMC9616380 DOI: 10.1016/j.bpsgos.2021.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS), a noninvasive neuromodulation technique, is an effective treatment for depression. However, few studies have used diffusion magnetic resonance imaging to investigate the longitudinal effects of rTMS on the abnormal brain white matter (WM) described in depression. Methods In this study, we acquired diffusion magnetic resonance imaging from young adult male Sprague Dawley rats to investigate 1) the longitudinal effects of 10- and 1-Hz low-intensity rTMS (LI-rTMS) in healthy animals; 2) the effect of chronic restraint stress (CRS), an animal model of depression; and 3) the effect of 10 Hz LI-rTMS in CRS animals. Diffusion magnetic resonance imaging data were analyzed using tract-based spatial statistics and fixel-based analysis. Results Similar changes in diffusion and kurtosis fractional anisotropy were induced by 10- and 1-Hz stimulation in healthy animals, although changes induced by 10-Hz stimulation were detected earlier than those following 1-Hz stimulation. Additionally, 10-Hz stimulation increased axial and mean kurtosis within the external capsule, suggesting that the two protocols may act via different underlying mechanisms. Brain maturation–related changes in WM, such as increased corpus callosum, fimbria, and external and internal capsule fiber cross-section, were compromised in CRS animals compared with healthy control animals and were rescued by 10-Hz LI-rTMS. Immunohistochemistry revealed increased myelination within the corpus callosum in LI-rTMS–treated CRS animals compared with those that received sham or no stimulation. Conclusions Overall, decreased WM connectivity and integrity in the CRS model corroborate findings in patients experiencing depression with high anxiety, and the observed LI-rTMS–induced effects on WM structure suggest that LI-rTMS might rescue abnormal WM by increasing myelination.
Collapse
|
6
|
Chandwani R, Kline JE, Harpster K, Tkach J, Parikh NA. Early micro- and macrostructure of sensorimotor tracts and development of cerebral palsy in high risk infants. Hum Brain Mapp 2021; 42:4708-4721. [PMID: 34322949 PMCID: PMC8410533 DOI: 10.1002/hbm.25579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Infants born very preterm (VPT) are at high risk of motor impairments such as cerebral palsy (CP), and diagnosis can take 2 years. Identifying in vivo determinants of CP could facilitate presymptomatic detection and targeted intervention. Our objectives were to derive micro‐ and macrostructural measures of sensorimotor white matter tract integrity from diffusion MRI at term‐equivalent age, and determine their association with early diagnosis of CP. We enrolled 263 VPT infants (≤32 weeks gestational age) as part of a large prospective cohort study. Diffusion and structural MRI were acquired at term. Following consensus guidelines, we defined early diagnosis of CP based on abnormal structural MRI at term and abnormal neuromotor exam at 3–4 months corrected age. Using Constrained Spherical Deconvolution, we derived a white matter fiber orientation distribution (fOD) for subjects, performed probabilistic whole‐brain tractography, and segmented nine sensorimotor tracts of interest. We used the recently developed fixel‐based (FB) analysis to compute fiber density (FD), fiber‐bundle cross‐section (FC), and combined fiber density and cross‐section (FDC) for each tract. Of 223 VPT infants with high‐quality diffusion MRI data, 14 (6.3%) received an early diagnosis of CP. The cohort's mean (SD) gestational age was 29.4 (2.4) weeks and postmenstrual age at MRI scan was 42.8 (1.3) weeks. FD, FC, and FDC for each sensorimotor tract were significantly associated with early CP diagnosis, with and without adjustment for confounders. Measures of sensorimotor tract integrity enhance our understanding of white matter changes that antecede and potentially contribute to the development of CP in VPT infants.
Collapse
Affiliation(s)
- Rahul Chandwani
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Julia E Kline
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Karen Harpster
- Division of Occupational Therapy and Physical Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Rehabilitation, Exercise and Nutrition Sciences, University of Cincinnati College of Allied Health Sciences, Cincinnati, Ohio, USA
| | - Jean Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nehal A Parikh
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
7
|
Fixel-based Analysis of Diffusion MRI: Methods, Applications, Challenges and Opportunities. Neuroimage 2021; 241:118417. [PMID: 34298083 DOI: 10.1016/j.neuroimage.2021.118417] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/11/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Diffusion MRI has provided the neuroimaging community with a powerful tool to acquire in-vivo data sensitive to microstructural features of white matter, up to 3 orders of magnitude smaller than typical voxel sizes. The key to extracting such valuable information lies in complex modelling techniques, which form the link between the rich diffusion MRI data and various metrics related to the microstructural organization. Over time, increasingly advanced techniques have been developed, up to the point where some diffusion MRI models can now provide access to properties specific to individual fibre populations in each voxel in the presence of multiple "crossing" fibre pathways. While highly valuable, such fibre-specific information poses unique challenges for typical image processing pipelines and statistical analysis. In this work, we review the "Fixel-Based Analysis" (FBA) framework, which implements bespoke solutions to this end. It has recently seen a stark increase in adoption for studies of both typical (healthy) populations as well as a wide range of clinical populations. We describe the main concepts related to Fixel-Based Analyses, as well as the methods and specific steps involved in a state-of-the-art FBA pipeline, with a focus on providing researchers with practical advice on how to interpret results. We also include an overview of the scope of all current FBA studies, categorized across a broad range of neuro-scientific domains, listing key design choices and summarizing their main results and conclusions. Finally, we critically discuss several aspects and challenges involved with the FBA framework, and outline some directions and future opportunities.
Collapse
|
8
|
Cibulskis CC, Maheshwari A, Rao R, Mathur AM. Anemia of prematurity: how low is too low? J Perinatol 2021; 41:1244-1257. [PMID: 33664467 DOI: 10.1038/s41372-021-00992-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022]
Abstract
Anemia of prematurity (AOP) is a common condition with a well-described chronology, nadir hemoglobin levels, and timeline of recovery. However, the underlying pathophysiology and impact of prolonged exposure of the developing infant to low levels of hemoglobin remains unclear. Phlebotomy losses exacerbate the gradual decline of hemoglobin levels which is insidious in presentation, often without any clinical signs. Progressive anemia in preterm infants is associated with poor weight gain, inability to take oral feeds, tachycardia and exacerbation of apneic, and bradycardic events. There remains a lack of consensus on treatment thresholds for RBC transfusion which vary considerably. This review elaborates on the current state of the problem, its implication for the premature infant including association with subphysiologic cerebral tissue oxygenation, necrotizing enterocolitis, and retinopathy of prematurity. It outlines the impact of prophylaxis and treatment of anemia of prematurity and offers suggestions on improving monitoring and management of the condition.
Collapse
Affiliation(s)
- Catherine C Cibulskis
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Akhil Maheshwari
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rakesh Rao
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit M Mathur
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Morrison JL, Ayonrinde OT, Care AS, Clarke GD, Darby JRT, David AL, Dean JM, Hooper SB, Kitchen MJ, Macgowan CK, Melbourne A, McGillick EV, McKenzie CA, Michael N, Mohammed N, Sadananthan SA, Schrauben E, Regnault TRH, Velan SS. Seeing the fetus from a DOHaD perspective: discussion paper from the advanced imaging techniques of DOHaD applications workshop held at the 2019 DOHaD World Congress. J Dev Orig Health Dis 2021; 12:153-167. [PMID: 32955011 DOI: 10.1017/s2040174420000884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced imaging techniques are enhancing research capacity focussed on the developmental origins of adult health and disease (DOHaD) hypothesis, and consequently increasing awareness of future health risks across various subareas of DOHaD research themes. Understanding how these advanced imaging techniques in animal models and human population studies can be both additively and synergistically used alongside traditional techniques in DOHaD-focussed laboratories is therefore of great interest. Global experts in advanced imaging techniques congregated at the advanced imaging workshop at the 2019 DOHaD World Congress in Melbourne, Australia. This review summarizes the presentations of new imaging modalities and novel applications to DOHaD research and discussions had by DOHaD researchers that are currently utilizing advanced imaging techniques including MRI, hyperpolarized MRI, ultrasound, and synchrotron-based techniques to aid their DOHaD research focus.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Oyekoya T Ayonrinde
- Fiona Stanley Hospital, Murdoch, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Alison S Care
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Geoffrey D Clarke
- Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | - Marcus J Kitchen
- School of Physics and Astronomy, Monash University, Melbourne, Victoria, Australia
| | | | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | - Erin V McGillick
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | - Charles A McKenzie
- Department of Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute and Children's Health Research Institute, London, ON, Canada
| | - Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Nuruddin Mohammed
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Aga Khan University Hospital, Karachi, Pakistan
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Eric Schrauben
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Timothy R H Regnault
- Lawson Health Research Institute and Children's Health Research Institute, London, ON, Canada
- Department of Obstetrics and Gynecology, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - S Sendhil Velan
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
10
|
White matter changes following experimental pediatric traumatic brain injury: an advanced diffusion-weighted imaging investigation. Brain Imaging Behav 2021; 15:2766-2774. [PMID: 33411159 DOI: 10.1007/s11682-020-00433-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/24/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
Pediatric traumatic brain injury (pTBI) is a major community health concern. Due to ongoing maturation, injury to the brain at a young age can have devastating consequences in later life. However, how pTBI affects brain development, including white matter maturation, is still poorly understood. Here, we used advanced diffusion weighted imaging (DWI) to assess chronic white matter changes after experimental pTBI. Mice at post-natal day 21 sustained a TBI using the controlled cortical impact model and magnetic resonance imaging (MRI) was performed at 6 months post-injury using a 4.7 T Bruker scanner. Four diffusion shells with 81 directions and b-values of 1000, 3000, 5000, and 7000s/mm2 were acquired and analyzed using MRtrix3 software. Advanced DWI metrics, including fiber density, fiber cross-section and a combined fiber density and cross-section measure, were investigated together with three track-weighted images (TWI): the average pathlength map, mean curvature and the track density image. These advanced metrics were compared to traditional diffusion tensor imaging (DTI) metrics which indicated that TBI injured mice had reduced fractional anisotropy and increased radial diffusivity in the white matter when compared to age-matched sham controls. Consistent with previous findings, fiber density and TWI metrics appeared to be more sensitive to white matter changes than DTI metrics, revealing widespread reductions in fiber density and TWI metrics in pTBI mice compared to sham controls. These results provide additional support for the use of advanced DWI metrics in assessing white matter degeneration following injury and highlight the chronic outcomes that can follow pTBI.
Collapse
|
11
|
Long-term development of white matter fibre density and morphology up to 13 years after preterm birth: A fixel-based analysis. Neuroimage 2020; 220:117068. [DOI: 10.1016/j.neuroimage.2020.117068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/03/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
|
12
|
Rau YA, Wang SM, Tournier JD, Lin SH, Lu CS, Weng YH, Chen YL, Ng SH, Yu SW, Wu YM, Tsai CC, Wang JJ. A longitudinal fixel-based analysis of white matter alterations in patients with Parkinson's disease. Neuroimage Clin 2019; 24:102098. [PMID: 31795054 PMCID: PMC6889638 DOI: 10.1016/j.nicl.2019.102098] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/01/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Disruption to white matter pathways is an important contributor to the pathogenesis of Parkinson's disease. Fixel-based analysis has recently emerged as a useful fiber-specific tool for examining white matter structure. In this longitudinal study, we used Fixel-based analysis to investigate white matter changes occurring over time in patients with Parkinson's disease. METHODS Fifty patients with idiopathic Parkinson's disease (27 men and 23 women; mean age: 61.8 ± 6.1 years), were enrolled. Diffusion-weighted imaging and clinical examinations were performed at three different time points (baseline, first follow-up [after a mean of 24±2 months], and second follow-up [after a mean of 40 ± 3 months]). Additional 76 healthy control subjects (38 men and 38 women; mean age: 62.3 ± 5.5 years) were examined at baseline. The following fixel-based metrics were obtained: fiber density (FD), fiber bundle cross-section (FC), and a combined measure of both (FDC). Paired comparisons of metrics between three different time points were performed in patients. Linear regression was implemented between longitudinal changes of fixel-based metrics and the corresponding modifications in clinical parameters. A family-wise error corrected p < 0.05 was considered statistically significant. RESULTS AND DISCUSSIONS Early degeneration in the splenium of corpus callosum was identified as a typical alteration of Parkinson's disease over time. At follow-up, we observed significant FDC reductions compared with baseline in white matter, noticeably in corpus callosum; tapetum; cingulum, posterior thalamic radiation, corona radiata, and sagittal stratum. We also identified significant FC decreases that reflected damage to white matter structures involved in Parkinson's disease -related pathways. Fixel-based metrics were found to relate with a deterioration of 39-item Parkinson's Disease Questionnaire, Unified Parkinson's Disease Rating Scale and activity of daily living. A Parkinson's disease -facilitated aging effect was observed in terms of white matter disruption. CONCLUSION This study provides a thorough fixel-based profile of longitudinal white matter alterations occurring in patients with Parkinson's disease and new evidence of FC as an important role in white matter degeneration in this setting.
Collapse
Affiliation(s)
- Yi-Ai Rau
- Division of Chinese Acupuncture and Traumatology, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Shi-Ming Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Jacques-Donald Tournier
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Sung-Han Lin
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yao-Liang Chen
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Shao-Wen Yu
- Division of Chinese Acupuncture and Traumatology, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Yi-Ming Wu
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Chih-Chien Tsai
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan; Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|