1
|
Chen H, Xie M, Ouyang M, Yuan F, Yu J, Song S, Liu N, Zhang N. The impact of illness duration on brain activity in goal-directed and habit-learning systems in obsessive-compulsive disorder progression: A resting-state functional imaging study. Neuroscience 2024; 553:74-88. [PMID: 38964449 DOI: 10.1016/j.neuroscience.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
It is increasingly evident that structural and functional changes in brain regions associated with obsessive-compulsive disorder (OCD) are often related to the development of the disease. However, limited research has been conducted on how the progression of OCD may lead to an imbalance between goal-directed and habit-learning systems. This study employs resting-state functional imaging to examine the relationship between illness duration and abnormal brain function in goal-directed/habitual-learning systems. Demographic, clinical, and multimodal fMRI data were collected from participants. Our findings suggest that, compared to healthy controls, individuals with OCD exhibit abnormal brain functional indicators in both goal-directed and habit-learning brain regions, with a more pronounced reduction observed in the goal-directed regions. Additionally, abnormal brain activity is associated with illness duration, and the abnormalities observed in goal-directed regions are more effective in distinguishing different courses of OCD patients. Patients with different durations of OCD have functional abnormalities in the goal-directed and habitual-learning brain regions. There are differences in the degree of abnormality in different brain regions, and these abnormalities may disrupt the balance between goal-directed and habitual-learning systems, leading to increasing reliance on repetitive behaviors.
Collapse
Affiliation(s)
- Haocheng Chen
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Minyao Xie
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mengyuan Ouyang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fangzheng Yuan
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jianping Yu
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shasha Song
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Ning Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
2
|
Xu C, Hou G, He T, Ruan Z, Guo X, Chen J, Wei Z, Seger CA, Chen Q, Peng Z. Local structural and functional MRI markers of compulsive behaviors and obsessive-compulsive disorder diagnosis within striatum-based circuits. Psychol Med 2024; 54:710-720. [PMID: 37642202 DOI: 10.1017/s0033291723002386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a classic disorder on the compulsivity spectrum, with diverse comorbidities. In the current study, we sought to understand OCD from a dimensional perspective by identifying multimodal neuroimaging patterns correlated with multiple phenotypic characteristics within the striatum-based circuits known to be affected by OCD. METHODS Neuroimaging measurements of local functional and structural features and clinical information were collected from 110 subjects, including 51 patients with OCD and 59 healthy control subjects. Linked independent component analysis (LICA) and correlation analysis were applied to identify associations between local neuroimaging patterns across modalities (including gray matter volume, white matter integrity, and spontaneous functional activity) and clinical factors. RESULTS LICA identified eight multimodal neuroimaging patterns related to phenotypic variations, including three related to symptoms and diagnosis. One imaging pattern (IC9) that included both the amplitude of low-frequency fluctuation measure of spontaneous functional activity and white matter integrity measures correlated negatively with OCD diagnosis and diagnostic scales. Two imaging patterns (IC10 and IC27) correlated with compulsion symptoms: IC10 included primarily anatomical measures and IC27 included primarily functional measures. In addition, we identified imaging patterns associated with age, gender, and emotional expression across subjects. CONCLUSIONS We established that data fusion techniques can identify local multimodal neuroimaging patterns associated with OCD phenotypes. The results inform our understanding of the neurobiological underpinnings of compulsive behaviors and OCD diagnosis.
Collapse
Affiliation(s)
- Chuanyong Xu
- Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen, China
| | - Tingxin He
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Zhongqiang Ruan
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xinrong Guo
- Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jierong Chen
- Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhen Wei
- Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Carol A Seger
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Department of Psychology, Colorado State University, Fort Collins, Colorado, USA
| | - Qi Chen
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Ziwen Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
3
|
Martín-González E, Prados-Pardo Á, Sawiak SJ, Dalley JW, Padro D, Ramos-Cabrer P, Mora S, Moreno-Montoya M. Mapping the neuroanatomical abnormalities in a phenotype of male compulsive rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:19. [PMID: 37932782 PMCID: PMC10626819 DOI: 10.1186/s12993-023-00221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
Compulsivity is considered a transdiagnostic dimension in obsessive-compulsive and related disorders, characterized by heterogeneous cognitive and behavioral phenotypes associated with abnormalities in cortico-striatal-thalamic-cortical circuitry. The present study investigated the structural morphology of white and gray matter in rats selected for low- (LD) and high- (HD) compulsive drinking behavior on a schedule-induced polydipsia (SIP) task. Regional brain morphology was assessed using ex-vivo high-resolution magnetic resonance imaging (MRI). Voxel-based morphometry of segmented MRI images revealed larger white matter volumes in anterior commissure and corpus callosum of HD rats compared with LD rats. HD rats also showed significantly larger regional volumes of dorsolateral orbitofrontal cortex, striatum, amygdala, hippocampus, midbrain, sub-thalamic nucleus, and cerebellum. By contrast, the medial prefrontal cortex was significantly smaller in HD rats compared with LD rats with no significant group differences in whole brain, ventricular, or cerebrospinal fluid volumes. These findings show that limbic cortico-basal ganglia structures implicated in impulse control disorders are distinct in rats that are vulnerable to develop compulsive behavior. Such abnormalities may be relevant to the etiology of compulsive disorders in humans.
Collapse
Affiliation(s)
- Elena Martín-González
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Ángeles Prados-Pardo
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Stephen J Sawiak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Daniel Padro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain
| | - Pedro Ramos-Cabrer
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Santiago Mora
- Department of Neuroscience, University of Copenhagen Panum Institute, Copenhagen, Denmark
| | - Margarita Moreno-Montoya
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain.
| |
Collapse
|
4
|
Fouche JP, Groenewold NA, Sevenoaks T, Heany S, Lochner C, Alonso P, Batistuzzo MC, Cardoner N, Ching CRK, de Wit SJ, Gutman B, Hoexter MQ, Jahanshad N, Kim M, Kwon JS, Mataix-Cols D, Menchon JM, Miguel EC, Nakamae T, Phillips ML, Pujol J, Sakai Y, Yun JY, Soriano-Mas C, Thompson PM, Yamada K, Veltman DJ, van den Heuvel OA, Stein DJ. Shape analysis of subcortical structures in obsessive-compulsive disorder and the relationship with comorbid anxiety, depression, and medication use: A meta-analysis by the OCD Brain Imaging Consortium. Brain Behav 2022; 12:e2755. [PMID: 36106505 PMCID: PMC9575597 DOI: 10.1002/brb3.2755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Neuroimaging studies of obsessive-compulsive disorder (OCD) patients have highlighted the important role of deep gray matter structures. Less work has however focused on subcortical shape in OCD patients. METHODS Here we pooled brain MRI scans from 412 OCD patients and 368 controls to perform a meta-analysis utilizing the ENIGMA-Shape protocol. In addition, we investigated modulating effects of medication status, comorbid anxiety or depression, and disease duration on subcortical shape. RESULTS There was no significant difference in shape thickness or surface area between OCD patients and healthy controls. For the subgroup analyses, OCD patients with comorbid depression or anxiety had lower thickness of the hippocampus and caudate nucleus and higher thickness of the putamen and pallidum compared to controls. OCD patients with comorbid depression had lower shape surface area in the thalamus, caudate nucleus, putamen, hippocampus, and nucleus accumbens and higher shape surface area in the pallidum. OCD patients with comorbid anxiety had lower shape surface area in the putamen and the left caudate nucleus and higher shape surface area in the pallidum and the right caudate nucleus. Further, OCD patients on medication had lower shape thickness of the putamen, thalamus, and hippocampus and higher thickness of the pallidum and caudate nucleus, as well as lower shape surface area in the hippocampus and amygdala and higher surface area in the putamen, pallidum, and caudate nucleus compared to controls. There were no significant differences between OCD patients without co-morbid anxiety and/or depression and healthy controls on shape measures. In addition, there were also no significant differences between OCD patients not using medication and healthy controls. CONCLUSIONS The findings here are partly consistent with prior work on brain volumes in OCD, insofar as they emphasize that alterations in subcortical brain morphology are associated with comorbidity and medication status. Further work is needed to understand the biological processes contributing to subcortical shape.
Collapse
Affiliation(s)
- Jean-Paul Fouche
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nynke A Groenewold
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Tatum Sevenoaks
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sarah Heany
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Christine Lochner
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Pino Alonso
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.,Carlos III Health Institute, Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Marcelo C Batistuzzo
- Department & Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Department of Methods and Techniques in Psychology, Pontifical Catholic University, Sao Paulo, SP, Brazil
| | - Narcis Cardoner
- Carlos III Health Institute, Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Sant Pau Mental Health Group, Institut d'Investigacio Biomedica Sant Pau (IBB-Sant Pau), Hospital de la Sant Creu i Sant Pau, Barcelona, Spain.,Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Christopher R K Ching
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - Stella J de Wit
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Boris Gutman
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Marcelo Q Hoexter
- Department & Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Neda Jahanshad
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, SNU MRC, Seoul, Republic of Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - David Mataix-Cols
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jose M Menchon
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.,Carlos III Health Institute, Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Euripedes C Miguel
- Department & Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Takashi Nakamae
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Jesus Pujol
- MRI Research Unit, Radiology Department, Hospital del Mar, Barcelona, Spain
| | - Yuki Sakai
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of Korea.,Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.,Carlos III Health Institute, Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona-UB, Barcelona, Spain
| | - Paul M Thompson
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - Kei Yamada
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
5
|
Wang Z, Fontaine M, Cyr M, Rynn MA, Simpson HB, Marsh R, Pagliaccio D. Subcortical shape in pediatric and adult obsessive-compulsive disorder. Depress Anxiety 2022; 39:504-514. [PMID: 35485920 PMCID: PMC9813975 DOI: 10.1002/da.23261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/22/2022] [Accepted: 04/16/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) implicates alterations in cortico-striato-thalamo-cortical and fronto-limbic circuits. Building on prior structural findings, this is the largest study to date examining subcortical surface morphometry in OCD. METHODS Structural magnetic resonance imaging data were collected from 200 participants across development (5-55 years): 28 youth and 75 adults with OCD and 27 psychiatrically healthy youth and 70 adults. General linear models were used to assess group differences and group-by-age interactions on subcortical shape (FSL FIRST). RESULTS Compared to healthy participants, those with OCD exhibited surface expansions on the right nucleus accumbens and inward left amygdala deformations, which were associated with greater OCD symptom severity ([Children's] Yale-Brown Obsessive-Compulsive Scale). Group-by-age interactions indicated that accumbens group differences were driven by younger participants and that right pallidum shape was associated inversely with age in healthy participants, but not in participants with OCD. No differences in the shape of other subcortical regions or in volumes (FreeSurfer) were detected in supplementary analyses. CONCLUSIONS This study is the largest to date examining subcortical shape in OCD and the first to do so across the developmental spectrum. NAcc and amygdala shape deformation builds on extant neuroimaging findings and suggests subtle, subregional alterations beyond volumetric findings. Results shed light on morphometric alterations in OCD, informing current pathophysiological models.
Collapse
Affiliation(s)
- Zhishun Wang
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Martine Fontaine
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Marilyn Cyr
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Moira A. Rynn
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Helen Blair Simpson
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Rachel Marsh
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - David Pagliaccio
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
6
|
Ren CY, Liu PP, Li J, Li YQ, Zhang LJ, Chen GH, Dong FY, Hu D, Zhang M. Changes in telomere length and serum neurofilament light chain levels in female patients with chronic insomnia disorder. J Clin Sleep Med 2022; 18:383-392. [PMID: 34319229 PMCID: PMC8805003 DOI: 10.5664/jcsm.9574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
STUDY OBJECTIVES The aims of this study were to explore changes in the telomere length (relative telomere repeat copy/single-copy gene [T/S ratio]) and serum neurofilament light chain (sNfL) levels in female patients with chronic insomnia disorder (CID), examine their relationships with emotional abnormalities and cognitive impairment, and determine whether these 2 indicators were independently associated with sleep quality. METHODS The CID group contained 80 patients diagnosed with CID, and 51 individuals constituted a healthy control group. Participants completed sleep, emotion, and cognition assessments. Telomere length was detected through quantitative real-time polymerase chain reaction. Enzyme-linked immunosorbent assay was used to determine sNfL concentrations. RESULTS Relative to the healthy control group, the CID group had elevated Pittsburgh Sleep Quality Index, Hamilton Anxiety Scale-14, and Hamilton Depression Rating Scale-17 scores and reduced Montreal Cognitive Assessment scale scores, a decreased T/S ratio, and an increased sNfL concentration. Subgroup analysis according to various CID-associated sleep factors showed that poor sleep performance corresponded to a lower T/S ratio. Higher anxiety levels and more cognitive dysfunction correlated with shorter telomere lengths. The T/S ratio negatively correlated with age, whereas the sNfL concentration positively correlated with age in the CID group. The Pittsburgh Sleep Quality Index score negatively correlated with the T/S ratio but did not correlate with sNfL levels. Multiple linear regression analysis showed that the T/S ratio had a negative and independent effect on Pittsburgh Sleep Quality Index scores. CONCLUSIONS The CID group had shorter telomeres and higher sNfL concentrations, and reduced telomere length independently affected sleep quality. CITATION Ren C-Y, Liu P-P, Li J, et al. Changes in telomere length and serum neurofilament light chain levels in female patients with chronic insomnia disorder. J Clin Sleep Med. 2022;18(2):383-392.
Collapse
Affiliation(s)
- Chong-Yang Ren
- Department of General Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Pei-Pei Liu
- Department of Neurology, Fu Yang Fifth People’s Hospital, Fuyang, P.R. China
| | - Jing Li
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology (The First People’s Hospital of Huainan City), Huainan, P.R. China
| | - Ya-Qiang Li
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology (The First People’s Hospital of Huainan City), Huainan, P.R. China
| | - Li-jun Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, P.R. China,Key Laboratory of Industrial Dust Prevention and Control and Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, P.R. China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Chaohu, P.R. China
| | - Fang-yi Dong
- Department of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China;,Address correspondence to: Mei Zhang, MD; ; Dong Hu, PhD; ; and Fang-yi Dong, PhD;
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, P.R. China,Key Laboratory of Industrial Dust Prevention and Control and Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, P.R. China,Address correspondence to: Mei Zhang, MD; ; Dong Hu, PhD; ; and Fang-yi Dong, PhD;
| | - Mei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology (The First People’s Hospital of Huainan City), Huainan, P.R. China,School of Medicine, Anhui University of Science and Technology, Huainan, P.R. China,Key Laboratory of Industrial Dust Prevention and Control and Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, P.R. China,Address correspondence to: Mei Zhang, MD; ; Dong Hu, PhD; ; and Fang-yi Dong, PhD;
| |
Collapse
|
7
|
Schneider TM, Ma J, Wagner P, Behl N, Nagel AM, Ladd ME, Heiland S, Bendszus M, Straub S. Multiparametric MRI for Characterization of the Basal Ganglia and the Midbrain. Front Neurosci 2021; 15:661504. [PMID: 34234639 PMCID: PMC8255625 DOI: 10.3389/fnins.2021.661504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Objectives To characterize subcortical nuclei by multi-parametric quantitative magnetic resonance imaging. Materials and Methods: The following quantitative multiparametric MR data of five healthy volunteers were acquired on a 7T MRI system: 3D gradient echo (GRE) data for the calculation of quantitative susceptibility maps (QSM), GRE sequences with and without off-resonant magnetic transfer pulse for magnetization transfer ratio (MTR) calculation, a magnetization−prepared 2 rapid acquisition gradient echo sequence for T1 mapping, and (after a coil change) a density-adapted 3D radial pulse sequence for 23Na imaging. First, all data were co-registered to the GRE data, volumes of interest (VOIs) for 21 subcortical structures were drawn manually for each volunteer, and a combined voxel-wise analysis of the four MR contrasts (QSM, MTR, T1, 23Na) in each structure was conducted to assess the quantitative, MR value-based differentiability of structures. Second, a machine learning algorithm based on random forests was trained to automatically classify the groups of multi-parametric voxel values from each VOI according to their association to one of the 21 subcortical structures. Results The analysis of the integrated multimodal visualization of quantitative MR values in each structure yielded a successful classification among nuclei of the ascending reticular activation system (ARAS), the limbic system and the extrapyramidal system, while classification among (epi-)thalamic nuclei was less successful. The machine learning-based approach facilitated quantitative MR value-based structure classification especially in the group of extrapyramidal nuclei and reached an overall accuracy of 85% regarding all selected nuclei. Conclusion Multimodal quantitative MR enabled excellent differentiation of a wide spectrum of subcortical nuclei with reasonable accuracy and may thus enable sensitive detection of disease and nucleus-specific MR-based contrast alterations in the future.
Collapse
Affiliation(s)
- Till M Schneider
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Jackie Ma
- Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
| | - Patrick Wagner
- Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
| | - Nicolas Behl
- Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Armin M Nagel
- Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany.,Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Physics and Astronomy and Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Sina Straub
- Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
8
|
Jurng J, Park H, Kim T, Park I, Moon SY, Lho SK, Kim M, Kwon JS. Smaller volume of posterior thalamic nuclei in patients with obsessive-compulsive disorder. NEUROIMAGE-CLINICAL 2021; 30:102686. [PMID: 34215156 PMCID: PMC8102624 DOI: 10.1016/j.nicl.2021.102686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/25/2022]
Abstract
Thalamic subregional volumes were compared between medication-free OCD and HC groups. Left posterior thalamic nuclei volumes were smaller in OCD patients compared to HCs. The smaller thalamic subregional volumes were associated with later onset of OCD. Posterior thalamic nuclei volume may reflect OCD subtype related to the age of onset.
Aim Although the thalamus is a key structure in the pathophysiology of obsessive–compulsive disorder (OCD), reports regarding thalamic volume alterations in OCD patients have been inconsistent. Because the thalamus has a complex structure with distinct functions, we investigated subregional volume changes in the thalamus and their relationship with clinical attributes in a large sample of medication-free OCD patients. Methods We collected T1-weighted magnetic resonance imaging data from 177 OCD patients and 152 healthy controls (HCs). Using FreeSurfer, we segmented the thalamus into 12 nuclei groups; subregional volumes were compared between groups using an analysis of covariance. The relationships between altered thalamic volumes and OC symptom severity and OCD onset age were investigated. Results Compared to HCs, OCD patients showed a smaller volume of the left posterior thalamic nuclei. Other thalamic subregions did not show significant group differences. There was a significant negative correlation between the volume of the left posterior thalamic nuclei and the age of OCD onset but no significant correlation with OC symptom severity. Conclusions This is the first study to report reduced volume of the posterior thalamic nuclei in a large sample of medication-free OCD patients. Our results suggest that the volume of posterior thalamic nuclei may reflect different pathophysiological mechanisms of OCD subtypes related to the age of onset. Additional studies with pediatric samples are required to clarify the relationship between thalamic alterations and the onset age of OCD.
Collapse
Affiliation(s)
- Jinhyung Jurng
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyungyou Park
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Inkyung Park
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sun-Young Moon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Silvia Kyungjin Lho
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
9
|
Pope HG, Kanayama G, Hudson JI, Kaufman MJ. Review Article: Anabolic-Androgenic Steroids, Violence, and Crime: Two Cases and Literature Review. Am J Addict 2021; 30:423-432. [PMID: 33870584 DOI: 10.1111/ajad.13157] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/16/2021] [Accepted: 02/04/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Anabolic-androgenic steroid (AAS) use has become a major worldwide substance use disorder, affecting tens of millions of individuals. Importantly, it is now increasingly recognized that some individuals develop uncharacteristically violent or criminal behaviors when using AAS. We sought to summarize available information on this topic. METHODS We reviewed the published literature on AAS-induced behavioral effects and augmented this information with extensive observations from our clinical and forensic experience. RESULTS It is now generally accepted that some AAS users develop uncharacteristically violent or criminal behaviors while taking these drugs. Although these behaviors may partially reflect premorbid psychopathology, sociocultural factors, or expectational effects, accumulating evidence suggests that they are also attributable to biological effects of AAS themselves. The mechanism of these effects remains speculative, but preliminary data suggest a possible role for brain regions involved in emotional reactivity, such as the amygdala and regions involved in cognitive control, including the frontal cortex. For unknown reasons, these effects appear idiosyncratic; most AAS users display few behavioral effects, but a minority develops severe effects. CONCLUSION AND SCIENTIFIC SIGNIFICANCE Professionals encountering AAS users in clinical or forensic settings should be alert to the possibility of AAS-induced violence or criminality and should employ strategies to assess whether AAS is indeed a contributory factor in a given case. Further research is needed to elucidate the mechanism of AAS-induced violence and to explain why only a subset of AAS users appears vulnerable to these effects. (Am J Addict 2021;00:00-00).
Collapse
Affiliation(s)
- Harrison G Pope
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Gen Kanayama
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - James I Hudson
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Marc J Kaufman
- Harvard Medical School, Boston, Massachusetts.,McLean Imaging Center, McLean Hospital, Belmont, Massachusetts
| |
Collapse
|
10
|
Deep brain stimulation response in obsessive-compulsive disorder is associated with preoperative nucleus accumbens volume. NEUROIMAGE-CLINICAL 2021; 30:102640. [PMID: 33799272 PMCID: PMC8044711 DOI: 10.1016/j.nicl.2021.102640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022]
Abstract
Preoperative MRI was associated with 12-months DBS treatment outcome in OCD patients. Larger nucleus accumbens volume was associated with larger clinical improvement. Machine learning analysis was not successful in predicting clinical improvement.
Background Deep brain stimulation (DBS) is a new treatment option for patients with therapy-resistant obsessive–compulsive disorder (OCD). Approximately 60% of patients benefit from DBS, which might be improved if a biomarker could identify patients who are likely to respond. Therefore, we evaluated the use of preoperative structural magnetic resonance imaging (MRI) in predicting treatment outcome for OCD patients on the group- and individual-level. Methods In this retrospective study, we analyzed preoperative MRI data of a large cohort of patients who received DBS for OCD (n = 57). We used voxel-based morphometry to investigate whether grey matter (GM) or white matter (WM) volume surrounding the DBS electrode (nucleus accumbens (NAc), anterior thalamic radiation), and whole-brain GM/WM volume were associated with OCD severity and response status at 12-month follow-up. In addition, we performed machine learning analyses to predict treatment outcome at an individual-level and evaluated its performance using cross-validation. Results Larger preoperative left NAc volume was associated with lower OCD severity at 12-month follow-up (pFWE < 0.05). None of the individual-level regression/classification analyses exceeded chance-level performance. Conclusions These results provide evidence that patients with larger NAc volumes show a better response to DBS, indicating that DBS success is partly determined by individual differences in brain anatomy. However, the results also indicate that structural MRI data alone does not provide sufficient information to guide clinical decision making at an individual level yet.
Collapse
|