1
|
Zhang G, Chen Y, Tang L, Bai L, Zhang H, Liu H, Fan D. Impact of sleep quality on disease progression in early-stage amyotrophic lateral sclerosis. Front Neurol 2025; 16:1545463. [PMID: 40276468 PMCID: PMC12018231 DOI: 10.3389/fneur.2025.1545463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/17/2025] [Indexed: 04/26/2025] Open
Abstract
Non-motor symptoms are clinical manifestations of amyotrophic lateral sclerosis (ALS). However, few studies have examined these symptoms in patients with early-stage ALS. We conducted a cross-sectional study to explore non-motor symptoms in 69 patients with ALS within 18 months of disease onset. The Pittsburgh Sleep Quality Index (PSQI), the Epworth Sleepiness Scale (ESS), and the Hospital Anxiety and Depression Scale (HADS) were used to evaluate sleep quality, daytime sleepiness, and anxiety and depression, respectively. Differences in the abovementioned non-motor symptoms between ALS patients and age-/sex-matched caregivers were examined, and correlations between these symptoms and the clinical features of ALS were analyzed. Compared to caregivers, ALS patients were more likely to report poor sleep [odds ratio (OR) and 95% confidence interval (95% CI) = 2.664, 1.276-5.560; p = 0.009] and excessive daytime sleepiness (EDS) [OR and 95% CI = 5.135, 1.640-16.072; p = 0.005]. The PSQI scores in ALS patients correlated significantly with the disease progression rate [ΔFS = (48-score on the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised, ALSFRS-R)/disease duration] [β(95% CI) = 2.867 (0.397, 5.336), p = 0.024] and plasma neurofilament light chain (NfL) levels [β (95% CI) = 0.041 (0.012, 0.070), p = 0.008). Our results revealed that the patients with early-stage ALS experienced poor sleep quality and daytime sleepiness and suggested that low sleep quality may be related to more rapid disease progression. Confounders were not obvious in the early stage of ALS, and our results suggested that these symptoms may be related to more severe and extensive pathological changes in the central nervous system.
Collapse
Affiliation(s)
- Gan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Yong Chen
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Linna Bai
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Hui Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Hong Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
2
|
Finegan E, Kleinerova J, Hardiman O, Hutchinson S, Garcia-Gallardo A, Tan EL, Bede P. Pseudobulbar affect: clinical associations, social impact and quality of life implications - Lessons from PLS. J Neurol 2025; 272:266. [PMID: 40072589 PMCID: PMC11903626 DOI: 10.1007/s00415-025-12971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Pseudobulbar affect (PBA) is a well-recognised and troublesome clinical phenomenon in a range of neuroinflammatory, neoplastic, neurovascular and neurodegenerative conditions. It is often under-recognised in the community, frequently mistaken for psychiatric manifestations, appropriate pharmacological treatment is often delayed, and may result in a sense of embarrassment or lead to social isolation. Despite its considerable quality of life (QoL) implications and the challenges associated with its effective management, it is notoriously understudied. METHODS As the incidence of PBA is lower in non-motor neuron disease patient cohorts, and the social and QoL impact of PBA is not sufficiently recognised, a purpose-designed study was conducted in a Primary Lateral Sclerosis (PLS) cohort to assess the clinical correlates and social impact of PBA. RESULTS PBA was very strongly associated with pseudo-bulbar motor dysfunction. Dysphagia (OR 14, P = .005) and the presence of abnormal jaw jerk (OR 19.8, P < 0.001) greatly increased odds of PBA. There was no significant difference in the cognitive or behavioural profiles between those with PBA and those without it. Poorly controlled laughing (85%) was more prevalent than crying (69%) among PLS patients with PBA. No individual experienced PBA symptoms prior to the motor manifestations of PLS. Most patients were unaware that PBA was common in their neurological condition. The mean PBA Impact score was 5 (range 1-17) and correlated with CNS-LS crying subscores (r = .693, p = .006). DISCUSSION The severity of pseudobulbar affect correlates with motor manifestations of pseudobulbar palsy, a link supporting emerging imaging studies regarding bilateral corticobulbar tract degeneration as in important aetiological factor. The social and quality of life ramifications of pseudobulbar affect can be readily demonstrated by purpose-designed questionnaires. CONCLUSIONS Despite sporadic reports, the clinical, social, caregiver burden and quality of life implications of pseudobulbar affect remain poorly characterised. The comprehensive evaluation of the clinical correlates of PBA helps to elucidate the underlying pathophysiology. Ultimately, the comprehensive assessment of both the aetiology and social impact of PBA helps to raise awareness of this entity, reduce misdiagnoses, enhance the early recognition of this phenomenon and encourage proactive pharmacological intervention.
Collapse
Affiliation(s)
- Eoin Finegan
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College, Pearse Street, Dublin, Ireland
| | - Jana Kleinerova
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College, Pearse Street, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College, Pearse Street, Dublin, Ireland
| | | | | | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College, Pearse Street, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College, Pearse Street, Dublin, Ireland.
- Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
3
|
Kleinerova J, Chipika RH, Tan EL, Yunusova Y, Marchand-Pauvert V, Kassubek J, Pradat PF, Bede P. Sensory Dysfunction in ALS and Other Motor Neuron Diseases: Clinical Relevance, Histopathology, Neurophysiology, and Insights from Neuroimaging. Biomedicines 2025; 13:559. [PMID: 40149536 PMCID: PMC11940395 DOI: 10.3390/biomedicines13030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The clinical profiles of MNDs are dominated by inexorable motor decline, but subclinical proprioceptive, nociceptive and somatosensory deficits may also exacerbate mobility, dexterity, and bulbar function. While extra-motor pathology and frontotemporal involvement are widely recognised in motor neuron diseases (MNDs), reports of sensory involvement are conflicting. The potential contribution of sensory deficits to clinical disability is not firmly established and the spectrum of sensory manifestations is poorly characterised. Methods: A systematic review was conducted to examine the clinical, neuroimaging, electrophysiology and neuropathology evidence for sensory dysfunction in MND phenotypes. Results: In ALS, paraesthesia, pain, proprioceptive deficits and taste alterations are sporadically reported and there is also compelling electrophysiological, histological and imaging evidence of sensory network alterations. Gait impairment, impaired dexterity, and poor balance in ALS are likely to be multifactorial, with extrapyramidal, cerebellar, proprioceptive and vestibular deficits at play. Human imaging studies and animal models also confirm dorsal column-medial lemniscus pathway involvement as part of the disease process. Sensory symptoms are relatively common in spinal and bulbar muscular atrophy (SBMA) and Hereditary Spastic Paraplegia (HSP), but are inconsistently reported in primary lateral sclerosis (PLS) and in post-poliomyelitis syndrome (PPS). Conclusions: Establishing the prevalence and nature of sensory dysfunction across the spectrum of MNDs has a dual clinical and academic relevance. From a clinical perspective, subtle sensory deficits are likely to impact the disability profile and care needs of patients with MND. From an academic standpoint, sensory networks may be ideally suited to evaluate propagation patterns and the involvement of subcortical grey matter structures. Our review suggests that sensory dysfunction is an important albeit under-recognised facet of MND.
Collapse
Affiliation(s)
- Jana Kleinerova
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Rangariroyashe H. Chipika
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yana Yunusova
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Jan Kassubek
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany;
| | - Pierre-Francois Pradat
- Laboratoire d’Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, 75013 Paris, France
- Department of Neurology, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Peter Bede
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Neurology, St James’s Hospital Dublin, D08 NHY1 Dublin, Ireland
| |
Collapse
|
4
|
Kleinerova J, Garcia-Gallardo A, Tacheva A, Bede P. Subcortical grey matter involvement in ALS and PLS - vulnerable hubs of cortico-cortical and cortico-basal circuits: extrapyramidal, cognitive, bulbar and respiratory correlates. Amyotroph Lateral Scler Frontotemporal Degener 2025; 26:1-4. [PMID: 39317352 DOI: 10.1080/21678421.2024.2405130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Evidence from neuroimaging studies suggests that the cardinal clinical manifestations of ALS stem from the dysfunction of specific neural networks. The majority of cortico-cortical and cortico-basal networks are physiologically relayed by deep cerebral and cerebellar grey matter nuclei which have been increasingly implicated in the pathophysiology of ALS. A series of recent human imaging papers revealed volume reductions, shape deformations, metabolic alterations and more recently, susceptibility changes in hippocampal subfields, thalamic, striatal, amygdalar and cerebellar nuclei. Thalamic changes have been identified in presymptomatic mutation carriers long before symptom onset and longitudinal studies have consistently confirmed progressive subcortical degeneration during the symptomatic phase of the disease. The dysfunction of circuits relayed by specific subcortical nuclei has been associated with apathy, amnestic deficits, limbic symptoms, extrapyramidal manifestations, sensory disturbances, pseudobulbar affect and cerebellar deficits. In light of emerging imaging data, the clinical heterogeneity of ALS is probably best approached from a network integrity perspective. Accordingly, the comprehensive assessment of subcortical grey matter nuclei seems imperative to untangle complex clinical phenomena in ALS.
Collapse
Affiliation(s)
- Jana Kleinerova
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, Dublin, Ireland and
| | - Angela Garcia-Gallardo
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, Dublin, Ireland and
- Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Asya Tacheva
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, Dublin, Ireland and
- Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, Dublin, Ireland and
- Department of Neurology, St James's Hospital, Dublin, Ireland
| |
Collapse
|
5
|
Zhang G, Cao W, Wang Z, Xia K, Deng B, Fan D. Associations of Abnormal Sleep Duration and Chronotype with Higher Risk of Incident Amyotrophic Lateral Sclerosis: A UK Biobank Prospective Cohort Study. Biomedicines 2024; 13:49. [PMID: 39857633 PMCID: PMC11762514 DOI: 10.3390/biomedicines13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Background: The occurrence of sleep disturbances in amyotrophic lateral sclerosis (ALS) patients is widely reported. However, there is still a lack of reliable evidence of a relationship between sleep disturbances and the risk of developing ALS. The aim of this study was to prospectively investigate the longitudinal associations between sleep traits and the risk of incident ALS. Methods: We included information from 409,045 individuals from the prospective cohort of the UK Biobank. Sleep traits at baseline were measured using a standardized questionnaire. All sleep traits were analyzed in relation to the subsequent incidence of ALS using Cox proportional hazards models. Results: Multivariate analysis showed that 6-7 h of sleep was related to the lowest risk for ALS. A long sleep duration (≥8 h) was associated with an increased risk of ALS incidence (HR: 1.31, 95% CI: 1.07-1.61; p = 0.009). A short sleep duration (<6 h) was associated with an increased risk of ALS incidence (HR: 1.91, 95% CI: 1.10-3.30, p = 0.021) in females. In participants aged ≥65 years, eveningness was associated with increased ALS risk (HR: 1.32, 95% CI: 1.08-1.61; p = 0.006). Conclusion: Our results hint at a sleep duration that is too short or too long, and certain chronotypes might be related to the risk of developing ALS. Despite the limitations imposed by the study design and the subjectivity of sleep information, our findings suggest that sleep disturbances may influence the risk of developing ALS.
Collapse
Affiliation(s)
- Gan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (G.Z.); (W.C.); (Z.W.); (K.X.)
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
| | - Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (G.Z.); (W.C.); (Z.W.); (K.X.)
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
| | - Zhuoya Wang
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (G.Z.); (W.C.); (Z.W.); (K.X.)
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
| | - Kailin Xia
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (G.Z.); (W.C.); (Z.W.); (K.X.)
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (G.Z.); (W.C.); (Z.W.); (K.X.)
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
- Key Laboratory for Neuroscience, National Health Commission, Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
McKenna MC, Kleinerova J, Power A, Garcia-Gallardo A, Tan EL, Bede P. Quantitative and Computational Spinal Imaging in Neurodegenerative Conditions and Acquired Spinal Disorders: Academic Advances and Clinical Prospects. BIOLOGY 2024; 13:909. [PMID: 39596864 PMCID: PMC11592215 DOI: 10.3390/biology13110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Introduction: Quantitative spinal cord imaging has facilitated the objective appraisal of spinal cord pathology in a range of neurological conditions both in the academic and clinical setting. Diverse methodological approaches have been implemented, encompassing a range of morphometric, diffusivity, susceptibility, magnetization transfer, and spectroscopy techniques. Advances have been fueled both by new MRI platforms and acquisition protocols as well as novel analysis pipelines. The quantitative evaluation of specific spinal tracts and grey matter indices has the potential to be used in diagnostic and monitoring applications. The comprehensive characterization of spinal disease burden in pre-symptomatic cohorts, in carriers of specific genetic mutations, and in conditions primarily associated with cerebral disease, has contributed important academic insights. Methods: A narrative review was conducted to examine the clinical and academic role of quantitative spinal cord imaging in a range of neurodegenerative and acquired spinal cord disorders, including hereditary spastic paraparesis, hereditary ataxias, motor neuron diseases, Huntington's disease, and post-infectious or vascular disorders. Results: The clinical utility of specific methods, sample size considerations, academic role of spinal imaging, key radiological findings, and relevant clinical correlates are presented in each disease group. Conclusions: Quantitative spinal cord imaging studies have demonstrated the feasibility to reliably appraise structural, microstructural, diffusivity, and metabolic spinal cord alterations. Despite the notable academic advances, novel acquisition protocols and analysis pipelines are yet to be implemented in the clinical setting.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Jana Kleinerova
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
| | - Alan Power
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Angela Garcia-Gallardo
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| |
Collapse
|
7
|
Tan EL, Lope J, Bede P. Primary lateral sclerosis: more than just an upper motor neuron disease. Neural Regen Res 2024; 19:1881-1882. [PMID: 38227508 DOI: 10.4103/1673-5374.391184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/18/2023] [Indexed: 01/17/2024] Open
Affiliation(s)
- Ee Ling Tan
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Ireland
- Department of Neurology, St James's Hospital, Dublin, Ireland
| |
Collapse
|
8
|
Kleinerova J, McKenna MC, Finnegan M, Tacheva A, Garcia-Gallardo A, Mohammed R, Tan EL, Christidi F, Hardiman O, Hutchinson S, Bede P. Clinical, Cortical, Subcortical, and White Matter Features of Right Temporal Variant FTD. Brain Sci 2024; 14:806. [PMID: 39199498 PMCID: PMC11352857 DOI: 10.3390/brainsci14080806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
The distinct clinical and radiological characteristics of right temporal variant FTD have only been recently recognized. METHODS Eight patients with right temporal variant FTD were prospectively recruited and underwent a standardised neuropsychological assessment, clinical MRI, and quantitative neuroimaging. RESULTS Our voxelwise grey analyses captured bilateral anterior and mesial temporal grey matter atrophy with a clear right-sided predominance. Bilateral hippocampal involvement was also observed, as well as disease burden in the right insular and opercula regions. White matter integrity alterations were also bilateral in anterior temporal and sub-insular regions with a clear right-hemispheric predominance. Extra-temporal white matter alterations have also been observed in orbitofrontal and parietal regions. Significant bilateral but right-predominant thalamus, putamen, hippocampus, and amygdala atrophy was identified based on subcortical segmentation. The clinical profile of our patients was dominated by progressive indifference, decline in motivation, loss of interest in previously cherished activities, incremental social withdrawal, difficulty recognising people, progressive language deficits, increasingly rigid routines, and repetitive behaviours. CONCLUSIONS Right temporal variant FTD has an insidious onset and may be mistaken for depression at symptom onset. It manifests in a combination of apathy, language, and behavioural features. Quantitative MR imaging captures a characteristic bilateral but right-predominant temporal imaging signature with extra-temporal frontal and parietal involvement.
Collapse
Affiliation(s)
- Jana Kleinerova
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| | - Martha Finnegan
- Department of Psychiatry, Tallaght University Hospital, D24 NR0A Dublin, Ireland
| | - Asya Tacheva
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | | | - Rayan Mohammed
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Foteini Christidi
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| |
Collapse
|
9
|
Christidi F, Kleinerova J, Tan EL, Delaney S, Tacheva A, Hengeveld JC, Doherty MA, McLaughlin RL, Hardiman O, Siah WF, Chang KM, Lope J, Bede P. Limbic Network and Papez Circuit Involvement in ALS: Imaging and Clinical Profiles in GGGGCC Hexanucleotide Carriers in C9orf72 and C9orf72-Negative Patients. BIOLOGY 2024; 13:504. [PMID: 39056697 PMCID: PMC11273537 DOI: 10.3390/biology13070504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Background: While frontotemporal involvement is increasingly recognized in Amyotrophic lateral sclerosis (ALS), the degeneration of limbic networks remains poorly characterized, despite growing evidence of amnestic deficits, impaired emotional processing and deficits in social cognition. Methods: A prospective neuroimaging study was conducted with 204 individuals with ALS and 111 healthy controls. Patients were stratified for hexanucleotide expansion status in C9orf72. A deep-learning-based segmentation approach was implemented to segment the nucleus accumbens, hypothalamus, fornix, mammillary body, basal forebrain and septal nuclei. The cortical, subcortical and white matter components of the Papez circuit were also systematically evaluated. Results: Hexanucleotide repeat expansion carriers exhibited bilateral amygdala, hypothalamus and nucleus accumbens atrophy, and C9orf72 negative patients showed bilateral basal forebrain volume reductions compared to controls. Both patient groups showed left rostral anterior cingulate atrophy, left entorhinal cortex thinning and cingulum and fornix alterations, irrespective of the genotype. Fornix, cingulum, posterior cingulate, nucleus accumbens, amygdala and hypothalamus degeneration was more marked in C9orf72-positive ALS patients. Conclusions: Our results highlighted that mesial temporal and parasagittal subcortical degeneration is not unique to C9orf72 carriers. Our radiological findings were consistent with neuropsychological observations and highlighted the importance of comprehensive neuropsychological testing in ALS, irrespective of the underlying genotype.
Collapse
Affiliation(s)
- Foteini Christidi
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Jana Kleinerova
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Siobhan Delaney
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| | - Asya Tacheva
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| | | | - Mark A. Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | | | - Orla Hardiman
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Kai Ming Chang
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| |
Collapse
|
10
|
Kleinerova J, Tahedl M, Tan EL, Delaney S, Hengeveld JC, Doherty MA, McLaughlin RL, Hardiman O, Chang KM, Finegan E, Bede P. Supra- and infra-tentorial degeneration patterns in primary lateral sclerosis: a multimodal longitudinal neuroradiology study. J Neurol 2024; 271:3239-3255. [PMID: 38438819 PMCID: PMC11136747 DOI: 10.1007/s00415-024-12261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Primary lateral sclerosis (PLS) is traditionally solely associated with progressive upper motor neuron dysfunction manifesting in limb spasticity, gait impairment, bulbar symptoms and pseudobulbar affect. Recent studies have described frontotemporal dysfunction in some patients resulting in cognitive manifestations. Cerebellar pathology is much less well characterised despite sporadic reports of cerebellar disease. METHODS A multi-timepoint, longitudinal neuroimaging study was conducted to characterise the evolution of both intra-cerebellar disease burden and cerebro-cerebellar connectivity. The volumes of deep cerebellar nuclei, cerebellar cortical volumes, cerebro-cerebellar structural and functional connectivity were assessed longitudinally in a cohort of 43 individuals with PLS. RESULTS Cerebello-frontal, -temporal, -parietal, -occipital and cerebello-thalamic structural disconnection was detected at baseline based on radial diffusivity (RD) and cerebello-frontal decoupling was also evident based on fractional anisotropy (FA) alterations. Functional connectivity changes were also detected in cerebello-frontal, parietal and occipital projections. Volume reductions were identified in the vermis, anterior lobe, posterior lobe, and crura. Among the deep cerebellar nuclei, the dorsal dentate was atrophic. Longitudinal follow-up did not capture statistically significant progressive changes. Significant primary motor cortex atrophy and inter-hemispheric transcallosal degeneration were also captured. CONCLUSIONS PLS is not only associated with upper motor neuron dysfunction, but cerebellar cortical volume loss and deep cerebellar nuclear atrophy can also be readily detected. In addition to intra-cerebellar disease burden, cerebro-cerebellar connectivity alterations also take place. Our data add to the evolving evidence of widespread neurodegeneration in PLS beyond the primary motor regions. Cerebellar dysfunction in PLS is likely to exacerbate bulbar, gait and dexterity impairment and contribute to pseudobulbar affect.
Collapse
Affiliation(s)
- Jana Kleinerova
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Marlene Tahedl
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Siobhan Delaney
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Department of Neurology, St James's Hospital, Dublin, Ireland
| | | | - Mark A Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Orla Hardiman
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Kai Ming Chang
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
- Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
11
|
Mohammadi S, Ghaderi S, Fatehi F. MRI biomarkers and neuropsychological assessments of hippocampal and parahippocampal regions affected by ALS: A systematic review. CNS Neurosci Ther 2024; 30:e14578. [PMID: 38334254 PMCID: PMC10853901 DOI: 10.1111/cns.14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a progressive motor and extra-motor neurodegenerative disease. This systematic review aimed to examine MRI biomarkers and neuropsychological assessments of the hippocampal and parahippocampal regions in patients with ALS. METHODS A systematic review was conducted in the Scopus and PubMed databases for studies published between January 2000 and July 2023. The inclusion criteria were (1) MRI studies to assess hippocampal and parahippocampal regions in ALS patients, and (2) studies reporting neuropsychological data in patients with ALS. RESULTS A total of 46 studies were included. Structural MRI revealed hippocampal atrophy, especially in ALS-FTD, involving specific subregions (CA1, dentate gyrus). Disease progression and genetic factors impacted atrophy patterns. Diffusion tensor imaging (DTI) showed increased mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and decreased fractional anisotropy (FA) in the hippocampal tracts and adjacent regions, indicating loss of neuronal and white matter integrity. Functional MRI (fMRI) revealed reduced functional connectivity (FC) between the hippocampus, parahippocampus, and other regions, suggesting disrupted networks. Perfusion MRI showed hypoperfusion in parahippocampal gyri. Magnetic resonance spectroscopy (MRS) found changes in the hippocampus, indicating neuronal loss. Neuropsychological tests showed associations between poorer memory and hippocampal atrophy or connectivity changes. CA1-2, dentate gyrus, and fimbria atrophy were correlated with worse memory. CONCLUSIONS The hippocampus and the connected regions are involved in ALS. Hippocampal atrophy disrupted connectivity and metabolite changes correlate with cognitive and functional decline. Specific subregions can be particularly affected. The hippocampus is a potential biomarker for disease monitoring and prognosis.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Medical Sciences, School of MedicineIran University of Medical SciencesTehranIran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Vacchiano V, Bonan L, Liguori R, Rizzo G. Primary Lateral Sclerosis: An Overview. J Clin Med 2024; 13:578. [PMID: 38276084 PMCID: PMC10816328 DOI: 10.3390/jcm13020578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Primary lateral sclerosis (PLS) is a rare neurodegenerative disorder which causes the selective deterioration of the upper motor neurons (UMNs), sparing the lower motor neuron (LMN) system. The clinical course is defined by a progressive motor disability due to muscle spasticity which typically involves lower extremities and bulbar muscles. Although classically considered a sporadic disease, some familiar cases and possible causative genes have been reported. Despite it having been recognized as a rare but distinct entity, whether it actually represents an extreme end of the motor neuron diseases continuum is still an open issue. The main knowledge gap is the lack of specific biomarkers to improve the clinical diagnostic accuracy. Indeed, the diagnostic imprecision, together with some uncertainty about overlap with UMN-predominant ALS and Hereditary Spastic Paraplegia (HSP), has become an obstacle to the development of specific therapeutic trials. In this study, we provided a comprehensive analysis of the existing literature, including neuropathological, clinical, neuroimaging, and neurophysiological features of the disease, and highlighting the controversies still unsolved in the differential diagnoses and the current diagnostic criteria. We also discussed the current knowledge gaps still present in both diagnostic and therapeutic fields when approaching this rare condition.
Collapse
Affiliation(s)
- Veria Vacchiano
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy; (V.V.); (R.L.)
| | - Luigi Bonan
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Rocco Liguori
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy; (V.V.); (R.L.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Giovanni Rizzo
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy; (V.V.); (R.L.)
| |
Collapse
|
13
|
Tan EL, Tahedl M, Lope J, Hengeveld JC, Doherty MA, McLaughlin RL, Hardiman O, Chang KM, Finegan E, Bede P. Language deficits in primary lateral sclerosis: cortical atrophy, white matter degeneration and functional disconnection between cerebral regions. J Neurol 2024; 271:431-445. [PMID: 37759084 DOI: 10.1007/s00415-023-11994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Primary lateral sclerosis (PLS) is traditionally regarded as a pure upper motor neuron disorder, but recent cases series have highlighted cognitive deficits in executive and language domains. METHODS A single-centre, prospective neuroimaging study was conducted with comprehensive clinical and genetic profiling. The structural and functional integrity of language-associated brain regions and networks were systematically evaluated in 40 patients with PLS in comparison to 111 healthy controls. The structural integrity of the arcuate fascicle, frontal aslant tract, inferior occipito-frontal fascicle, inferior longitudinal fascicle, superior longitudinal fascicle and uncinate fascicle was evaluated. Functional connectivity between the supplementary motor region and the inferior frontal gyrus and connectivity between Wernicke's and Broca's areas was also assessed. RESULTS Cortical thickness reductions were observed in both Wernicke's and Broca's areas. Fractional anisotropy reduction was noted in the aslant tract and increased radical diffusivity (RD) identified in the aslant tract, arcuate fascicle and superior longitudinal fascicle in the left hemisphere. Functional connectivity was reduced along the aslant track, i.e. between the supplementary motor region and the inferior frontal gyrus, but unaffected between Wernicke's and Broca's areas. Cortical thickness alterations, structural and functional connectivity changes were also noted in the right hemisphere. CONCLUSIONS Disease-burden in PLS is not confined to motor regions, but there is also a marked involvement of language-associated tracts, networks and cortical regions. Given the considerably longer survival in PLS compared to ALS, the impact of language impairment on the management of PLS needs to be carefully considered.
Collapse
Affiliation(s)
- Ee Ling Tan
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Marlene Tahedl
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Jasmin Lope
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | | | - Mark A Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Orla Hardiman
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Kai Ming Chang
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Eoin Finegan
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.
- Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
14
|
Oliveira Santos M, Swash M, de Carvalho M. Current challenges in primary lateral sclerosis diagnosis. Expert Rev Neurother 2024; 24:45-53. [PMID: 38093670 DOI: 10.1080/14737175.2023.2295010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
INTRODUCTION Primary lateral sclerosis (PLS) is a rare, adult-onset and slowly progressive motor neuron disorder whose clinical core is characterized by upper motor neuron (UMN) dysfunction. Its formal diagnosis is clinically based and disease duration-dependent. Differentiating PLS from other disorders involving UMN can be challenging, particularly in the early stages. AREAS COVERED Our review covers and discusses different aspects of the PLS field, including the diagnostic criteria and its limitations, its differential diagnosis and their major pitfalls, and the actual role of neurophysiology, neuroimaging, genetics, and molecular biomarkers. Symptomatic treatment of the different manifestations is also addressed. The authors searched MEDLINE and Scopus. They also searched the reference lists of articles identified by our search strategy and reviewed and selected those deemed relevant. They selected papers and studies based on the quality of the report, significance of the findings, and on the author's critical appraise and expertise. EXPERT OPINION It is important to investigate novel molecular biomarkers and plan multicenter clinical trials for PLS. However, this will require a large international project to recruit enough patients, particularly given the diagnostic uncertainty of the current clinical criteria. A better understanding of PLS pathophysiology is crucial for designing disease-targeted therapies.
Collapse
Affiliation(s)
- Miguel Oliveira Santos
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Michael Swash
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Departments of Neurology and Neuroscience, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Mamede de Carvalho
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
15
|
McMackin R, Bede P, Ingre C, Malaspina A, Hardiman O. Biomarkers in amyotrophic lateral sclerosis: current status and future prospects. Nat Rev Neurol 2023; 19:754-768. [PMID: 37949994 DOI: 10.1038/s41582-023-00891-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
Disease heterogeneity in amyotrophic lateral sclerosis poses a substantial challenge in drug development. Categorization based on clinical features alone can help us predict the disease course and survival, but quantitative measures are also needed that can enhance the sensitivity of the clinical categorization. In this Review, we describe the emerging landscape of diagnostic, categorical and pharmacodynamic biomarkers in amyotrophic lateral sclerosis and their place in the rapidly evolving landscape of new therapeutics. Fluid-based markers from cerebrospinal fluid, blood and urine are emerging as useful diagnostic, pharmacodynamic and predictive biomarkers. Combinations of imaging measures have the potential to provide important diagnostic and prognostic information, and neurophysiological methods, including various electromyography-based measures and quantitative EEG-magnetoencephalography-evoked responses and corticomuscular coherence, are generating useful diagnostic, categorical and prognostic markers. Although none of these biomarker technologies has been fully incorporated into clinical practice or clinical trials as a primary outcome measure, strong evidence is accumulating to support their clinical utility.
Collapse
Affiliation(s)
- Roisin McMackin
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Peter Bede
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Caroline Ingre
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Malaspina
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Orla Hardiman
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland.
- Department of Neurology, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
16
|
Bede P, Lulé D, Müller HP, Tan EL, Dorst J, Ludolph AC, Kassubek J. Presymptomatic grey matter alterations in ALS kindreds: a computational neuroimaging study of asymptomatic C9orf72 and SOD1 mutation carriers. J Neurol 2023; 270:4235-4247. [PMID: 37178170 PMCID: PMC10421803 DOI: 10.1007/s00415-023-11764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND The characterisation of presymptomatic disease-burden patterns in asymptomatic mutation carriers has a dual academic and clinical relevance. The understanding of disease propagation mechanisms is of considerable conceptual interests, and defining the optimal time of pharmacological intervention is essential for improved clinical trial outcomes. METHODS In a prospective, multimodal neuroimaging study, 22 asymptomatic C9orf72 GGGGCC hexanucleotide repeat carriers, 13 asymptomatic subjects with SOD1, and 54 "gene-negative" ALS kindreds were enrolled. Cortical and subcortical grey matter alterations were systematically appraised using volumetric, morphometric, vertex, and cortical thickness analyses. Using a Bayesian approach, the thalamus and amygdala were further parcellated into specific nuclei and the hippocampus was segmented into anatomically defined subfields. RESULTS Asymptomatic GGGGCC hexanucleotide repeat carriers in C9orf72 exhibited early subcortical changes with the preferential involvement of the pulvinar and mediodorsal regions of the thalamus, as well as the lateral aspect of the hippocampus. Volumetric approaches, morphometric methods, and vertex analyses were anatomically consistent in capturing focal subcortical changes in asymptomatic C9orf72 hexanucleotide repeat expansion carriers. SOD1 mutation carriers did not exhibit significant subcortical grey matter alterations. In our study, none of the two asymptomatic cohorts exhibited cortical grey matter alterations on either cortical thickness or morphometric analyses. DISCUSSION The presymptomatic radiological signature of C9orf72 is associated with selective thalamic and focal hippocampal degeneration which may be readily detectable before cortical grey matter changes ensue. Our findings confirm selective subcortical grey matter involvement early in the course of C9orf72-associated neurodegeneration.
Collapse
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin, D02 RS90, Ireland.
- Department of Neurology, St James's Hospital, Dublin, Ireland.
| | - Dorothée Lulé
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin, D02 RS90, Ireland
| | - Johannes Dorst
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- German Centre of Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
- German Centre of Neurodegenerative Diseases (DZNE), Ulm, Germany
| |
Collapse
|
17
|
Li X, Liu Q, Niu T, Liu T, Xin Z, Zhou X, Li R, Li Z, Jia L, Liu Y, Dong H. Sleep disorders and white matter integrity in patients with sporadic amyotrophic lateral sclerosis. Sleep Med 2023; 109:170-180. [PMID: 37459708 DOI: 10.1016/j.sleep.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/12/2023]
Abstract
This study aimed to explore the characteristics of sleep disorders and their relationship with abnormal white-matter integrity in patients with sporadic amyotrophic lateral sclerosis. One hundred and thirty-six patients and 80 healthy controls were screened consecutively, and 56 patients and 43 healthy controls were ultimately analyzed. Sleep disorders were confirmed using the Pittsburgh sleep quality index, the Epworth sleepiness scale, and polysomnography; patients were classified into those with poor and good sleep quality. White-matter integrity was assessed using diffusion tensor imaging and compared between groups to identify the white-matter tracts associated with sleep disorders. The relationship between scores on the Pittsburgh sleep quality index and impaired white-matter tracts was analyzed using multiple regression. Poor sleep quality was more common in patients (adjusted odds ratio, 4.26; p = 0.005). Compared to patients with good sleep quality (n = 30), patients with poor sleep quality (n = 26; 46.4%) showed decreased fractional anisotropy, increased mean diffusivity, and increased radial diffusivity of projection and commissural fibers, and increased radial diffusivity of the right thalamus. The Pittsburgh score showed the best fit with the mean fractional anisotropy of the right anterior limb of the internal capsule (r = - 0.355, p = 0.011) and the mean radial diffusivity of the right thalamus (r = 0.309, p = 0.028). We conclude that sleep disorders are common in patients with sporadic amyotrophic lateral sclerosis and are associated with reduced white-matter integrity. The pathophysiology of amyotrophic lateral sclerosis may contribute directly to sleep disorders.
Collapse
Affiliation(s)
- Xin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, PR China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, PR China
| | - Tongyang Niu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, PR China
| | - Tingting Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, PR China
| | - Zikai Xin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, PR China
| | - Xiaomeng Zhou
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, PR China
| | - Rui Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, PR China
| | - Zhenzhong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, PR China
| | - Lijing Jia
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, PR China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, PR China.
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, PR China.
| |
Collapse
|
18
|
El Mendili MM, Verschueren A, Ranjeva JP, Guye M, Attarian S, Zaaraoui W, Grapperon AM. Association between brain and upper cervical spinal cord atrophy assessed by MRI and disease aggressiveness in amyotrophic lateral sclerosis. Neuroradiology 2023; 65:1395-1403. [PMID: 37458788 DOI: 10.1007/s00234-023-03191-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE To study the relative contributions of brain and upper cervical spinal cord compartmental atrophy to disease aggressiveness in amyotrophic lateral sclerosis (ALS). METHODS Twenty-nine ALS patients and 24 age- and gender-matched healthy controls (HC) were recruited. Disease duration and the Revised-ALS Functional Rating Scale (ALSFRS-R) at baseline, 3- and 6-months follow-up were assessed. Patients were clinically differentiated into fast (n=13) and slow (n=16) progressors according to their ALSFRS-R progression rate. Brain grey (GM) and white matter, brainstem sub-structures volumes and spinal cord cross-sectional area (SC-CSA) at C1-C2 vertebral levels were measured from a 3D-T1-weighted MRI. RESULTS Fast progressors showed significant GM, medulla oblongata and SC atrophy compared to HC (p<0.001, p=0.013 and p=0.008) and significant GM atrophy compared to slow progressors (p=0.008). GM volume correlated with the ALSFRS-R progression rate (Rho/p=-0.487/0.007), the ALSFRS-R at 3-months (Rho/p=0.622/0.002), and ALSFRS-R at 6-months (Rho/p=0.407/0.039). Medulla oblongata volume and SC-CSA correlated with the ALSFRS-R at 3-months (Rho/p=0.510/0.015 and Rho/p=0.479/0.024). MRI measures showed high performance to discriminate between fast and slow progressors. CONCLUSION Our study suggests an association between compartmental atrophy and disease aggressiveness. This result is consistent with the combination of upper and lower motor neuron degeneration as the main driver of disease worsening and severity in ALS. Our study highlights the potential of brain and spinal cord atrophy measured by MRI as biomarker of disease aggressiveness signature.
Collapse
Affiliation(s)
- Mohamed Mounir El Mendili
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
- APHM, Hopital de la Timone, CEMEREM, Marseille, France.
- Centre de Résonance Magnétique Biologique et Médicale, CRMBM-CEMEREM, UMR 7339 CNRS - Aix-Marseille Université, 27 Bd Jean Moulin, 13005, Marseille, France.
| | - Annie Verschueren
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
- APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
| | - Shahram Attarian
- APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France
- Aix Marseille Univ, INSERM, MMG, Marseille, France
| | - Wafaa Zaaraoui
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
| | - Aude-Marie Grapperon
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
- APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France
| |
Collapse
|
19
|
Tahedl M, Tan EL, Siah WF, Hengeveld JC, Doherty MA, McLaughlin RL, Hardiman O, Finegan E, Bede P. Radiological correlates of pseudobulbar affect: Corticobulbar and cerebellar components in primary lateral sclerosis. J Neurol Sci 2023; 451:120726. [PMID: 37421883 DOI: 10.1016/j.jns.2023.120726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
INTRODUCTION Pseudobulbar affect (PBA) is a distressing symptom of a multitude of neurological conditions affecting patients with a rage of neuroinflammatory, neurovascular and neurodegenerative conditions. It manifests in disproportionate emotional responses to minimal or no contextual stimulus. It has considerable quality of life implications and treatment can be challenging. METHODS A prospective multimodal neuroimaging study was conducted to explore the neuroanatomical underpinnings of PBA in patients with primary lateral sclerosis (PLS). All participants underwent whole genome sequencing and screening for C9orf72 hexanucleotide repeat expansions, a comprehensive neurological assessment, neuropsychological screening (ECAS, HADS, FrSBe) and PBA was evaluated by the emotional lability questionnaire. Structural, diffusivity and functional MRI data were systematically evaluated in whole-brain (WB) data-driven and region of interest (ROI) hypothesis-driven analyses. In ROI analyses, functional and structural corticobulbar connectivity and cerebello-medullary connectivity alterations were evaluated separately. RESULTS Our data-driven whole-brain analyses revealed associations between PBA and white matter degeneration in descending corticobulbar as well as in commissural tracts. In our hypothesis-driven analyses, PBA was associated with increased right corticobulbar tract RD (p = 0.006) and decreased FA (p = 0.026). The left-hemispheric corticobulbar tract, as well as functional connectivity, showed similar tendencies. While uncorrected p-maps revealed both voxelwise and ROI trends for associations between PBA and cerebellar measures, these did not reach significance to unequivocally support the "cerebellar hypothesis". CONCLUSIONS Our data confirm associations between cortex-brainstem disconnection and the clinical severity of PBA. While our findings may be disease-specific, they are consistent with the classical cortico-medullary model of pseudobulbar affect.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Ireland
| | | | - Mark A Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Orla Hardiman
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Ireland; Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
20
|
Bede P, Pradat PF. Editorial: The gap between academic advances and therapy development in motor neuron disease. Curr Opin Neurol 2023; 36:335-337. [PMID: 37462047 DOI: 10.1097/wco.0000000000001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, School of Medicine, Trinity College
- Department of Neurology, St James's Hospital, Dublin, Ireland
- Department of Neurology, Pitié-Salpêtrière University Hospital
| | - Pierre-Francois Pradat
- Department of Neurology, Pitié-Salpêtrière University Hospital
- Laboratoire d'Imagerie Biomédicale, Sorbonne University, CNRS, INSERM, Paris, France
| |
Collapse
|
21
|
Wang J, Qiao L, Lv H, Lv Z. Deep Transfer Learning-Based Multi-Modal Digital Twins for Enhancement and Diagnostic Analysis of Brain MRI Image. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2407-2419. [PMID: 35439137 DOI: 10.1109/tcbb.2022.3168189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE it aims to adopt deep transfer learning combined with Digital Twins (DTs) in Magnetic Resonance Imaging (MRI) medical image enhancement. METHODS MRI image enhancement method based on metamaterial composite technology is proposed by analyzing the application status of DTs in medical direction and the principle of MRI imaging. On the basis of deep transfer learning, MRI super-resolution deep neural network structure is established. To address the problem that different medical imaging methods have advantages and disadvantages, a multi-mode medical image fusion algorithm based on adaptive decomposition is proposed and verified by experiments. RESULTS the optimal Peak Signal to Noise Ratio (PSNR) of 34.11dB can be obtained by introducing modified linear element and loss function of deep transfer learning neural network structure. The Structural Similarity Coefficient (SSIM) is 85.24%. It indicates that the MRI truthfulness and sharpness obtained by adding composite metasurface are improved greatly. The proposed medical image fusion algorithm has the highest overall score in the subjective evaluation of the six groups of fusion image results. Group III had the highest score in Magnetic Resonance Imaging- Positron Emission Computed Tomography (MRI-PET) image fusion, with a score of 4.67, close to the full score of 5. As for the objective evaluation in group I of Magnetic Resonance Imaging- Single Photon Emission Computed Tomography (MRI-SPECT) images, the Root Mean Square Error (RMSE), Relative Average Spectral Error (RASE) and Spectral Angle Mapper (SAM) are the highest, which are 39.2075, 116.688, and 0.594, respectively. Mutual Information (MI) is 5.8822. CONCLUSION the proposed algorithm has better performance than other algorithms in preserving spatial details of MRI images and color information direction of SPECT images, and the other five groups have achieved similar results.
Collapse
|
22
|
Castelnovo V, Canu E, De Mattei F, Filippi M, Agosta F. Basal ganglia alterations in amyotrophic lateral sclerosis. Front Neurosci 2023; 17:1133758. [PMID: 37090799 PMCID: PMC10113480 DOI: 10.3389/fnins.2023.1133758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/09/2023] [Indexed: 04/09/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) has traditionally been associated with brain damage involving the primary motor cortices and corticospinal tracts. In the recent decades, most of the research studies in ALS have focused on extra-motor and subcortical brain regions. The aim of these studies was to detect additional biomarkers able to support the diagnosis and to predict disease progression. The involvement of the frontal cortices, mainly in ALS cases who develop cognitive and/or behavioral impairment, is amply recognized in the field. A potential involvement of fronto-temporal and fronto-striatal connectivity changes in the disease evolution has also been reported. On this latter regard, there is still a shortage of studies which investigated basal ganglia (BG) alterations and their role in ALS clinical manifestation and progression. The present review aims to provide an overview on the magnetic resonance imaging studies reporting structural and/or functional BG alterations in patients with ALS, to clarify the role of BG damage in the disease clinical evolution and to propose potential future developments in this field.
Collapse
Affiliation(s)
- Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo De Mattei
- ALS Center, SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- *Correspondence: Federica Agosta,
| |
Collapse
|
23
|
Milella G, Introna A, Mezzapesa DM, D'Errico E, Fraddosio A, Ucci M, Zoccolella S, Simone IL. Clinical Profiles and Patterns of Neurodegeneration in Amyotrophic Lateral Sclerosis: A Cluster-Based Approach Based on MR Imaging Metrics. AJNR Am J Neuroradiol 2023; 44:403-409. [PMID: 36958798 PMCID: PMC10084907 DOI: 10.3174/ajnr.a7823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/20/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND AND PURPOSE The previous studies described phenotype-associated imaging findings in amyotrophic lateral sclerosis (ALS) with a prior categorization of patients based on clinical characteristics. We investigated the natural segregation of patients through a radiologic cluster-based approach without a priori patient categorization using 3 well-known prognostic MR imaging biomarkers in ALS, namely bilateral precentral and paracentral gyrus cortical thickness and medulla oblongata volume. We aimed to identify clinical/prognostic features that are cluster-associated. MATERIALS AND METHODS Bilateral precentral and paracentral gyri and medulla oblongata volume were calculated using FreeSurfer in 90 patients with amyotrophic lateral sclerosis and 25 healthy controls. A 2-step cluster analysis was performed using precentral and paracentral gyri (averaged pair-wise) and medulla oblongata volume. RESULTS We identified 3 radiologic clusters: 28 (31%) patients belonged to "cluster-1"; 51 (57%), to "cluster 2"; and 11 (12%), to "cluster 3." Patients in cluster 1 showed statistically significant cortical thinning of the analyzed cortical areas and lower medulla oblongata volume compared with subjects in cluster 2 and cluster 3, respectively. Patients in cluster 3 exhibited significant cortical thinning of both paracentral and precentral gyri versus those in cluster 2, and this latter cluster showed lower medulla oblongata volume than cluster 3. Patients in cluster 1 were characterized by older age, higher female prevalence, greater disease severity, higher progression rate, and lower survival compared with patients in clusters 2 and 3. CONCLUSIONS Patients with amyotrophic lateral sclerosis spontaneously segregate according to age and sex-specific patterns of neurodegeneration. Some patients with amyotrophic lateral sclerosis showed an early higher impairment of cortical motor neurons with relative sparing of bulbar motor neurons (cluster 3), while others expressed an opposite pattern (cluster 2). Moreover, 31% of patients showed an early simultaneous impairment of cortical and bulbar motor neurons (cluster 1), and they were characterized by higher disease severity and lower survival.
Collapse
Affiliation(s)
- G Milella
- From the Neurology Unit (G.M., A.I., D.M.M., E.D., A.F., M.U., I.L.S.), Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| | - A Introna
- From the Neurology Unit (G.M., A.I., D.M.M., E.D., A.F., M.U., I.L.S.), Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| | - D M Mezzapesa
- From the Neurology Unit (G.M., A.I., D.M.M., E.D., A.F., M.U., I.L.S.), Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| | - E D'Errico
- From the Neurology Unit (G.M., A.I., D.M.M., E.D., A.F., M.U., I.L.S.), Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| | - A Fraddosio
- From the Neurology Unit (G.M., A.I., D.M.M., E.D., A.F., M.U., I.L.S.), Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| | - M Ucci
- From the Neurology Unit (G.M., A.I., D.M.M., E.D., A.F., M.U., I.L.S.), Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| | - S Zoccolella
- Azienda Sanitaria Locale Bari (S.Z.), San Paolo Hospital, Bari, Italy
| | - I L Simone
- From the Neurology Unit (G.M., A.I., D.M.M., E.D., A.F., M.U., I.L.S.), Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| |
Collapse
|
24
|
Tahedl M, Tan EL, Shing SLH, Chipika RH, Siah WF, Hengeveld JC, Doherty MA, McLaughlin RL, Hardiman O, Finegan E, Bede P. Not a benign motor neuron disease: longitudinal imaging captures relentless motor connectome disintegration in primary lateral sclerosis. Eur J Neurol 2023; 30:1232-1245. [PMID: 36739888 DOI: 10.1111/ene.15725] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Primary lateral sclerosis (PLS) is a progressive upper motor neuron disorder associated with considerable clinical disability. Symptoms are typically exclusively linked to primary motor cortex degeneration and the contribution of pre-motor, supplementary motor, cortico-medullary and inter-hemispheric connectivity alterations are less well characterized. METHODS In a single-centre, prospective, longitudinal neuroimaging study 41 patients with PLS were investigated. Patients underwent standardized neuroimaging, genetic profiling with whole exome sequencing, and comprehensive clinical assessments including upper motor neuron scores, tapping rates, mirror movements, spasticity assessment, cognitive screening and evaluation for pseudobulbar affect. Longitudinal neuroimaging data from 108 healthy controls were used for image interpretation. A standardized imaging protocol was implemented including 3D T1-weighted structural, diffusion tensor imaging and resting-state functional magnetic resonance imaging. Following somatotopic segmentation, cortical thickness analyses, probabilistic tractography, blood oxygenation level dependent signal analyses and brainstem volumetry were conducted to evaluate cortical, brainstem, cortico-medullary and inter-hemispheric connectivity alterations both cross-sectionally and longitudinally. RESULTS Our data confirm progressive primary motor cortex degeneration, considerable supplementary motor and pre-motor area involvement, progressive brainstem atrophy, cortico-medullary and inter-hemispheric disconnection, and close associations between clinical upper motor neuron scores and somatotopic connectivity indices in PLS. DISCUSSION Primary lateral sclerosis is associated with relentlessly progressive motor connectome degeneration. Clinical disability in PLS is likely to stem from a combination of intra- and inter-hemispheric connectivity decline and primary, pre- and supplementary motor cortex degeneration. Simple 'bedside' clinical tools, such as tapping rates, are excellent proxies of the integrity of the relevant fibres of the contralateral corticospinal tract.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Mark A Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Orla Hardiman
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| |
Collapse
|
25
|
McKenna MC, Lope J, Bede P, Tan EL. Thalamic pathology in frontotemporal dementia: Predilection for specific nuclei, phenotype-specific signatures, clinical correlates, and practical relevance. Brain Behav 2023; 13:e2881. [PMID: 36609810 PMCID: PMC9927864 DOI: 10.1002/brb3.2881] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Frontotemporal dementia (FTD) phenotypes are classically associated with distinctive cortical atrophy patterns and regional hypometabolism. However, the spectrum of cognitive and behavioral manifestations in FTD arises from multisynaptic network dysfunction. The thalamus is a key hub of several corticobasal and corticocortical circuits. The main circuits relayed via the thalamic nuclei include the dorsolateral prefrontal circuit, the anterior cingulate circuit, and the orbitofrontal circuit. METHODS In this paper, we have reviewed evidence for thalamic pathology in FTD based on radiological and postmortem studies. Original research papers were systematically reviewed for preferential involvement of specific thalamic regions, for phenotype-associated thalamic disease burden patterns, characteristic longitudinal changes, and genotype-associated thalamic signatures. Moreover, evidence for presymptomatic thalamic pathology was also reviewed. Identified papers were systematically scrutinized for imaging methods, cohort sizes, clinical profiles, clinicoradiological associations, and main anatomical findings. The findings of individual research papers were amalgamated for consensus observations and their study designs further evaluated for stereotyped shortcomings. Based on the limitations of existing studies and conflicting reports in low-incidence FTD variants, we sought to outline future research directions and pressing research priorities. RESULTS FTD is associated with focal thalamic degeneration. Phenotype-specific thalamic traits mirror established cortical vulnerability patterns. Thalamic nuclei mediating behavioral and language functions are preferentially involved. Given the compelling evidence for considerable thalamic disease burden early in the course of most FTD subtypes, we also reflect on the practical relevance, diagnostic role, prognostic significance, and monitoring potential of thalamic metrics in FTD. CONCLUSIONS Cardinal manifestations of FTD phenotypes are likely to stem from thalamocortical circuitry dysfunction and are not exclusively driven by focal cortical changes.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Chipika RH, Mulkerrin G, Pradat PF, Murad A, Ango F, Raoul C, Bede P. Cerebellar pathology in motor neuron disease: neuroplasticity and neurodegeneration. Neural Regen Res 2022; 17:2335-2341. [PMID: 35535867 PMCID: PMC9120698 DOI: 10.4103/1673-5374.336139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Amyotrophic lateral sclerosis is a relentlessly progressive multi-system condition. The clinical picture is dominated by upper and lower motor neuron degeneration, but extra-motor pathology is increasingly recognized, including cerebellar pathology. Post-mortem and neuroimaging studies primarily focus on the characterization of supratentorial disease, despite emerging evidence of cerebellar degeneration in amyotrophic lateral sclerosis. Cardinal clinical features of amyotrophic lateral sclerosis, such as dysarthria, dysphagia, cognitive and behavioral deficits, saccade abnormalities, gait impairment, respiratory weakness and pseudobulbar affect are likely to be exacerbated by co-existing cerebellar pathology. This review summarizes in vivo and post mortem evidence for cerebellar degeneration in amyotrophic lateral sclerosis. Structural imaging studies consistently capture cerebellar grey matter volume reductions, diffusivity studies readily detect both intra-cerebellar and cerebellar peduncle white matter alterations and functional imaging studies commonly report increased functional connectivity with supratentorial regions. Increased functional connectivity is commonly interpreted as evidence of neuroplasticity representing compensatory processes despite the lack of post-mortem validation. There is a scarcity of post-mortem studies focusing on cerebellar alterations, but these detect pTDP-43 in cerebellar nuclei. Cerebellar pathology is an overlooked facet of neurodegeneration in amyotrophic lateral sclerosis despite its contribution to a multitude of clinical symptoms, widespread connectivity to spinal and supratentorial regions and putative role in compensating for the degeneration of primary motor regions.
Collapse
Affiliation(s)
- Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Grainne Mulkerrin
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Aizuri Murad
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Fabrice Ango
- The Neuroscience Institute of Montpellier (INM), INSERM, CNRS, Montpellier, France
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier (INM), INSERM, CNRS, Montpellier, France
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
27
|
Mulkerrin G, França MC, Lope J, Tan EL, Bede P. Neuroimaging in hereditary spastic paraplegias: from qualitative cues to precision biomarkers. Expert Rev Mol Diagn 2022; 22:745-760. [PMID: 36042576 DOI: 10.1080/14737159.2022.2118048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION : Hereditary spastic paraplegias (HSP) include a clinically and genetically heterogeneous group of conditions. Novel imaging modalities have been increasingly applied to HSP cohorts which helps to quantitatively evaluate the integrity of specific anatomical structures and develop monitoring markers for both clinical care and future clinical trials. AREAS COVERED : Advances in HSP imaging are systematically reviewed with a focus on cohort sizes, imaging modalities, study design, clinical correlates, methodological approaches, and key findings. EXPERT OPINION : A wide range of imaging techniques have been recently applied to HSP cohorts. Common shortcomings of existing studies include the evaluation of genetically unconfirmed or admixed cohorts, limited sample sizes, unimodal imaging approaches, lack of postmortem validation, and a limited clinical battery, often exclusively focusing on motor aspects of the condition. A number of innovative methodological approaches have also be identified, such as robust longitudinal study designs, the implementation of multimodal imaging protocols, complementary cognitive assessments, and the comparison of HSP cohorts to MND cohorts. Collaborative multicentre initiatives may overcome sample limitations, and comprehensive clinical profiling with motor, extrapyramidal, cerebellar, and neuropsychological assessments would permit systematic clinico-radiological correlations. Academic achievements in HSP imaging have the potential to be developed into viable clinical applications to expedite the diagnosis and monitor disease progression.
Collapse
Affiliation(s)
| | - Marcondes C França
- Department of Neurology, The State University of Campinas, São Paulo, Brazil
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Peter Bede
- Department of Neurology, St James's Hospital, Dublin, Ireland.,Computational Neuroimaging Group, Trinity College Dublin, Ireland
| |
Collapse
|
28
|
Zejlon C, Nakhostin D, Winklhofer S, Pangalu A, Kulcsar Z, Lewandowski S, Finnsson J, Piehl F, Ingre C, Granberg T, Ineichen BV. Structural magnetic resonance imaging findings and histopathological correlations in motor neuron diseases—A systematic review and meta-analysis. Front Neurol 2022; 13:947347. [PMID: 36110394 PMCID: PMC9468579 DOI: 10.3389/fneur.2022.947347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesThe lack of systematic evidence on neuroimaging findings in motor neuron diseases (MND) hampers the diagnostic utility of magnetic resonance imaging (MRI). Thus, we aimed at performing a systematic review and meta-analysis of MRI features in MND including their histopathological correlation.MethodsIn a comprehensive literature search, out of 5941 unique publications, 223 records assessing brain and spinal cord MRI findings in MND were eligible for a qualitative synthesis. 21 records were included in a random effect model meta-analysis.ResultsOur meta-analysis shows that both T2-hyperintensities along the corticospinal tracts (CST) and motor cortex T2*-hypointensitites, also called “motor band sign”, are more prevalent in ALS patients compared to controls [OR 2.21 (95%-CI: 1.40–3.49) and 10.85 (95%-CI: 3.74–31.44), respectively]. These two imaging findings correlate to focal axonal degeneration/myelin pallor or glial iron deposition on histopathology, respectively. Additionally, certain clinical MND phenotypes such as amyotrophic lateral sclerosis (ALS) seem to present with distinct CNS atrophy patterns.ConclusionsAlthough CST T2-hyperintensities and the “motor band sign” are non-specific imaging features, they can be leveraged for diagnostic workup of suspected MND cases, together with certain brain atrophy patterns. Collectively, this study provides high-grade evidence for the usefulness of MRI in the diagnostic workup of suspected MND cases.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42020182682.
Collapse
Affiliation(s)
- Charlotte Zejlon
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Dominik Nakhostin
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Sebastian Winklhofer
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Athina Pangalu
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Zsolt Kulcsar
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | | | - Johannes Finnsson
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center of Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Caroline Ingre
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Granberg
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin Victor Ineichen
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zürich, Switzerland
- *Correspondence: Benjamin Victor Ineichen
| |
Collapse
|
29
|
Liu S, Zhao Y, Ren Q, Zhang D, Shao K, Lin P, Yuan Y, Dai T, Zhang Y, Li L, Li W, Shan P, Meng X, Wang Q, Yan C. Amygdala abnormalities across disease stages in patients with sporadic amyotrophic lateral sclerosis. Hum Brain Mapp 2022; 43:5421-5431. [PMID: 35866384 PMCID: PMC9704775 DOI: 10.1002/hbm.26016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 01/15/2023] Open
Abstract
To examine selective atrophy patterns and resting-state functional connectivity (FC) alterations in the amygdala at different stages of amyotrophic lateral sclerosis (ALS), and to explore any correlations between amygdala abnormalities and neuropsychiatric symptoms. We used the King's clinical staging system for ALS to divide 83 consecutive patients with ALS into comparable subgroups at different disease stages. We explored the pattern of selective amygdala subnucleus atrophy and amygdala-based whole-brain FC alteration in these patients and 94 healthy controls (HCs). Cognitive and emotional functions were also evaluated using a neuropsychological test battery. There were no significant differences between ALS patients at King's stage 1 and HCs for any amygdala subnucleus volumes. Compared with HCs, ALS patients at King's stage 2 had significantly lower left accessory basal nucleus and cortico-amygdaloid transition volumes. Furthermore, ALS patients at King's stage 3 demonstrated significant reductions in most amygdala subnucleus volumes and global amygdala volumes compared with HCs. Notably, amygdala-cuneus FC was increased in ALS patients at King's stage 3. Specific subnucleus volumes were significantly associated with Mini-Mental State Examination scores and Hamilton Anxiety Rating Scale scores in ALS patients. In conclusions, our study provides a comprehensive profile of amygdala abnormalities in ALS patients. The pattern of amygdala abnormalities in ALS patients differed greatly across King's clinical disease stages, and amygdala abnormalities are an important feature of patients with ALS at relatively advanced stages. Moreover, our findings suggest that amygdala volume may play an important role in anxiety and cognitive dysfunction in ALS patients.
Collapse
Affiliation(s)
- Shuangwu Liu
- School of Medicine, Cheeloo College of MedicineShandong UniversityJinanChina,Department of NeurologyResearch Institute of Neuromuscular and Neurodegenerative Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina,School of Nursing and Rehabilitation, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yuying Zhao
- Department of NeurologyResearch Institute of Neuromuscular and Neurodegenerative Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Qingguo Ren
- Department of RadiologyQilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong UniversityQingdaoChina
| | - Dong Zhang
- Department of NeurologyResearch Institute of Neuromuscular and Neurodegenerative Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Kai Shao
- Mitochondrial Medicine LaboratoryQilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong UniversityQingdaoShandongChina,Department of Clinical LaboratoryQilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong UniversityQingdaoChina
| | - Pengfei Lin
- Department of NeurologyResearch Institute of Neuromuscular and Neurodegenerative Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Ying Yuan
- Sleep Medicine CenterQilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong UniversityQingdaoChina
| | - Tingjun Dai
- Department of NeurologyResearch Institute of Neuromuscular and Neurodegenerative Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Yongqing Zhang
- Department of NeurologyQilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong UniversityQingdaoChina
| | - Ling Li
- Department of NeurologyQilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong UniversityQingdaoChina
| | - Wei Li
- Department of NeurologyResearch Institute of Neuromuscular and Neurodegenerative Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Peiyan Shan
- Department of GerontologyQilu Hospital of Shandong UniversityJinanChina
| | - Xiangshui Meng
- Department of RadiologyQilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong UniversityQingdaoChina
| | - Qian Wang
- Department of RadiologyQilu Hospital of Shandong UniversityJinanChina
| | - Chuanzhu Yan
- Department of NeurologyResearch Institute of Neuromuscular and Neurodegenerative Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina,Mitochondrial Medicine LaboratoryQilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong UniversityQingdaoShandongChina
| |
Collapse
|
30
|
McKenna MC, Li Hi Shing S, Murad A, Lope J, Hardiman O, Hutchinson S, Bede P. Focal thalamus pathology in frontotemporal dementia: Phenotype-associated thalamic profiles. J Neurol Sci 2022; 436:120221. [DOI: 10.1016/j.jns.2022.120221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/25/2022]
|
31
|
Zhang G, Liu R, Sheng Z, Zhang Y, Fan D. SIRT1 Interacts with Prepro-Orexin in the Hypothalamus in SOD1G93A Mice. Brain Sci 2022; 12:brainsci12040490. [PMID: 35448021 PMCID: PMC9031500 DOI: 10.3390/brainsci12040490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022] Open
Abstract
The participation of silent mating type information regulation 2 homolog 1 (SIRT1) in amyotrophic lateral sclerosis (ALS) has been reported in many studies. However, the role of the expression and function of SIRT1 in the hypothalamus in ALS remains unknown. In the current study, we performed western blot, co-immunoprecipitation and immunofluorescence analyses to determine the expression and in-depth mechanism of SIRT1 in the hypothalamus in SOD1G93A transgenic mice. We found that SIRT1 was overexpressed in the hypothalamus after motor symptom onset. In addition, SIRT1 interacted with prepro-orexin, a molecule involved in energy balance and the sleep/wake cycle, in both preclinical and clinical ALS regardless of whether SIRT1 levels were elevated. These findings indicate that SIRT1 might participate in sleep and metabolic changes in ALS, suggesting that SIRT1 is a new target for ALS treatment.
Collapse
Affiliation(s)
- Gan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (G.Z.); (R.L.)
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disease, Beijing 100191, China;
| | - Rong Liu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (G.Z.); (R.L.)
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disease, Beijing 100191, China;
| | - Zhaofu Sheng
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disease, Beijing 100191, China;
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing 100191, China
| | - Yonghe Zhang
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disease, Beijing 100191, China;
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing 100191, China
- Correspondence: (Y.Z.); (D.F.); Tel.: +86-010-82-801-112 (Y.Z.); +86-010-82-266-720 (D.F.)
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (G.Z.); (R.L.)
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disease, Beijing 100191, China;
- Correspondence: (Y.Z.); (D.F.); Tel.: +86-010-82-801-112 (Y.Z.); +86-010-82-266-720 (D.F.)
| |
Collapse
|
32
|
Clusters of anatomical disease-burden patterns in ALS: a data-driven approach confirms radiological subtypes. J Neurol 2022; 269:4404-4413. [PMID: 35333981 PMCID: PMC9294023 DOI: 10.1007/s00415-022-11081-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/28/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is associated with considerable clinical heterogeneity spanning from diverse disability profiles, differences in UMN/LMN involvement, divergent progression rates, to variability in frontotemporal dysfunction. A multitude of classification frameworks and staging systems have been proposed based on clinical and neuropsychological characteristics, but disease subtypes are seldom defined based on anatomical patterns of disease burden without a prior clinical stratification. A prospective research study was conducted with a uniform imaging protocol to ascertain disease subtypes based on preferential cerebral involvement. Fifteen brain regions were systematically evaluated in each participant based on a comprehensive panel of cortical, subcortical and white matter integrity metrics. Using min–max scaled composite regional integrity scores, a two-step cluster analysis was conducted. Two radiological clusters were identified; 35.5% of patients belonging to ‘Cluster 1’ and 64.5% of patients segregating to ‘Cluster 2’. Subjects in Cluster 1 exhibited marked frontotemporal change. Predictor ranking revealed the following hierarchy of anatomical regions in decreasing importance: superior lateral temporal, inferior frontal, superior frontal, parietal, limbic, mesial inferior temporal, peri-Sylvian, subcortical, long association fibres, commissural, occipital, ‘sensory’, ‘motor’, cerebellum, and brainstem. While the majority of imaging studies first stratify patients based on clinical criteria or genetic profiles to describe phenotype- and genotype-associated imaging signatures, a data-driven approach may identify distinct disease subtypes without a priori patient categorisation. Our study illustrates that large radiology datasets may be potentially utilised to uncover disease subtypes associated with unique genetic, clinical or prognostic profiles.
Collapse
|
33
|
Frontotemporal Dementia as a Possible Manifestation of Primary Lateral Sclerosis: A Case Report and Literature Review. Case Rep Psychiatry 2022; 2022:8936467. [PMID: 35281483 PMCID: PMC8916901 DOI: 10.1155/2022/8936467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 11/23/2022] Open
Abstract
Primary lateral sclerosis (PLS) is currently defined as a restricted phenotype of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease with upper motor neuron (UMN) symptoms that causes slowly progressive spasticity. The diagnostic criteria of this disorder currently do not include any effects on frontal executive or other cortical functioning. We report an 84-year-old woman diagnosed with six years of PLS who also had concurrent symptoms of difficulties in language, anxiety, emotional lability, and executive function. This case, as well as previously reported cases in the literature, is an example that shows the importance of more widespread consideration for PLS in patients with UMN signs and indications of frontotemporal dementia (FTD). Increased consideration for PLS would be beneficial for many patients and positively affect treatment, especially since patients live with the disorder for longer periods than ALS.
Collapse
|
34
|
McKenna MC, Tahedl M, Murad A, Lope J, Hardiman O, Hutchinson S, Bede P. White matter microstructure alterations in frontotemporal dementia: Phenotype-associated signatures and single-subject interpretation. Brain Behav 2022; 12:e2500. [PMID: 35072974 PMCID: PMC8865163 DOI: 10.1002/brb3.2500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 01/01/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Frontotemporal dementias (FTD) include a genetically heterogeneous group of conditions with distinctive molecular, radiological and clinical features. The majority of radiology studies in FTD compare FTD subgroups to healthy controls to describe phenotype- or genotype-associated imaging signatures. While the characterization of group-specific imaging traits is academically important, the priority of clinical imaging is the meaningful interpretation of individual datasets. METHODS To demonstrate the feasibility of single-subject magnetic resonance imaging (MRI) interpretation, we have evaluated the white matter profile of 60 patients across the clinical spectrum of FTD. A z-score-based approach was implemented, where the diffusivity metrics of individual patients were appraised with reference to demographically matched healthy controls. Fifty white matter tracts were systematically evaluated in each subject with reference to normative data. RESULTS The z-score-based approach successfully detected white matter pathology in single subjects, and group-level inferences were analogous to the outputs of standard track-based spatial statistics. CONCLUSIONS Our findings suggest that it is possible to meaningfully evaluate the diffusion profile of single FTD patients if large normative datasets are available. In contrast to the visual review of FLAIR and T2-weighted images, computational imaging offers objective, quantitative insights into white matter integrity changes even at single-subject level.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Marlene Tahedl
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Aizuri Murad
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| |
Collapse
|
35
|
Finegan E, Siah WF, Li Hi Shing S, Chipika RH, Hardiman O, Bede P. Cerebellar degeneration in primary lateral sclerosis: an under-recognized facet of PLS. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:542-553. [PMID: 34991421 DOI: 10.1080/21678421.2021.2023188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
While primary lateral sclerosis (PLS) has traditionally been regarded as a pure upper motor neuron disorder, recent clinical, neuroimaging and postmortem studies have confirmed significant extra-motor involvement. Sporadic reports have indicated that in addition to the motor cortex and corticospinal tracts, the cerebellum may also be affected in PLS. Cerebellar manifestations are difficult to ascertain in PLS as the clinical picture is dominated by widespread upper motor neuron signs. The likely contribution of cerebellar dysfunction to gait disturbance, falls, pseudobulbar affect and dysarthria may be overlooked in the context of progressive spasticity. The objective of this study is the comprehensive characterization of cerebellar gray and white matter degeneration in PLS using multiparametric quantitative neuroimaging methods to systematically evaluate each cerebellar lobule and peduncle. Forty-two patients with PLS and 117 demographically-matched healthy controls were enrolled in a prospective MRI study. Complementary volumetric and voxelwise analyses revealed focal cerebellar alterations instead of global cerebellar atrophy. Bilateral gray matter volume reductions were observed in lobules III, IV and VIIb. Significant diffusivity alterations within the superior cerebellar peduncle indicate disruption of the main cerebellar outflow tracts. These findings suggest that the considerable intra-cerebellar disease-burden is coupled with concomitant cerebro-cerebellar connectivity disruptions. While cerebellar dysfunction is challenging to demonstrate clinically, cerebellar pathology is likely to be a significant contributor to disability in PLS.
Collapse
Affiliation(s)
- Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Tahedl M, Li Hi Shing S, Finegan E, Chipika RH, Lope J, Murad A, Hardiman O, Bede P. Imaging data reveal divergent longitudinal trajectories in PLS, ALS and poliomyelitis survivors: Group-level and single-subject traits. Data Brief 2021; 39:107484. [PMID: 34901337 PMCID: PMC8640870 DOI: 10.1016/j.dib.2021.107484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023] Open
Abstract
Imaging profiles from a longitudinal single-centre motor neuron disease study are presented. A standardized T1-weighted MRI protocol was implemented to characterise cortical disease burden trajectories across the UMN (upper motor neuron) - LMN (lower motor neuron) spectrum of motor neuron diseases (MNDs) (Tahedl et al., 2021). Patients with amyotrophic lateral sclerosis (ALS n = 61), patients with primary lateral sclerosis (PLS n = 23) and poliomyelitis survivors (PMS n = 45) were included. Up to four longitudinal scans were available for each patient, separated by an inter-scan-interval of four months. Individual and group-level cortical thickness profiles were appraised using a normalisation procedure with reference to subject-specific control groups. A z-scoring approach was utilised, where each patients' cortex was first segmented into 1000 cortical regions, and then rated as 'thin', 'thick', or 'comparable' to the corresponding region of a demographically-matched control cohort. Fractions of significantly 'thin' and 'thick' patches were calculated across the entire cerebral vertex as well as in specific brain regions, such as the motor cortex, parietal, frontal and temporal cortices. This approach allows the characterisation of disease burden in individual subjects as well as at a group-level, both cross-sectionally and longitudinally. The presented framework may aid the interpretation of individual cortical disease burden in other patient cohorts.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street Room 5.43, Dublin, Ireland.,Department of Psychiatry and Psychotherapy and Institute for Psychology, University of Regensburg, Germany
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street Room 5.43, Dublin, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street Room 5.43, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street Room 5.43, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street Room 5.43, Dublin, Ireland
| | - Aizuri Murad
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street Room 5.43, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street Room 5.43, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street Room 5.43, Dublin, Ireland.,Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
37
|
Li Hi Shing S, Bede P. The neuroradiology of upper motor neuron degeneration: PLS, HSP, ALS. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:1-3. [PMID: 34894929 DOI: 10.1080/21678421.2021.1951293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Stacey Li Hi Shing
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
38
|
Kocar TD, Müller HP, Ludolph AC, Kassubek J. Feature selection from magnetic resonance imaging data in ALS: a systematic review. Ther Adv Chronic Dis 2021; 12:20406223211051002. [PMID: 34729157 PMCID: PMC8521429 DOI: 10.1177/20406223211051002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Background: With the advances in neuroimaging in amyotrophic lateral sclerosis (ALS), it has been speculated that multiparametric magnetic resonance imaging (MRI) is capable to contribute to early diagnosis. Machine learning (ML) can be regarded as the missing piece that allows for the useful integration of multiparametric MRI data into a diagnostic classifier. The major challenges in developing ML classifiers for ALS are limited data quantity and a suboptimal sample to feature ratio which can be addressed by sound feature selection. Methods: We conducted a systematic review to collect MRI biomarkers that could be used as features by searching the online database PubMed for entries in the recent 4 years that contained cross-sectional neuroimaging data of subjects with ALS and an adequate control group. In addition to the qualitative synthesis, a semi-quantitative analysis was conducted for each MRI modality that indicated which brain regions were most commonly reported. Results: Our search resulted in 151 studies with a total of 221 datasets. In summary, our findings highly resembled generally accepted neuropathological patterns of ALS, with degeneration of the motor cortex and the corticospinal tract, but also in frontal, temporal, and subcortical structures, consistent with the neuropathological four-stage model of the propagation of pTDP-43 in ALS. Conclusions: These insights are discussed with respect to their potential for MRI feature selection for future ML-based neuroimaging classifiers in ALS. The integration of multiparametric MRI including DTI, volumetric, and texture data using ML may be the best approach to generate a diagnostic neuroimaging tool for ALS.
Collapse
Affiliation(s)
- Thomas D Kocar
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| |
Collapse
|
39
|
Li Hi Shing S, Lope J, Chipika RH, Hardiman O, Bede P. Extra-motor manifestations in post-polio syndrome (PPS): fatigue, cognitive symptoms and radiological features. Neurol Sci 2021; 42:4569-4581. [PMID: 33635429 DOI: 10.1007/s10072-021-05130-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/20/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND There is a paucity of cerebral neuroimaging studies in post-polio syndrome (PPS), despite the severity of neurological and neuropsychological sequelae associated with the condition. Fatigue, poor concentration, limited exercise tolerance, paraesthesia and progressive weakness are frequently reported, but the radiological underpinnings of these symptoms are poorly characterised. OBJECTIVE The aim of this study is to evaluate cortical and subcortical alterations in a cohort of adult polio survivors to explore the anatomical substrate of extra-motor manifestations. METHODS Thirty-six patients with post-polio syndrome, a disease-control group with amyotrophic lateral sclerosis patients and a cohort of healthy individuals were included in a prospective neuroimaging study with a standardised clinical and radiological protocol. Validated clinical instruments were utilised to assess mood, cognitive and behavioural domains and specific aspects of fatigue. Cortical thickness analyses, subcortical volumetry, brainstem segmentation and region-of-interest (ROI) white matter analyses were undertaken to assess regional grey and white matter alterations. RESULTS A high proportion of PPS patients exhibited apathy, verbal fluency deficits and reported self-perceived fatigue. On ROI analyses, cortical atrophy was limited to the cingulate gyrus, and the temporal pole and subcortical atrophy were only detected in the left nucleus accumbens. No FA reductions were noted to indicate white matter degeneration in any of the lobes. CONCLUSIONS Despite the high incidence of extra-motor manifestations in PPS, only limited cortical, subcortical and white matter degeneration was identified. Our findings suggest that non-structural causes, such as polypharmacy and poor sleep, may contribute to the complex symptomatology of post-polio syndrome.
Collapse
Affiliation(s)
- Stacey Li Hi Shing
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
40
|
Tahedl M, Li Hi Shing S, Finegan E, Chipika RH, Lope J, Hardiman O, Bede P. Propagation patterns in motor neuron diseases: Individual and phenotype-associated disease-burden trajectories across the UMN-LMN spectrum of MNDs. Neurobiol Aging 2021; 109:78-87. [PMID: 34656922 DOI: 10.1016/j.neurobiolaging.2021.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 01/18/2023]
Abstract
Motor neuron diseases encompass a divergent group of conditions with considerable differences in clinical manifestations, survival, and genetic vulnerability. One of the key aspects of clinical heterogeneity is the preferential involvement of upper (UMN) and lower motor neurons (LMN). While longitudinal imaging patters are relatively well characterized in ALS, progressive cortical changes in UMN,- and LMN-predominant conditions are seldom evaluated. Accordingly, the objective of this study is the juxtaposition of longitudinal trajectories in 3 motor neuron phenotypes; a UMN-predominant syndrome (PLS), a mixed UMN-LMN condition (ALS), and a lower motor neuron condition (poliomyelitis survivors). A standardized imaging protocol was implemented in a prospective, multi-timepoint longitudinal study with a uniform follow-up interval of 4 months. Forty-five poliomyelitis survivors, 61 patients with amyotrophic lateral sclerosis (ALS), and 23 patients with primary lateral sclerosis (PLS) were included. Cortical thickness alterations were evaluated in a dual analysis pipeline, using standard cortical thickness analyses, and a z-score-based individualized approach. Our results indicate that PLS patients exhibit rapidly progressive cortical thinning primarily in motor regions; ALS patients show cortical atrophy in both motor and extra-motor regions, while poliomyelitis survivors exhibit cortical thickness gains in a number of cerebral regions. Our findings suggest that dynamic cortical changes in motor neuron diseases may depend on relative UMN and/or LMN involvement, and increased cortical thickness in LMN-predominant conditions may represent compensatory, adaptive processes.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Psychiatry and Psychotherapy and Institute for Psychology, University of Regensburg, 93053 Regensburg, Germany
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland; Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.
| |
Collapse
|
41
|
Pathological neural networks and artificial neural networks in ALS: diagnostic classification based on pathognomonic neuroimaging features. J Neurol 2021; 269:2440-2452. [PMID: 34585269 PMCID: PMC9021106 DOI: 10.1007/s00415-021-10801-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022]
Abstract
The description of group-level, genotype- and phenotype-associated imaging traits is academically important, but the practical demands of clinical neurology centre on the accurate classification of individual patients into clinically relevant diagnostic, prognostic and phenotypic categories. Similarly, pharmaceutical trials require the precision stratification of participants based on quantitative measures. A single-centre study was conducted with a uniform imaging protocol to test the accuracy of an artificial neural network classification scheme on a cohort of 378 participants composed of patients with ALS, healthy subjects and disease controls. A comprehensive panel of cerebral volumetric measures, cortical indices and white matter integrity values were systematically retrieved from each participant and fed into a multilayer perceptron model. Data were partitioned into training and testing and receiver-operating characteristic curves were generated for the three study-groups. Area under the curve values were 0.930 for patients with ALS, 0.958 for disease controls, and 0.931 for healthy controls relying on all input imaging variables. The ranking of variables by classification importance revealed that white matter metrics were far more relevant than grey matter indices to classify single subjects. The model was further tested in a subset of patients scanned within 6 weeks of their diagnosis and an AUC of 0.915 was achieved. Our study indicates that individual subjects may be accurately categorised into diagnostic groups in an observer-independent classification framework based on multiparametric, spatially registered radiology data. The development and validation of viable computational models to interpret single imaging datasets are urgently required for a variety of clinical and clinical trial applications.
Collapse
|
42
|
Liu S, Ren Q, Gong G, Sun Y, Zhao B, Ma X, Zhang N, Zhong S, Lin Y, Wang W, Zheng R, Yu X, Yun Y, Zhang D, Shao K, Lin P, Yuan Y, Dai T, Zhang Y, Li L, Li W, Zhao Y, Shan P, Meng X, Yan C. Hippocampal subfield and anterior-posterior segment volumes in patients with sporadic amyotrophic lateral sclerosis. NEUROIMAGE-CLINICAL 2021; 32:102816. [PMID: 34655906 PMCID: PMC8523912 DOI: 10.1016/j.nicl.2021.102816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Neuroimaging studies of hippocampal volumes in patients with amyotrophic lateral sclerosis (ALS) have reported inconsistent results. Our aims were to demonstrate that such discrepancies are largely due to atrophy of different regions of the hippocampus that emerge in different disease stages of ALS and to explore the existence of co-pathology in ALS patients. We used the well-validated King’s clinical staging system for ALS to classify patients into different disease stages. We investigated in vivo hippocampal atrophy patterns across subfields and anterior-posterior segments in different King’s stages using structural MRI in 76 ALS patients and 94 health controls (HCs). The thalamus, corticostriatal tract and perforant path were used as structural controls to compare the sequence of alterations between these structures and the hippocampal subfields. Compared with HCs, ALS patients at King’s stage 1 had lower volumes in the bilateral posterior subiculum and presubiculum; ALS patients at King’s stage 2 exhibited lower volumes in the bilateral posterior subiculum, left anterior presubiculum and left global hippocampus; ALS patients at King’s stage 3 showed significantly lower volumes in the bilateral posterior subiculum, dentate gyrus and global hippocampus. Thalamic atrophy emerged at King’s stage 3. White matter tracts remained normal in a subset of ALS patients. Our study demonstrated that the pattern of hippocampal atrophy in ALS patients varies greatly across King’s stages. Future studies in ALS patients that focus on the hippocampus may help to further clarify possible co-pathologies in ALS.
Collapse
Affiliation(s)
- Shuangwu Liu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China; Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingguo Ren
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yuan Sun
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Bing Zhao
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaotian Ma
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Na Zhang
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Suyu Zhong
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenqing Wang
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Zheng
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaolin Yu
- Department of Gerontology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Yun
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Dong Zhang
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kai Shao
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Pengfei Lin
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Yuan
- Sleep Medicine Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Tingjun Dai
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongqing Zhang
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Ling Li
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wei Li
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peiyan Shan
- Department of Gerontology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiangshui Meng
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
43
|
Canna A, Trojsi F, Di Nardo F, Caiazzo G, Tedeschi G, Cirillo M, Esposito F. Combining structural and metabolic markers in a quantitative MRI study of motor neuron diseases. Ann Clin Transl Neurol 2021; 8:1774-1785. [PMID: 34342169 PMCID: PMC8419394 DOI: 10.1002/acn3.51418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To assess the performance of a combination of three quantitative MRI markers (iron deposition, basal neuronal metabolism, and regional atrophy) for differential diagnosis between amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS). METHODS In total, 33 ALS, 12 PLS, and 28 healthy control (HC) subjects underwent a 3T MRI study including single- and multi-echo sequences for gray matter (GM) volumetry and quantitative susceptibility mapping (QSM) and a pseudo-continuous arterial spin labeling (ASL) sequence for cerebral blood flow (CBF) measurement. Mean values of QSM, CBF, and GM volumes were extracted in the motor cortex, basal ganglia, thalamus, amygdala, and hippocampus. A generalized linear model was applied to the three measures to binary discriminate between groups. The diagnostic performances were evaluated via receiver operating characteristic analyses. RESULTS A significant discrimination was obtained: between ALS and HCs in the left and right motor cortex, where QSM increases were respectively associated with disability scores and disease duration; between PLS and ALS in the left motor cortex, where PLS patients resulted significantly more atrophic; between ALS and HC in the right motor cortex, where GM volumes were associated with upper motor neuron scores. Significant discrimination between ALS and HC was achieved in subcortical structures only combining all three parameters. INTERPRETATION While increased QSM values in the motor cortex of ALS patients is a consolidated finding, combining QSM, CBF, and GM volumetry shows higher diagnostic potential for differentiating ALS patients from HC subjects and, in the motor cortex, between ALS and PLS.
Collapse
Affiliation(s)
- Antonietta Canna
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Mario Cirillo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| |
Collapse
|
44
|
Masrori P, Van Weehaeghe D, Van Laere K, Van Damme P. Distinguishing Primary Lateral Sclerosis from Parkinsonian Syndromes with the Help of Advanced Imaging. J Nucl Med 2021; 62:1318-1319. [PMID: 34016728 DOI: 10.2967/jnumed.121.261942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
We describe a unique case of a patient presenting with unilateral mild paresis, slowing of the upper limb, and parkinsonism, who underwent a full imaging work-up including MRI, 123I-FP-CIT PET, 18F-FE-PE2I PET, and 18F-FDG PET. This case demonstrates that imaging may aid substantially in the diagnostic work-up of complex neurologic disorders.
Collapse
Affiliation(s)
- Pegah Masrori
- Neuromuscular Reference Centre, Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven, University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Donatienne Van Weehaeghe
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium; and
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium; and
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Philip Van Damme
- Neuromuscular Reference Centre, Department of Neurology, University Hospitals Leuven, Leuven, Belgium;
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven, University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium
| |
Collapse
|
45
|
Bede P, Siah WF. The diagnostic challenge of primary lateral sclerosis: the integration of clinical, genetic and radiological cues. Eur J Neurol 2021; 28:3875-3876. [PMID: 34339556 DOI: 10.1111/ene.15049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Salpêtrière University Hospital, Sorbonne University, Paris, France
| | - We Fong Siah
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
46
|
Tahedl M, Murad A, Lope J, Hardiman O, Bede P. Evaluation and categorisation of individual patients based on white matter profiles: Single-patient diffusion data interpretation in neurodegeneration. J Neurol Sci 2021; 428:117584. [PMID: 34315000 DOI: 10.1016/j.jns.2021.117584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022]
Abstract
The majority of radiology studies in neurodegenerative conditions infer group-level imaging traits from group comparisons. While this strategy is helpful to define phenotype-specific imaging signatures for academic use, the meaningful interpretation of single scans of individual subjects is more important in everyday clinical practice. Accordingly, we present a computational method to evaluate individual subject diffusion tensor data to highlight white matter integrity alterations. Fifty white matter tracts were quantitatively evaluated in 132 patients with amyotrophic lateral sclerosis (ALS) with respect to normative values from 100 healthy subjects. Fractional anisotropy and radial diffusivity alterations were assessed individually in each patient. The approach was validated against standard tract-based spatial statistics and further scrutinised by the assessment of 78 additional data sets with a blinded diagnosis. Our z-score-based approach readily detected white matter degeneration in individual ALS patients and helped to categorise single subjects with a 'blinded diagnosis' as likely 'ALS' or 'control'. The group-level inferences from the z-score-based approach were analogous to the standard TBSS output maps. The benefit of the z-score-based strategy is that it enables the interpretation of single DTI datasets as well as the comparison of study groups. Outputs can be summarised either visually by highlighting the affected tracts, or, listing the affected tracts in a text file with reference to normative data, making it particularly useful for clinical applications. While individual diffusion data cannot be visually appraised, our approach provides a viable framework for single-subject imaging data interpretation.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland; Department of Psychiatry and Psychotherapy, Institute for Psychology, University of Regensburg, Germany
| | - Aizuri Murad
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland; Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.
| |
Collapse
|
47
|
Bede P, Pradat PF, Lope J, Vourc'h P, Blasco H, Corcia P. Primary Lateral Sclerosis: Clinical, radiological and molecular features. Rev Neurol (Paris) 2021; 178:196-205. [PMID: 34243936 DOI: 10.1016/j.neurol.2021.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 10/20/2022]
Abstract
Primary Lateral Sclerosis (PLS) is an uncommon motor neuron disorder. Despite the well-recognisable constellation of clinical manifestations, the initial diagnosis can be challenging and therapeutic options are currently limited. There have been no recent clinical trials of disease-modifying therapies dedicated to this patient cohort and awareness of recent research developments is limited. The recent consensus diagnostic criteria introduced the category 'probable' PLS which is likely to curtail the diagnostic journey of patients. Extra-motor clinical manifestations are increasingly recognised, challenging the view of PLS as a 'pure' upper motor neuron condition. The post mortem literature of PLS has been expanded by seminal TDP-43 reports and recent PLS studies increasingly avail of meticulous genetic profiling. Research in PLS has gained unprecedented momentum in recent years generating novel academic insights, which may have important clinical ramifications.
Collapse
Affiliation(s)
- P Bede
- Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France; Computational Neuroimaging Group, Trinity College Dublin, Ireland.
| | - P-F Pradat
- Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| | - J Lope
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - P Vourc'h
- Department of Biochemistry and Molecular Biology, CHRU Bretonneau, Tours, France; UMR 1253 iBrain, Université de Tours, Inserm, France
| | - H Blasco
- Department of Biochemistry and Molecular Biology, CHRU Bretonneau, Tours, France; UMR 1253 iBrain, Université de Tours, Inserm, France
| | - P Corcia
- UMR 1253 iBrain, Université de Tours, Inserm, France; ALS and MND centre (FILSLAN), University of Tours, "iBrain", inserm, France
| |
Collapse
|
48
|
Daytime sleepiness might increase the risk of ALS: a 2-sample Mendelian randomization study. J Neurol 2021; 268:4332-4339. [PMID: 33914140 DOI: 10.1007/s00415-021-10564-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Observational studies have indicated that there is a high prevalence of habitual sleep disturbances in amyotrophic lateral sclerosis (ALS). However, the actual relationship between these symptoms and ALS remains unclear. METHODS We used 2-sample Mendelian randomization to determine whether the sleep disturbances associated with ALS are also related to the risk of ALS. The summary statistics we used were from recent, large genome-wide association studies on daytime sleepiness and other night sleep traits (n = 85,670-452,071) and ALS (n = 20,806 cases, n = 59,804 controls). The inverse variance-weighted (IVW) method was used as the main method for assessing causality. RESULTS Daytime sleepiness might increase the risk of ALS (IVW odds ratio = 2.45, 95% confidence interval: 1.15-5.21; P = 0.020). ALS was not associated with sleep efficiency, number of sleep episodes or sleep duration. CONCLUSIONS Our results provide novel evidence that daytime sleepiness increases the risk of ALS and points out the importance of daytime sleepiness that often goes unnoticed in ALS.
Collapse
|
49
|
Jericó I, Elizalde-Beiras I, Pagola I, Torné L, Galbete A, Delfrade-Osinaga J, Vicente E. Clinical features and incidence trends of amyotrophic lateral sclerosis in Navarre, Spain, 2007-2018: a population-based study. Amyotroph Lateral Scler Frontotemporal Degener 2021; 22:401-409. [PMID: 33641502 DOI: 10.1080/21678421.2021.1891249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: Amyotrophic Lateral Sclerosis (ALS) is a heterogeneous neurodegenerative disorder with a median survival of 3 years. The aim of our study is to analyze the incidence, age-related phenotype and clinical onset, geographical distribution, survival and diagnostic delay of ALS in Navarre. Methods: This is a population-based observational retrospective study, including all residents of Navarre (a northern Spanish region) from 2007 to 2018, who were followed until 30th September 2020. Results: We observed a global incidence 2.47/100,000 person-years, with an upward trend throughout the study, with the highest being in the age group of 70-74 years old. Point prevalence in December 2018 was 6.64/100,000 inhabitants (95%CI: 4.52-8.45). Upper limbs weakness onset was the most frequent in young people (<60 years), and bulbar, lower limbs weakness, generalized and respiratory associated with older age. Bulbar phenotype is the most frequent in women and in 80+ group. The median survival from clinical onset was 27.7 months (95%CI: 24.0-31.4), higher in spinal phenotype and younger onset age, and the diagnosis delay was 10.0 months (95%CI: 8.9-11.2) from clinical onset. Conclusions: We have observed a trend of increasing incidence in older people where the bulbar phenotype and female predominance.
Collapse
Affiliation(s)
- Ivonne Jericó
- Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarre Institute for Health Research), Pamplona, Spain
| | - Itsaso Elizalde-Beiras
- Department of Health Sciences, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain.,Primary Care, Servicio Navarro de Salud - Osasunbidea, IdiSNA, Pamplona, Spain
| | - Inmaculada Pagola
- Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarre Institute for Health Research), Pamplona, Spain
| | - Laura Torné
- Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarre Institute for Health Research), Pamplona, Spain
| | - Arkaitz Galbete
- Navarrabiomed-Complejo Hospitalario de Navarra-UPNA, IdiSNA, Pamplona, Spain.,Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Pamplona, Spain
| | - Josu Delfrade-Osinaga
- Community Health Observatory Section, Instituto de Salud Pública y Laboral de Navarra, IdiSNA, Pamplona, Spain, and.,CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Esther Vicente
- Department of Health Sciences, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain.,Community Health Observatory Section, Instituto de Salud Pública y Laboral de Navarra, IdiSNA, Pamplona, Spain, and
| |
Collapse
|
50
|
Li Hi Shing S, Lope J, McKenna MC, Chipika RH, Hardiman O, Bede P. Increased cerebral integrity metrics in poliomyelitis survivors: putative adaptation to longstanding lower motor neuron degeneration. J Neurol Sci 2021; 424:117361. [PMID: 33773768 DOI: 10.1016/j.jns.2021.117361] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Post-polio syndrome (PPS) has been traditionally considered a slowly progressive condition that affects poliomyelitis survivors decades after their initial infection. Cerebral changes in poliomyelitis survivors are poorly characterised and the few existing studies are strikingly conflicting. OBJECTIVE The overarching aim of this study is the comprehensive characterisation of cerebral grey and white matter alterations in poliomyelitis survivors with reference to healthy- and disease-controls using quantitative imaging metrics. METHODS Thirty-six poliomyelitis survivors, 88 patients with ALS and 117 healthy individuals were recruited in a prospective, single-centre neuroimaging study using uniform MRI acquisition parameters. All participants underwent standardised clinical assessments, T1-weighted structural and diffusion tensor imaging. Whole-brain and region-of-interest morphometric analyses were undertaken to evaluate patterns of grey matter changes. Tract-based spatial statistics were performed to evaluate diffusivity alterations in a study-specific whiter matter skeleton. RESULTS In contrast to healthy controls, poliomyelitis survivors exhibited increased grey matter partial volumes in the brainstem, cerebellum and occipital lobe, accompanied by increased FA in the corticospinal tracts, cerebellum, bilateral mesial temporal lobes and inferior frontal tracts. Polio survivors exhibited increased integrity metrics in the same anatomical regions where ALS patients showed degenerative changes. CONCLUSIONS Our findings indicate considerable cortical and white matter reorganisation in poliomyelitis survivors which may be interpreted as compensatory, adaptive change in response to severe lower motor neuron injury in infancy.
Collapse
Affiliation(s)
- Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| |
Collapse
|