1
|
Chu HY, Smith Y, Lytton WW, Grafton S, Villalba R, Masilamoni G, Wichmann T. Dysfunction of motor cortices in Parkinson's disease. Cereb Cortex 2024; 34:bhae294. [PMID: 39066504 PMCID: PMC11281850 DOI: 10.1093/cercor/bhae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/26/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The cerebral cortex has long been thought to be involved in the pathophysiology of motor symptoms of Parkinson's disease. The impaired cortical function is believed to be a direct and immediate effect of pathologically patterned basal ganglia output, mediated to the cerebral cortex by way of the ventral motor thalamus. However, recent studies in humans with Parkinson's disease and in animal models of the disease have provided strong evidence suggesting that the involvement of the cerebral cortex is much broader than merely serving as a passive conduit for subcortical disturbances. In the present review, we discuss Parkinson's disease-related changes in frontal cortical motor regions, focusing on neuropathology, plasticity, changes in neurotransmission, and altered network interactions. We will also examine recent studies exploring the cortical circuits as potential targets for neuromodulation to treat Parkinson's disease.
Collapse
Affiliation(s)
- Hong-Yuan Chu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Rd N.W., Washington D.C. 20007, United States
| | - Yoland Smith
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - William W Lytton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Physiology & Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States
- Department of Neurology, Kings County Hospital, 451 Clarkson Avenue,Brooklyn, NY 11203, United States
| | - Scott Grafton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Psychological and Brain Sciences, University of California, 551 UCEN Road, Santa Barbara, CA 93106, United States
| | - Rosa Villalba
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Gunasingh Masilamoni
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Thomas Wichmann
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| |
Collapse
|
2
|
Vinding MC, Waldthaler J, Eriksson A, Manting CL, Ferreira D, Ingvar M, Svenningsson P, Lundqvist D. Oscillatory and non-oscillatory features of the magnetoencephalic sensorimotor rhythm in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:51. [PMID: 38443402 PMCID: PMC10915140 DOI: 10.1038/s41531-024-00669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Parkinson's disease (PD) is associated with changes in neural activity in the sensorimotor alpha and beta bands. Using magnetoencephalography (MEG), we investigated the role of spontaneous neuronal activity within the somatosensory cortex in a large cohort of early- to mid-stage PD patients (N = 78) on Parkinsonian medication and age- and sex-matched healthy controls (N = 60) using source reconstructed resting-state MEG. We quantified features of the time series data in terms of oscillatory alpha power and central alpha frequency, beta power and central beta frequency, and 1/f broadband characteristics using power spectral density. Furthermore, we characterised transient oscillatory burst events in the mu-beta band time-domain signals. We examined the relationship between these signal features and the patients' disease state, symptom severity, age, sex, and cortical thickness. PD patients and healthy controls differed on PSD broadband characteristics, with PD patients showing a steeper 1/f exponential slope and higher 1/f offset. PD patients further showed a steeper age-related decrease in the burst rate. Out of all the signal features of the sensorimotor activity, the burst rate was associated with increased severity of bradykinesia, whereas the burst duration was associated with axial symptoms. Our study shows that general non-oscillatory features (broadband 1/f exponent and offset) of the sensorimotor signals are related to disease state and oscillatory burst rate scales with symptom severity in PD.
Collapse
Affiliation(s)
- Mikkel C Vinding
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| | - Josefine Waldthaler
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, University Hospital Marburg, Marburg, Germany
| | - Allison Eriksson
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Cassia Low Manting
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Cognitive Neuroimaging Centre, Lee Kong Chien School of Medicine, Nanyang Technological University, Singapore, Singapore
- McGovern Institute of Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran, Canaria, España
| | - Martin Ingvar
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Lundqvist
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Arnts H, Tewarie P, van Erp W, Schuurman R, Boon LI, Pennartz CMA, Stam CJ, Hillebrand A, van den Munckhof P. Deep brain stimulation of the central thalamus restores arousal and motivation in a zolpidem-responsive patient with akinetic mutism after severe brain injury. Sci Rep 2024; 14:2950. [PMID: 38316863 PMCID: PMC10844373 DOI: 10.1038/s41598-024-52267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
After severe brain injury, zolpidem is known to cause spectacular, often short-lived, restorations of brain functions in a small subgroup of patients. Previously, we showed that these zolpidem-induced neurological recoveries can be paralleled by significant changes in functional connectivity throughout the brain. Deep brain stimulation (DBS) is a neurosurgical intervention known to modulate functional connectivity in a wide variety of neurological disorders. In this study, we used DBS to restore arousal and motivation in a zolpidem-responsive patient with severe brain injury and a concomitant disorder of diminished motivation, more than 10 years after surviving hypoxic ischemia. We found that DBS of the central thalamus, targeted at the centromedian-parafascicular complex, immediately restored arousal and was able to transition the patient from a state of deep sleep to full wakefulness. Moreover, DBS was associated with temporary restoration of communication and ability to walk and eat in an otherwise wheelchair-bound and mute patient. With the use of magnetoencephalography (MEG), we revealed that DBS was generally associated with a marked decrease in aberrantly high levels of functional connectivity throughout the brain, mimicking the effects of zolpidem. These results imply that 'pathological hyperconnectivity' after severe brain injury can be associated with reduced arousal and behavioral performance and that DBS is able to modulate connectivity towards a 'healthier baseline' with lower synchronization, and, can restore functional brain networks long after severe brain injury. The presence of hyperconnectivity after brain injury may be a possible future marker for a patient's responsiveness for restorative interventions, such as DBS, and suggests that lower degrees of overall brain synchronization may be conducive to cognition and behavioral responsiveness.
Collapse
Affiliation(s)
- Hisse Arnts
- Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Prejaas Tewarie
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
| | - Willemijn van Erp
- Department of Primary and Community Care, Centre for Family Medicine, Geriatric Care and Public Health, Radboud University Medical Centre, Nijmegen, The Netherlands
- Accolade Zorg, Bosch en Duin, The Netherlands
- Libra Rehabilitation & Audiology, Tilburg, The Netherlands
| | - Rick Schuurman
- Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Lennard I Boon
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Vinding MC, Eriksson A, Comarovschii I, Waldthaler J, Manting CL, Oostenveld R, Ingvar M, Svenningsson P, Lundqvist D. The Swedish National Facility for Magnetoencephalography Parkinson's disease dataset. Sci Data 2024; 11:150. [PMID: 38296972 PMCID: PMC10830455 DOI: 10.1038/s41597-024-02987-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Parkinson's disease (PD) is characterised by a loss of dopamine and dopaminergic cells. The consequences hereof are widespread network disturbances in brain function. It is an ongoing topic of investigation how the disease-related changes in brain function manifest in PD relate to clinical symptoms. We present The Swedish National Facility for Magnetoencephalography Parkinson's Disease Dataset (NatMEG-PD) as an Open Science contribution to identify the functional neural signatures of Parkinson's disease and contribute to diagnosis and treatment. The dataset contains whole-head magnetoencephalographic (MEG) recordings from 66 well-characterised PD patients on their regular dose of dopamine replacement therapy and 68 age- and sex-matched healthy controls. NatMEG-PD contains three-minute eyes-closed resting-state MEG, MEG during an active movement task, and MEG during passive movements. The data includes anonymised MRI for source analysis and clinical scores. MEG data is rich in nature and can be used to explore numerous functional features. By sharing these data, we hope other researchers will contribute to advancing our understanding of the relationship between brain activity and disease state or symptoms.
Collapse
Affiliation(s)
- Mikkel C Vinding
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| | - Allison Eriksson
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Igori Comarovschii
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Josefine Waldthaler
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, University Hospital Marburg, Marburg, Germany
| | - Cassia Low Manting
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute of Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Robert Oostenveld
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Martin Ingvar
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Lundqvist
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Chang H, Liu B, Zong Y, Lu C, Wang X. EEG-Based Parkinson's Disease Recognition via Attention-Based Sparse Graph Convolutional Neural Network. IEEE J Biomed Health Inform 2023; 27:5216-5224. [PMID: 37405893 DOI: 10.1109/jbhi.2023.3292452] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Parkinson's disease (PD) is a complicated neurological ailment that affects both the physical and mental wellness of elderly individuals which makes it problematic to diagnose in its initial stages. Electroencephalogram (EEG) promises to be an efficient and cost-effective method for promptly detecting cognitive impairment in PD. Nevertheless, prevailing diagnostic practices utilizing EEG features have failed to examine the functional connectivity among EEG channels and the response of associated brain areas causing an unsatisfactory level of precision. Here, we construct an attention-based sparse graph convolutional neural network (ASGCNN) for diagnosing PD. Our ASGCNN model uses a graph structure to represent channel relationships, the attention mechanism for selecting channels, and the L1 norm to capture channel sparsity. We conduct extensive experiments on the publicly available PD auditory oddball dataset, which consists of 24 PD patients (under ON/OFF drug status) and 24 matched controls, to validate the effectiveness of our method. Our results show that the proposed method provides better results compared to the publicly available baselines. The achieved scores for Recall, Precision, F1-score, Accuracy and Kappa measures are 90.36%, 88.43%, 88.41%, 87.67%, and 75.24%, respectively. Our study reveals that the frontal and temporal lobes show significant differences between PD patients and healthy individuals. In addition, EEG features extracted by ASGCNN demonstrate significant asymmetry in the frontal lobe among PD patients. These findings can offer a basis for the establishment of a clinical system for intelligent diagnosis of PD by using auditory cognitive impairment features.
Collapse
|
6
|
Kumar A, Lin CC, Kuo SH, Pan MK. Physiological Recordings of the Cerebellum in Movement Disorders. CEREBELLUM (LONDON, ENGLAND) 2023; 22:985-1001. [PMID: 36070135 PMCID: PMC10354710 DOI: 10.1007/s12311-022-01473-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
The cerebellum plays an important role in movement disorders, specifically in symptoms of ataxia, tremor, and dystonia. Understanding the physiological signals of the cerebellum contributes to insights into the pathophysiology of these movement disorders and holds promise in advancing therapeutic development. Non-invasive techniques such as electroencephalogram and magnetoencephalogram can record neural signals with high temporal resolution at the millisecond level, which is uniquely suitable to interrogate cerebellar physiology. These techniques have recently been implemented to study cerebellar physiology in healthy subjects as well as individuals with movement disorders. In the present review, we focus on the current understanding of cerebellar physiology using these techniques to study movement disorders.
Collapse
Affiliation(s)
- Ami Kumar
- Department of Neurology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 650 W 168thStreet, Room 305, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 650 W 168thStreet, Room 305, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 650 W 168thStreet, Room 305, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA.
| | - Ming-Kai Pan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, 64041, Taiwan.
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, 10002, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, 11529, Taiwan.
| |
Collapse
|
7
|
Bonaventura J, Boehm MA, Jedema HP, Solis O, Pignatelli M, Song X, Lu H, Richie CT, Zhang S, Gomez JL, Lam S, Morales M, Gharbawie OA, Pomper MG, Stein EA, Bradberry CW, Michaelides M. Expression of the excitatory opsin ChRERα can be traced longitudinally in rat and nonhuman primate brains with PET imaging. Sci Transl Med 2023; 15:eadd1014. [PMID: 37494470 PMCID: PMC10938262 DOI: 10.1126/scitranslmed.add1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
Optogenetics is a widely used technology with potential for translational research. A critical component of such applications is the ability to track the location of the transduced opsin in vivo. To address this problem, we engineered an excitatory opsin, ChRERα (hChR2(134R)-V5-ERα-LBD), that could be visualized using positron emission tomography (PET) imaging in a noninvasive, longitudinal, and quantitative manner. ChRERα consists of the prototypical excitatory opsin channelrhodopsin-2 (ChR2) and the ligand-binding domain (LBD) of the human estrogen receptor α (ERα). ChRERα showed conserved ChR2 functionality and high affinity for [18F]16α-fluoroestradiol (FES), an FDA-approved PET radiopharmaceutical. Experiments in rats demonstrated that adeno-associated virus (AAV)-mediated expression of ChRERα enables neural circuit manipulation in vivo and that ChRERα expression could be monitored using FES-PET imaging. In vivo experiments in nonhuman primates (NHPs) confirmed that ChRERα expression could be monitored at the site of AAV injection in the primary motor cortex and in long-range neuronal terminals for up to 80 weeks. The anatomical connectivity map of the primary motor cortex identified by FES-PET imaging of ChRERα expression overlapped with a functional connectivity map identified using resting state fMRI in a separate cohort of NHPs. Overall, our results demonstrate that ChRERα expression can be mapped longitudinally in the mammalian brain using FES-PET imaging and can be used for neural circuit modulation in vivo.
Collapse
Affiliation(s)
- Jordi Bonaventura
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Catalonia 08907, Spain
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Matthew A. Boehm
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Hank P. Jedema
- Preclinical Pharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Oscar Solis
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Marco Pignatelli
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaowei Song
- Preclinical Pharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Hanbing Lu
- Magnetic Resonance Imaging and Spectroscopy Section, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Christopher T. Richie
- Genetic Engineering and Viral Vector Core, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Juan L. Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Sherry Lam
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Marisela Morales
- Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Omar A. Gharbawie
- Systems Neuroscience Center, Departments of Neurobiology and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elliot A. Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Charles W. Bradberry
- Preclinical Pharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| |
Collapse
|
8
|
Boon LI, Potters WV, Hillebrand A, de Bie RMA, Bot M, Richard Schuurman P, van den Munckhof P, Twisk JW, Stam CJ, Berendse HW, van Rootselaar AF. Magnetoencephalography to measure the effect of contact point-specific deep brain stimulation in Parkinson's disease: A proof of concept study. Neuroimage Clin 2023; 38:103431. [PMID: 37187041 PMCID: PMC10197095 DOI: 10.1016/j.nicl.2023.103431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/26/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for disabling fluctuations in motor symptoms in Parkinson's disease (PD) patients. However, iterative exploration of all individual contact points (four in each STN) by the clinician for optimal clinical effects may take months. OBJECTIVE In this proof of concept study we explored whether magnetoencephalography (MEG) has the potential to noninvasively measure the effects of changing the active contact point of STN-DBS on spectral power and functional connectivity in PD patients, with the ultimate aim to aid in the process of selecting the optimal contact point, and perhaps reduce the time to achieve optimal stimulation settings. METHODS The study included 30 PD patients who had undergone bilateral DBS of the STN. MEG was recorded during stimulation of each of the eight contact points separately (four on each side). Each stimulation position was projected on a vector running through the longitudinal axis of the STN, leading to one scalar value indicating a more dorsolateral or ventromedial contact point position. Using linear mixed models, the stimulation positions were correlated with band-specific absolute spectral power and functional connectivity of i) the motor cortex ipsilateral tot the stimulated side, ii) the whole brain. RESULTS At group level, more dorsolateral stimulation was associated with lower low-beta absolute band power in the ipsilateral motor cortex (p = .019). More ventromedial stimulation was associated with higher whole-brain absolute delta (p = .001) and theta (p = .005) power, as well as higher whole-brain theta band functional connectivity (p = .040). At the level of the individual patient, switching the active contact point caused significant changes in spectral power, but the results were highly variable. CONCLUSIONS We demonstrate for the first time that stimulation of the dorsolateral (motor) STN in PD patients is associated with lower low-beta power values in the motor cortex. Furthermore, our group-level data show that the location of the active contact point correlates with whole-brain brain activity and connectivity. As results in individual patients were quite variable, it remains unclear if MEG is useful in the selection of the optimal DBS contact point.
Collapse
Affiliation(s)
- Lennard I Boon
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Neurology, De Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, De Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam UMC location University of Amsterdam, Department of Neurology and Clinical Neurophysiology, Meibergdreef 9, Amsterdam, The Netherlands; Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam, The Netherlands.
| | - Wouter V Potters
- Amsterdam UMC location University of Amsterdam, Department of Neurology and Clinical Neurophysiology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, De Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands; Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam, The Netherlands
| | - Rob M A de Bie
- Amsterdam UMC location University of Amsterdam, Department of Neurology and Clinical Neurophysiology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Maarten Bot
- Amsterdam UMC location University of Amsterdam, Department of Neurosurgery, Meibergdreef 9, Amsterdam, The Netherlands
| | - P Richard Schuurman
- Amsterdam UMC location University of Amsterdam, Department of Neurosurgery, Meibergdreef 9, Amsterdam, The Netherlands
| | - Pepijn van den Munckhof
- Amsterdam UMC location University of Amsterdam, Department of Neurosurgery, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jos W Twisk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Epidemiology and Biostatistics, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, De Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam, The Netherlands
| | - Henk W Berendse
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Neurology, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Anne-Fleur van Rootselaar
- Amsterdam UMC location University of Amsterdam, Department of Neurology and Clinical Neurophysiology, Meibergdreef 9, Amsterdam, The Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands; Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Wiesman AI, Donhauser PW, Degroot C, Diab S, Kousaie S, Fon EA, Klein D, Baillet S. Aberrant neurophysiological signaling associated with speech impairments in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:61. [PMID: 37059749 PMCID: PMC10104849 DOI: 10.1038/s41531-023-00495-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/16/2023] [Indexed: 04/16/2023] Open
Abstract
Difficulty producing intelligible speech is a debilitating symptom of Parkinson's disease (PD). Yet, both the robust evaluation of speech impairments and the identification of the affected brain systems are challenging. Using task-free magnetoencephalography, we examine the spectral and spatial definitions of the functional neuropathology underlying reduced speech quality in patients with PD using a new approach to characterize speech impairments and a novel brain-imaging marker. We found that the interactive scoring of speech impairments in PD (N = 59) is reliable across non-expert raters, and better related to the hallmark motor and cognitive impairments of PD than automatically-extracted acoustical features. By relating these speech impairment ratings to neurophysiological deviations from healthy adults (N = 65), we show that articulation impairments in patients with PD are associated with aberrant activity in the left inferior frontal cortex, and that functional connectivity of this region with somatomotor cortices mediates the influence of cognitive decline on speech deficits.
Collapse
Affiliation(s)
- Alex I Wiesman
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Peter W Donhauser
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
- Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
| | - Clotilde Degroot
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Sabrina Diab
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
| | - Shanna Kousaie
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Denise Klein
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada.
- Center for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada.
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Sure M, Mertiens S, Vesper J, Schnitzler A, Florin E. Alterations of resting-state networks of Parkinson's disease patients after subthalamic DBS surgery. Neuroimage Clin 2023; 37:103317. [PMID: 36610312 PMCID: PMC9850202 DOI: 10.1016/j.nicl.2023.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
The implantation of deep brain stimulation (DBS) electrodes in Parkinson's disease (PD) patients can lead to a temporary improvement in motor symptoms, known as the stun effect. However, the network alterations induced by the stun effect are not well characterized. As therapeutic DBS is known to alter resting-state networks (RSN) and subsequent motor symptoms in patients with PD, we aimed to investigate whether the DBS-related stun effect also modulated RSNs. Therefore, we analyzed RSNs of 27 PD patients (8 females, 59.0 +- 8.7 years) using magnetoencephalography and compared them to RSNs of 24 age-matched healthy controls (8 females, 62.8 +- 5.1 years). We recorded 30 min of resting-state activity two days before and one day after implantation of the electrodes with and without dopaminergic medication. RSNs were determined by use of phase-amplitude coupling between a low frequency phase and a high gamma amplitude and examined for differences between conditions (i.e., pre vs post surgery). We identified four RSNs across all conditions: sensory-motor, visual, fronto-occipital, and frontal. Each RSN was altered due to electrode implantation. Importantly, these changes were not restricted to spatially close areas to the electrode trajectory. Interestingly, pre-operative RSNs corresponded better with healthy control RSNs regarding the spatial overlap, although the stun effect is associated with motor improvement. Our findings reveal that the stun effect induced by implantation of electrodes exerts brain wide changes in different functional RSNs.
Collapse
Affiliation(s)
- Matthias Sure
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| | - Sean Mertiens
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| | - Jan Vesper
- Department of Functional Neurosurgery and Stereotaxy, Medical Faculty, University Hospital, Düsseldorf, Germany.
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, University Hospital, Düsseldorf, Germany.
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
11
|
Arnts H, Tewarie P, van Erp WS, Overbeek BU, Stam CJ, Lavrijsen JCM, Booij J, Vandertop WP, Schuurman R, Hillebrand A, van den Munckhof P. Clinical and neurophysiological effects of central thalamic deep brain stimulation in the minimally conscious state after severe brain injury. Sci Rep 2022; 12:12932. [PMID: 35902627 PMCID: PMC9334292 DOI: 10.1038/s41598-022-16470-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
Deep brain stimulation (DBS) of the central thalamus is an experimental treatment for restoration of impaired consciousness in patients with severe acquired brain injury. Previous results of experimental DBS are heterogeneous, but significant improvements in consciousness have been reported. However, the mechanism of action of DBS remains unknown. We used magnetoencephalography to study the direct effects of DBS of the central thalamus on oscillatory activity and functional connectivity throughout the brain in a patient with a prolonged minimally conscious state. Different DBS settings were used to improve consciousness, including two different stimulation frequencies (50 Hz and 130 Hz) with different effective volumes of tissue activation within the central thalamus. While both types of DBS resulted in a direct increase in arousal, we found that DBS with a lower frequency (50 Hz) and larger volume of tissue activation was associated with a stronger increase in functional connectivity and neural variability throughout the brain. Moreover, this form of DBS was associated with improvements in visual pursuit, a reduction in spasticity, and improvement of swallowing, eight years after loss of consciousness. However, after DBS, all neurophysiological markers remained significantly lower than in healthy controls and objective increases in consciousness remained limited. Our findings provide new insights on the mechanistic understanding of neuromodulatory effects of DBS of the central thalamus in humans and suggest that DBS can re-activate dormant functional brain networks, but that the severely injured stimulated brain still lacks the ability to serve cognitive demands.
Collapse
Affiliation(s)
- Hisse Arnts
- Department of Neurosurgery, Amsterdam Neurosciences, Systems & Network Neurosciences, Amsterdam UMC (Location AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Prejaas Tewarie
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Willemijn S van Erp
- Department of Primary and Community Care, Center for Family Medicine, Geriatric Care and Public Health, Radboud University Medical Center, Nijmegen, The Netherlands
- Accolade Zorg, Bosch en Duin, The Netherlands
- Libra Rehabilitation & Audiology, Tilburg, The Netherlands
| | - Berno U Overbeek
- Department of Primary and Community Care, Center for Family Medicine, Geriatric Care and Public Health, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jan C M Lavrijsen
- Department of Primary and Community Care, Center for Family Medicine, Geriatric Care and Public Health, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - William P Vandertop
- Department of Neurosurgery, Amsterdam Neurosciences, Systems & Network Neurosciences, Amsterdam UMC (Location AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Rick Schuurman
- Department of Neurosurgery, Amsterdam Neurosciences, Systems & Network Neurosciences, Amsterdam UMC (Location AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam Neurosciences, Systems & Network Neurosciences, Amsterdam UMC (Location AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
12
|
McCusker MC, Wiesman AI, Spooner RK, Santamaria PM, McKune J, Heinrichs-Graham E, Wilson TW. Altered neural oscillations during complex sequential movements in patients with Parkinson's disease. Neuroimage Clin 2021; 32:102892. [PMID: 34911196 PMCID: PMC8645515 DOI: 10.1016/j.nicl.2021.102892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022]
Abstract
The sequelae of Parkinson's disease (PD) includes both motor- and cognitive-related symptoms. Although traditionally considered a subcortical disease, there is increasing evidence that PD has a major impact on cortical function as well. Prior studies have reported alterations in cortical neural function in patients with PD during movement, but to date such studies have not examined whether the complexity of multicomponent movements modulate these alterations. In this study, 23 patients with PD (medication "off" state) and 27 matched healthy controls performed simple and complex finger tapping sequences during magnetoencephalography (MEG), and the resulting MEG data were imaged to identify the cortical oscillatory dynamics serving motor performance. The patients with PD were significantly slower than controls at executing the sequences overall, and both groups took longer to complete the complex sequences than the simple. In terms of neural differences, patients also exhibited weaker beta complexity-related effects in the right medial frontal gyrus and weaker complexity-related alpha activity in the right posterior and inferior parietal lobules, suggesting impaired motor sequence execution. Characterizing the cortical pathophysiology of PD could inform current and future therapeutic interventions that address both motor and cognitive symptoms.
Collapse
Affiliation(s)
- Marie C McCusker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Alex I Wiesman
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; The Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Jennifer McKune
- Department of Physical Therapy, Nebraska Medicine, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
13
|
Boon LI, Potters WV, Zoon TJC, van den Heuvel OA, Prent N, de Bie RMA, Bot M, Schuurman PR, van den Munckhof P, Geurtsen GJ, Hillebrand A, Stam CJ, van Rootselaar AF, Berendse HW. Structural and functional correlates of subthalamic deep brain stimulation-induced apathy in Parkinson's disease. Brain Stimul 2020; 14:192-201. [PMID: 33385593 DOI: 10.1016/j.brs.2020.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/15/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Notwithstanding the large improvement in motor function in Parkinson's disease (PD) patients treated with deep brain stimulation (DBS), apathy may increase. Postoperative apathy cannot always be related to a dose reduction of dopaminergic medication and stimulation itself may play a role. OBJECTIVE We studied whether apathy in DBS-treated PD patients could be a stimulation effect. METHODS In 26 PD patients we acquired apathy scores before and >6 months after DBS of the subthalamic nucleus (STN). Magnetoencephalography recordings (ON and OFF stimulation) were performed ≥6 months after DBS placement. Change in apathy severity was correlated with (i) improvement in motor function and dose reduction of dopaminergic medication, (ii) stimulation location (merged MRI and CT-scans) and (iii) stimulation-related changes in functional connectivity of brain regions that have an alleged role in apathy. RESULTS Average apathy severity significantly increased after DBS (p < 0.001) and the number of patients considered apathetic increased from two to nine. Change in apathy severity did not correlate with improvement in motor function or dose reduction of dopaminergic medication. For the left hemisphere, increase in apathy was associated with a more dorsolateral stimulation location (p = 0.010). The increase in apathy severity correlated with a decrease in alpha1 functional connectivity of the dorsolateral prefrontal cortex (p = 0.006), but not with changes of the medial orbitofrontal or the anterior cingulate cortex. CONCLUSIONS The present observations suggest that apathy after STN-DBS is not necessarily related to dose reductions of dopaminergic medication, but may be an effect of the stimulation itself. This highlights the importance of determining optimal DBS settings based on both motor and non-motor symptoms.
Collapse
Affiliation(s)
- Lennard I Boon
- Amsterdam UMC, Vrije Universiteit Amsterdam, Neurology, Amsterdam Neuroscience, De Boelelaan, 1117, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Neurophysiology and Magnetoencephalography Centre, Amsterdam Neuroscience, De Boelelaan, 1117, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Wouter V Potters
- Amsterdam UMC, University of Amsterdam, Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Thomas J C Zoon
- Amsterdam UMC, University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan, 1117, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan, 1117, Amsterdam, the Netherlands
| | - Naomi Prent
- Amsterdam UMC, University of Amsterdam, Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Rob M A de Bie
- Amsterdam UMC, University of Amsterdam, Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Maarten Bot
- Amsterdam UMC, University of Amsterdam, Neurosurgery, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - P Richard Schuurman
- Amsterdam UMC, University of Amsterdam, Neurosurgery, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Pepijn van den Munckhof
- Amsterdam UMC, University of Amsterdam, Neurosurgery, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Gert J Geurtsen
- Amsterdam UMC, University of Amsterdam, Medical Psychology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Arjan Hillebrand
- Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Neurophysiology and Magnetoencephalography Centre, Amsterdam Neuroscience, De Boelelaan, 1117, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Neurophysiology and Magnetoencephalography Centre, Amsterdam Neuroscience, De Boelelaan, 1117, Amsterdam, the Netherlands
| | - Anne-Fleur van Rootselaar
- Amsterdam UMC, University of Amsterdam, Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Henk W Berendse
- Amsterdam UMC, Vrije Universiteit Amsterdam, Neurology, Amsterdam Neuroscience, De Boelelaan, 1117, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Litvak V, Florin E, Tamás G, Groppa S, Muthuraman M. EEG and MEG primers for tracking DBS network effects. Neuroimage 2020; 224:117447. [PMID: 33059051 DOI: 10.1016/j.neuroimage.2020.117447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022] Open
Abstract
Deep brain stimulation (DBS) is an effective treatment method for a range of neurological and psychiatric disorders. It involves implantation of stimulating electrodes in a precisely guided fashion into subcortical structures and, at a later stage, chronic stimulation of these structures with an implantable pulse generator. While the DBS surgery makes it possible to both record brain activity and stimulate parts of the brain that are difficult to reach with non-invasive techniques, electroencephalography (EEG) and magnetoencephalography (MEG) provide complementary information from other brain areas, which can be used to characterize brain networks targeted through DBS. This requires, however, the careful consideration of different types of artifacts in the data acquisition and the subsequent analyses. Here, we review both the technical issues associated with EEG/MEG recordings in DBS patients and the experimental findings to date. One major line of research is simultaneous recording of local field potentials (LFPs) from DBS targets and EEG/MEG. These studies revealed a set of cortico-subcortical coherent networks functioning at distinguishable physiological frequencies. Specific network responses were linked to clinical state, task or stimulation parameters. Another experimental approach is mapping of DBS-targeted networks in chronically implanted patients by recording EEG/MEG responses during stimulation. One can track responses evoked by single stimulation pulses or bursts as well as brain state shifts caused by DBS. These studies have the potential to provide biomarkers for network responses that can be adapted to guide stereotactic implantation or optimization of stimulation parameters. This is especially important for diseases where the clinical effect of DBS is delayed or develops slowly over time. The same biomarkers could also potentially be utilized for the online control of DBS network effects in the new generation of closed-loop stimulators that are currently entering clinical use. Through future studies, the use of network biomarkers may facilitate the integration of circuit physiology into clinical decision making.
Collapse
Affiliation(s)
- Vladimir Litvak
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Sergiu Groppa
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Muthuraman Muthuraman
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany.
| |
Collapse
|
15
|
Arnts H, van Erp WS, Boon LI, Bosman CA, Admiraal MM, Schrantee A, Pennartz CMA, Schuurman R, Stam CJ, van Rootselaar AF, Hillebrand A, van den Munckhof P. Awakening after a sleeping pill: Restoring functional brain networks after severe brain injury. Cortex 2020; 132:135-146. [PMID: 32979847 DOI: 10.1016/j.cortex.2020.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/09/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Some patients with severe brain injury show short-term neurological improvements, such as recovery of consciousness, motor function, or speech after administering zolpidem, a GABA receptor agonist. The working mechanism of this paradoxical phenomenon remains unknown. In this study, we used electroencephalography and magnetoencephalography to investigate a spectacular zolpidem-induced awakening, including the recovery of functional communication and the ability to walk in a patient with severe hypoxic-ischemic brain injury. We show that cognitive deficits, speech loss, and motor impairments after severe brain injury are associated with stronger beta band connectivity throughout the brain and suggest that neurological recovery after zolpidem occurs with the restoration of beta band connectivity. This exploratory work proposes an essential role for beta rhythms in goal-directed behavior and cognition. It advocates further fundamental and clinical research on the role of increased beta band connectivity in the development of neurological deficits after severe brain injury.
Collapse
Affiliation(s)
- Hisse Arnts
- Amsterdam UMC, University of Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - Willemijn S van Erp
- Department of Primary and Community Care, Centre for Family Medicine, Geriatric Care and Public Health, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Lennard I Boon
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Conrado A Bosman
- Cognitive and Systems Neuroscience Group, Swammerdam Institute, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Marjolein M Admiraal
- Amsterdam UMC, University of Amsterdam, Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Anouk Schrantee
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Rick Schuurman
- Amsterdam UMC, University of Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Anne-Fleur van Rootselaar
- Amsterdam UMC, University of Amsterdam, Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Arjan Hillebrand
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Pepijn van den Munckhof
- Amsterdam UMC, University of Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|