1
|
Mavroudis I, Kazis D, Petridis FE, Balmus IM, Ciobica A. The Use of Magnetoencephalography in the Diagnosis and Monitoring of Mild Traumatic Brain Injuries and Post-Concussion Syndrome. Brain Sci 2025; 15:154. [PMID: 40002487 PMCID: PMC11853601 DOI: 10.3390/brainsci15020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The main objective of this systematic review was to explore the role of magnetoencephalography (MEG) in the diagnosis, assessment, and monitoring of mild traumatic brain injury (mTBI) and post-concussion syndrome (PCS). We aimed to evaluate the potential of some MEG biomarkers in detecting subtle brain abnormalities often missed by conventional imaging techniques. Methods: A systematic review was conducted using 25 studies that administered MEG to examine mTBI and PCS patients. The quality of the studies was assessed based on selection, comparability, and outcomes. Studies were analyzed for their methodology, evaluated parameters, and the clinical implications of using MEG for mTBI diagnosis. Results: MEG detected abnormal brain oscillations, including increased delta, theta, and gamma waves and disruptions in functional connectivity, particularly in the default mode and frontoparietal networks of patients suffering from mTBI. MEG consistently revealed abnormalities in mTBI patients even when structural imaging was normal. The use of MEG in monitoring recovery showed significant reductions in abnormal slow-wave activity corresponding to clinical improvements. Machine learning algorithms applied to MEG data demonstrated high sensitivity and specificity in distinguishing mTBI patients from healthy controls and predicting clinical outcomes. Conclusions: MEG provides a valuable diagnostic and prognostic tool for mTBI and PCS by identifying subtle neurophysiological abnormalities. The high temporal resolution and the ability to assess functional brain networks make MEG a promising complement to conventional imaging. Future research should focus on integrating MEG with other neuroimaging modalities and standardizing MEG protocols for clinical use.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurosciences, Leeds Teaching Hospitals, Leeds LS9 7TF, UK;
- Academy of Romanian Scientists, 050094 Bucharest, Romania;
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.K.); (F.E.P.)
| | - Foivos E. Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.K.); (F.E.P.)
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 700057 Iasi, Romania
- CENEMED Platform for Interdisciplinary Research, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Alin Ciobica
- Academy of Romanian Scientists, 050094 Bucharest, Romania;
- CENEMED Platform for Interdisciplinary Research, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Department of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
- “Ioan Haulica” Institute, Apollonia University, 700511 Iasi, Romania
| |
Collapse
|
2
|
Ye C, Ho R, Moberg KH, Zheng JQ. Adverse impact of female reproductive signaling on age-dependent neurodegeneration after mild head trauma in Drosophila. eLife 2024; 13:RP97908. [PMID: 39213032 PMCID: PMC11364438 DOI: 10.7554/elife.97908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Environmental insults, including mild head trauma, significantly increase the risk of neurodegeneration. However, it remains challenging to establish a causative connection between early-life exposure to mild head trauma and late-life emergence of neurodegenerative deficits, nor do we know how sex and age compound the outcome. Using a Drosophila model, we demonstrate that exposure to mild head trauma causes neurodegenerative conditions that emerge late in life and disproportionately affect females. Increasing age-at-injury further exacerbates this effect in a sexually dimorphic manner. We further identify sex peptide signaling as a key factor in female susceptibility to post-injury brain deficits. RNA sequencing highlights a reduction in innate immune defense transcripts specifically in mated females during late life. Our findings establish a causal relationship between early head trauma and late-life neurodegeneration, emphasizing sex differences in injury response and the impact of age-at-injury. Finally, our findings reveal that reproductive signaling adversely impacts female response to mild head insults and elevates vulnerability to late-life neurodegeneration.
Collapse
Affiliation(s)
- Changtian Ye
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
| | - Ryan Ho
- College of Art and Science, Emory UniversityAtlantaUnited States
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
| | - James Q Zheng
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
- Department of Neurology, Emory University School of MedicineAtlantaUnited States
- Center for Neurodegenerative Diseases, Emory University School of MedicineAtlantaUnited States
| |
Collapse
|
3
|
Olazadeh K, Borumandnia N, Habibi M, Alavi Majd H. Using Longitudinal Variance Components Models to Assess Hyper-connectivity in Severe Traumatic Brain Injury Patients. Basic Clin Neurosci 2024; 15:509-518. [PMID: 39553256 PMCID: PMC11565661 DOI: 10.32598/bcn.2022.3796.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/10/2022] [Accepted: 04/16/2022] [Indexed: 11/19/2024] Open
Abstract
Introduction Traumatic brain injury (TBI) is one of the leading causes of death globally and one of the most important diseases indicated by the World Health Organization (WHO). Several studies have concluded that brain damage can dramatically increase functional connectivity (FC) in the brain. The effects of this hyper-connectivity are not yet fully understood and are being studied by neuroscientists. Accordingly, this study identifies areas of the brain where, after brain injury, an acute increase in FC in such areas is observed. Methods The data used in this study were downloaded from the accessible open functional magnetic resonance imaging (fMRI) site. The data included fMRI of 14 patients with severe TBI and 12 healthy individuals. The longitudinal model of variance components investigated the difference between FC in the baseline effect and the longitudinal trend between the TBI and control groups. Results After fitting the longitudinal model of variance components, no difference was observed between the FC of the two groups due to the baseline effect. However, in the longitudinal trend of FC, there was a statistically significant difference between the three pairs of cerebellum left, cerebellum right, superior frontal gyrus left, superior frontal gyrus right, thalamus left, and thalamus right in the TBI group compared to the control group. Conclusion The results showed that FC was sharply increased in 3 pairs of areas in people with TBI. This hyper-connectivity can affect individuals' cognitive functions, including motor and sensory functions. The exact extent of this effect is unclear and requires further investigation by neuroscientists.
Collapse
Affiliation(s)
- Keyvan Olazadeh
- Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Borumandnia
- Urology and Nephrology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahin Habibi
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamid Alavi Majd
- Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ye C, Ho R, Moberg KH, Zheng JQ. Sexual Dimorphism in Age-Dependent Neurodegeneration After Mild Head Trauma in Drosophila : Unveiling the Adverse Impact of Female Reproductive Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583747. [PMID: 38496515 PMCID: PMC10942469 DOI: 10.1101/2024.03.06.583747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Environmental insults, including mild head trauma, significantly increase the risk of neurodegeneration. However, it remains challenging to establish a causative connection between early-life exposure to mild head trauma and late-life emergence of neurodegenerative deficits, nor do we know how sex and age compound the outcome. Using a Drosophila model, we demonstrate that exposure to mild head trauma causes neurodegenerative conditions that emerge late in life and disproportionately affect females. Increasing age-at-injury further exacerbates this effect in a sexually dimorphic manner. We further identify Sex Peptide (SP) signaling as a key factor in female susceptibility to post-injury brain deficits. RNA sequencing highlights a reduction in innate immune defense transcripts specifically in mated females during late life. Our findings establish a causal relationship between early head trauma and late-life neurodegeneration, emphasizing sex differences in injury response and the impact of age-at-injury. Finally, our findings reveal that reproductive signaling adversely impacts female response to mild head insults and elevates vulnerability to late-life neurodegeneration.
Collapse
|
5
|
Dogra S, Arabshahi S, Wei J, Saidenberg L, Kang SK, Chung S, Laine A, Lui YW. Functional Connectivity Changes on Resting-State fMRI after Mild Traumatic Brain Injury: A Systematic Review. AJNR Am J Neuroradiol 2024; 45:795-801. [PMID: 38637022 PMCID: PMC11288594 DOI: 10.3174/ajnr.a8204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Mild traumatic brain injury is theorized to cause widespread functional changes to the brain. Resting-state fMRI may be able to measure functional connectivity changes after traumatic brain injury, but resting-state fMRI studies are heterogeneous, using numerous techniques to study ROIs across various resting-state networks. PURPOSE We systematically reviewed the literature to ascertain whether adult patients who have experienced mild traumatic brain injury show consistent functional connectivity changes on resting-state -fMRI, compared with healthy patients. DATA SOURCES We used 5 databases (PubMed, EMBASE, Cochrane Central, Scopus, Web of Science). STUDY SELECTION Five databases (PubMed, EMBASE, Cochrane Central, Scopus, and Web of Science) were searched for research published since 2010. Search strategies used keywords of "functional MR imaging" and "mild traumatic brain injury" as well as related terms. All results were screened at the abstract and title levels by 4 reviewers according to predefined inclusion and exclusion criteria. For full-text inclusion, each study was evaluated independently by 2 reviewers, with discordant screening settled by consensus. DATA ANALYSIS Data regarding article characteristics, cohort demographics, fMRI scan parameters, data analysis processing software, atlas used, data characteristics, and statistical analysis information were extracted. DATA SYNTHESIS Across 66 studies, 80 areas were analyzed 239 times for at least 1 time point, most commonly using independent component analysis. The most analyzed areas and networks were the whole brain, the default mode network, and the salience network. Reported functional connectivity changes varied, though there may be a slight trend toward decreased whole-brain functional connectivity within 1 month of traumatic brain injury and there may be differences based on the time since injury. LIMITATIONS Studies of military, sports-related traumatic brain injury, and pediatric patients were excluded. Due to the high number of relevant studies and data heterogeneity, we could not be as granular in the analysis as we would have liked. CONCLUSIONS Reported functional connectivity changes varied, even within the same region and network, at least partially reflecting differences in technical parameters, preprocessing software, and analysis methods as well as probable differences in individual injury. There is a need for novel rs-fMRI techniques that better capture subject-specific functional connectivity changes.
Collapse
Affiliation(s)
- Siddhant Dogra
- From the Department of Radiology (S.D., J.W., S.K.K., S.C., Y.L.), New York University Grossman School of Medicine, New York, New York
| | - Soroush Arabshahi
- Department of Biomedical Engineering (S.A., A.L.), Department of Radiology, Columbia University, New York, New York
| | - Jason Wei
- From the Department of Radiology (S.D., J.W., S.K.K., S.C., Y.L.), New York University Grossman School of Medicine, New York, New York
| | - Lucia Saidenberg
- Department of Neurology (L.S.), Department of Radiology. New York University Grossman School of Medicine, New York, New York
| | - Stella K Kang
- From the Department of Radiology (S.D., J.W., S.K.K., S.C., Y.L.), New York University Grossman School of Medicine, New York, New York
| | - Sohae Chung
- From the Department of Radiology (S.D., J.W., S.K.K., S.C., Y.L.), New York University Grossman School of Medicine, New York, New York
| | - Andrew Laine
- Department of Biomedical Engineering (S.A., A.L.), Department of Radiology, Columbia University, New York, New York
| | - Yvonne W Lui
- From the Department of Radiology (S.D., J.W., S.K.K., S.C., Y.L.), New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
6
|
Wei YC, Chen CK, Lin C, Shyu YC, Chen PY. Life After Traumatic Brain Injury: Effects on the Lifestyle and Quality of Life of Community-Dwelling Patients. Neurotrauma Rep 2024; 5:159-171. [PMID: 38463415 PMCID: PMC10924056 DOI: 10.1089/neur.2023.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Persons who have experienced traumatic brain injury (TBI) may encounter a range of changes in their physical, mental, and cognitive functions as well as high fatigue levels. To gain a comprehensive understanding of the challenges faced by persons after TBI, we conducted multi-domain assessments among community-dwelling persons with a history of TBI and compared them with age- and sex-matched controls from the Northeastern Taiwan Community Medicine Research Cohort between 2019 and 2021. A total of 168 persons with TBI and 672 non-TBI controls were not different in terms of demographics, comorbidities, and physiological features. However, compared with the non-TBI group, the TBI group had a distinct lifestyle that involved increased reliance on analgesics (6.9% vs. 15.0%, respectively; p = 0.001) and sleep aids (p = 0.008), which negatively affected their quality of life. Moreover, they consumed more coffee (p < 0.001), tea (p < 0.001), cigarettes (p = 0.002), and betel nuts (p = 0.032) than did the non-TBI group. Notably, the use of coffee had a positive effect on the quality of life of the TBI group (F = 4.034; p = 0.045). Further, compared with the non-TBI group, the TBI group had increased risks of sarcopenia (p = 0.003), malnutrition (p = 0.003), and anxiety (p = 0.029) and reduced blood levels of vitamin D (29.83 ± 10.39 vs. 24.20 ± 6.59 ng/mL, respectively; p < 0.001). Overall, the TBI group had a reduced health-related quality of life, with significant challenges related to physical health, mental well-being, social interactions, pain management, and fatigue levels. Moreover, the TBI group experienced poorer sleep quality and efficiency than did the non-TBI group. In conclusion, persons who have sustained brain injuries that require comprehensive and holistic care that includes lifestyle modification, mental and physical healthcare plans, and increased long-term support from their communities. ClinicalTrials.gov (identifier: NCT04839796).
Collapse
Affiliation(s)
- Yi-Chia Wei
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Chih-Ken Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Chemin Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Pin-Yuan Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| |
Collapse
|
7
|
Ye C, Behnke JA, Hardin KR, Zheng JQ. Drosophila melanogaster as a model to study age and sex differences in brain injury and neurodegeneration after mild head trauma. Front Neurosci 2023; 17:1150694. [PMID: 37077318 PMCID: PMC10106652 DOI: 10.3389/fnins.2023.1150694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Repetitive physical insults to the head, including those that elicit mild traumatic brain injury (mTBI), are a known risk factor for a variety of neurodegenerative conditions including Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although most individuals who sustain mTBI typically achieve a seemingly full recovery within a few weeks, a subset experience delayed-onset symptoms later in life. As most mTBI research has focused on the acute phase of injury, there is an incomplete understanding of mechanisms related to the late-life emergence of neurodegeneration after early exposure to mild head trauma. The recent adoption of Drosophila-based brain injury models provides several unique advantages over existing preclinical animal models, including a tractable framework amenable to high-throughput assays and short relative lifespan conducive to lifelong mechanistic investigation. The use of flies also provides an opportunity to investigate important risk factors associated with neurodegenerative conditions, specifically age and sex. In this review, we survey current literature that examines age and sex as contributing factors to head trauma-mediated neurodegeneration in humans and preclinical models, including mammalian and Drosophila models. We discuss similarities and disparities between human and fly in aging, sex differences, and pathophysiology. Finally, we highlight Drosophila as an effective tool for investigating mechanisms underlying head trauma-induced neurodegeneration and for identifying therapeutic targets for treatment and recovery.
Collapse
Affiliation(s)
- Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph A. Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine R. Hardin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
8
|
Vedaei F, Mashhadi N, Zabrecky G, Monti D, Navarreto E, Hriso C, Wintering N, Newberg AB, Mohamed FB. Identification of chronic mild traumatic brain injury using resting state functional MRI and machine learning techniques. Front Neurosci 2023; 16:1099560. [PMID: 36699521 PMCID: PMC9869678 DOI: 10.3389/fnins.2022.1099560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a major public health concern that can result in a broad spectrum of short-term and long-term symptoms. Recently, machine learning (ML) algorithms have been used in neuroscience research for diagnostics and prognostic assessment of brain disorders. The present study aimed to develop an automatic classifier to distinguish patients suffering from chronic mTBI from healthy controls (HCs) utilizing multilevel metrics of resting-state functional magnetic resonance imaging (rs-fMRI). Sixty mTBI patients and forty HCs were enrolled and allocated to training and testing datasets with a ratio of 80:20. Several rs-fMRI metrics including fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), degree centrality (DC), voxel-mirrored homotopic connectivity (VMHC), functional connectivity strength (FCS), and seed-based FC were generated from two main analytical categories: local measures and network measures. Statistical two-sample t-test was employed comparing between mTBI and HCs groups. Then, for each rs-fMRI metric the features were selected extracting the mean values from the clusters showing significant differences. Finally, the support vector machine (SVM) models based on separate and multilevel metrics were built and the performance of the classifiers were assessed using five-fold cross-validation and via the area under the receiver operating characteristic curve (AUC). Feature importance was estimated using Shapley additive explanation (SHAP) values. Among local measures, the range of AUC was 86.67-100% and the optimal SVM model was obtained based on combined multilevel rs-fMRI metrics and DC as a separate model with AUC of 100%. Among network measures, the range of AUC was 80.42-93.33% and the optimal SVM model was obtained based on the combined multilevel seed-based FC metrics. The SHAP analysis revealed the DC value in the left postcentral and seed-based FC value between the motor ventral network and right superior temporal as the most important local and network features with the greatest contribution to the classification models. Our findings demonstrated that different rs-fMRI metrics can provide complementary information for classifying patients suffering from chronic mTBI. Moreover, we showed that ML approach is a promising tool for detecting patients with mTBI and might serve as potential imaging biomarker to identify patients at individual level. Clinical trial registration [clinicaltrials.gov], identifier [NCT03241732].
Collapse
Affiliation(s)
- Faezeh Vedaei
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Najmeh Mashhadi
- Department of Computer Science and Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Daniel Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Emily Navarreto
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chloe Hriso
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrew B. Newberg
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B. Mohamed
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Cognitive performance in older people after mild traumatic brain injury: Trauma effects and other risk factors. J Int Neuropsychol Soc 2022:1-11. [PMID: 36102332 DOI: 10.1017/s1355617722000674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cognitive symptoms are common in the initial weeks after mTBI, but recovery is generally expected within three months. However, there is limited information about recovery specifically in older age cohorts. Therefore, this study investigated cognitive outcome three months after mTBI in older adults (≥ 65 years) compared to trauma and community age-matched controls and explored risk factors for outcome after traumatic injury. METHODS Older mTBI patients (n = 40) and older adults with mild traumatic injury but without head injury (n = 66) were compared to a noninjured community control group (n = 47). Cognitive assessment included neuropsychological and computerized tests. Group differences were compared on individual tasks and overall cognitive performances using composite scores. Regression analyses identified predictors of outcome for trauma patients and moderator analyses explored possible interactions of mTBI severity with age and cognition. RESULTS As well as lower performances in processing speed and memory, both trauma groups had significantly lower performance on composite neuropsychological (d = .557 and .670) and computerized tasks (d = .783 and .824) compared to noninjured controls. Age, education, and history of depression were direct predictors of cognitive performance after mild traumatic injury (with or without head injury). Further moderation analysis demonstrated that mTBI severity (Glasgow Coma Scale < 15) moderated the impact of older age on computerized assessment (β = -.138). CONCLUSIONS Three months after mild trauma (regardless of head injury), older people demonstrate lower cognition compared to noninjured peers. However, severity of mTBI (Glasgow Coma Scale < 15) can interact with older age to predict poorer cognitive outcomes.
Collapse
|
10
|
Effects of Mild Traumatic Brain Injury on Resting State Brain Network Connectivity in Older Adults. Brain Imaging Behav 2022; 16:1863-1872. [PMID: 35394617 PMCID: PMC9279274 DOI: 10.1007/s11682-022-00662-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
Abstract
Older age is associated with worsened outcome after mild traumatic brain injury (mTBI) and a higher risk of developing persistent post-traumatic complaints. However, the effects of mTBI sequelae on brain connectivity at older age and their association with post-traumatic complaints remain understudied.We analyzed multi-echo resting-state functional magnetic resonance imaging data from 25 older adults with mTBI (mean age: 68 years, SD: 5 years) in the subacute phase (mean injury to scan interval: 38 days, SD: 9 days) and 20 age-matched controls. Severity of complaints (e.g. fatigue, dizziness) was assessed using self-reported questionnaires. Group independent component analysis was used to identify intrinsic connectivity networks (ICNs). The effects of group and severity of complaints on ICNs were assessed using spatial maps intensity (SMI) as a measure of within-network connectivity, and (static) functional network connectivity (FNC) as a measure of between-network connectivity.Patients indicated a higher total severity of complaints than controls. Regarding SMI measures, we observed hyperconnectivity in left-mid temporal gyrus (cognitive-language network) and hypoconnectivity in the right-fusiform gyrus (visual-cerebellar network) that were associated with group. Additionally, we found interaction effects for SMI between severity of complaints and group in the visual(-cerebellar) domain. Regarding FNC measures, no significant effects were found.In older adults, changes in cognitive-language and visual(-cerebellar) networks are related to mTBI. Additionally, group-dependent associations between connectivity within visual(-cerebellar) networks and severity of complaints might indicate post-injury (mal)adaptive mechanisms, which could partly explain post-traumatic complaints (such as dizziness and balance disorders) that are common in older adults during the subacute phase.
Collapse
|
11
|
Vedaei F, Newberg AB, Alizadeh M, Muller J, Shahrampour S, Middleton D, Zabrecky G, Wintering N, Bazzan AJ, Monti DA, Mohamed FB. Resting-State Functional MRI Metrics in Patients With Chronic Mild Traumatic Brain Injury and Their Association With Clinical Cognitive Performance. Front Hum Neurosci 2022; 15:768485. [PMID: 35027887 PMCID: PMC8751629 DOI: 10.3389/fnhum.2021.768485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Mild traumatic brain injury (mTBI) accounts for more than 80% of people experiencing brain injuries. Symptoms of mTBI include short-term and long-term adverse clinical outcomes. In this study, resting-state functional magnetic resonance imaging (rs-fMRI) was conducted to measure voxel-based indices including fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and functional connectivity (FC) in patients suffering from chronic mTBI; 64 patients with chronic mTBI at least 3 months post injury and 40 healthy controls underwent rs-fMRI scanning. Partial correlation analysis controlling for age and gender was performed within mTBI cohort to explore the association between rs-fMRI metrics and neuropsychological scores. Compared with controls, chronic mTBI patients showed increased fALFF in the left middle occipital cortex (MOC), right middle temporal cortex (MTC), and right angular gyrus (AG), and increased ReHo in the left MOC and left posterior cingulate cortex (PCC). Enhanced FC was observed from left MOC to right precuneus; from right MTC to right superior temporal cortex (STC), right supramarginal, and left inferior parietal cortex (IPC); and from the seed located at right AG to left precuneus, left superior medial frontal cortex (SMFC), left MTC, left superior temporal cortex (STC), and left MOC. Furthermore, the correlation analysis revealed a significant correlation between neuropsychological scores and fALFF, ReHo, and seed-based FC measured from the regions with significant group differences. Our results demonstrated that alterations of low-frequency oscillations in chronic mTBI could be representative of disruption in emotional circuits, cognitive performance, and recovery in this cohort.
Collapse
Affiliation(s)
- Faezeh Vedaei
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrew B Newberg
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mahdi Alizadeh
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jennifer Muller
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Shiva Shahrampour
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Devon Middleton
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anthony J Bazzan
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Daniel A Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B Mohamed
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
12
|
Bruijel J, Quaedflieg CWEM, Otto T, van de Ven V, Stapert SZ, van Heugten C, Vermeeren A. Task-induced subjective fatigue and resting-state striatal connectivity following traumatic brain injury. Neuroimage Clin 2022; 33:102936. [PMID: 35007852 PMCID: PMC8749448 DOI: 10.1016/j.nicl.2022.102936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023]
Abstract
Fatigue is a very frequent and disabling symptom in traumatic brain injury (TBI). Effects of task-induced fatigue on resting-state functional connectivity (rsFC). Striatal rsFC relates differently to subjective fatigue in TBI compared to controls. Default mode network rsFC relates similar to subjective fatigue in TBI and controls.
Background People with traumatic brain injury (TBI) often experience fatigue, but an understanding of the neural underpinnings of fatigue following TBI is still lacking. This study used resting-state functional magnetic resonance imaging (rs-fMRI) to examine associations between functional connectivity (FC) changes and task-induced changes in subjective fatigue in people with moderate-severe TBI. Methods Sixteen people with moderate-severe TBI and 17 matched healthy controls (HC) performed an adaptive N-back task (working memory task) to induce cognitive fatigue. Before and after the task they rated their state fatigue level and underwent rs-fMRI. Seed-to-voxel analyses with seeds in areas involved in cognitive fatigue, namely the striatum and default mode network (DMN) including, medial prefrontal cortex and posterior cingulate cortex, were performed. Results The adaptive N-back task was effective in inducing fatigue in both groups. Subjective task-induced fatigue was positively associated with FC between striatum and precuneus in people with TBI, while there was a negative association in HC. In contrast, subjective task-induced fatigue was negatively associated with FC between striatum and cerebellum in the TBI group, while there was no association in HC. Similar associations between task-induced subjective fatigue and DMN FC were found across the groups. Conclusions Our results suggest that the subjective experience of fatigue was linked to DMN connectivity in both groups and was differently associated with striatal connectivity in people with moderate-severe TBI compared to HC. Defining fatigue-induced neuronal network changes is pertinent to the development of treatments that target abnormal neuronal activity after TBI.
Collapse
Affiliation(s)
- J Bruijel
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Limburg Brain Injury Centre, Limburg, the Netherlands.
| | - C W E M Quaedflieg
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - T Otto
- Dept of Work and Social Psychology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - V van de Ven
- Dept of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - S Z Stapert
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Limburg Brain Injury Centre, Limburg, the Netherlands; Dept of Medical Psychology, Zuyderland Medical Centre, Sittard-Geleen, the Netherlands
| | - C van Heugten
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Limburg Brain Injury Centre, Limburg, the Netherlands; School for Mental Health and Neuroscience, Dept of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - A Vermeeren
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
13
|
Are oral anticoagulants a risk factor for mild traumatic brain injury progression? A single-center experience focused on of direct oral anticoagulants and vitamin K antagonists. Acta Neurochir (Wien) 2022; 164:97-105. [PMID: 34850288 DOI: 10.1007/s00701-021-05066-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Mild traumatic brain injury (TBI) in anticoagulated patients is a common challenge for emergency departments because of lack of appropriate epidemiological data and huge management variability for those under oral anticoagulation therapy. Given the discrepancies between guidelines, the aim of the present study was to quantify the association between oral anticoagulant therapy (either vitamin K antagonist (VKA) or direct oral anticoagulant (DOAC)) and the post-traumatic intracranial hemorrhage worsening compared to admission CT scan. METHODS We included all consecutive records of patients admitted to our emergency department for mild TBI as chief complaint and with a positive admission CT scan. After statistical univariate comparison, cause-specific hazard ratio (HR) and 95% confidence interval (CI) were determined with the use of Cox proportional hazard model. RESULTS In the study period, 4667 patients had a CT scan for mild TBI; 439 (9.4%) were found to have intracranial hemorrhage. Among these patients, 299 (68.1%) were prescribed observation and control CT: 46 (15.38%) were on anticoagulant therapy, 23 (50%) on VKA, and 23 (50%) on DOAC. In multivariate analysis, only oral anticoagulation therapy was significantly associated to an increased risk of intracranial hemorrhage progression (HR 2.58; 95% CI 1.411-4.703; p = .002 and HR 1.9; 95% CI 1.004-3.735; p = .0048 for VKA and DOAC, respectively). Surgery was due to isolated subdural hematoma in 87.5% of cases, to subdural hematoma associated with intraparenchymal hemorrhage in 9.38% and to intraparenchymal hemorrhage only in 3.12%; 13 cases (4.35%) deceased in intensive care unit. CONCLUSIONS In our series, anticoagulation was associated to a significant increase in intracranial progression, leaving the question open as to what this implies in current clinical practice; subdural hematoma was the major finding associated to evolution and surgery. Against this background, further studies are needed to clarify patients' management and DOAC safety profile compared to VKA in mild TBI.
Collapse
|