1
|
Salamone EM, Carpi M, Noce G, Del Percio C, Lopez S, Lizio R, Jakhar D, Eldellaa A, Isaza VH, Bölükbaş B, Soricelli A, Salvatore M, Güntekin B, Yener G, Massa F, Arnaldi D, Famà F, Pardini M, Ferri R, Salemi M, Lanuzza B, Stocchi F, Vacca L, Coletti C, Marizzoni M, Taylor JP, Hanoğlu L, Yılmaz NH, Kıyı İ, Kula H, Frisoni GB, Cuoco S, Barone P, D'Anselmo A, Bonanni L, Biundo R, D'Antonio F, Bruno G, Giubilei F, Antonini A, Babiloni C. Abnormal electroencephalographic rhythms from quiet wakefulness to light sleep in Alzheimer's disease patients with mild cognitive impairment. Clin Neurophysiol 2025; 171:164-181. [PMID: 39914158 DOI: 10.1016/j.clinph.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/09/2024] [Accepted: 01/22/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVES Alzheimer's disease patients with mild cognitive impairment (ADMCI) show abnormal resting-state eyes-closed electroencephalographic (rsEEG) alpha rhythms (8-12 Hz) and may suffer from daytime sleepiness. Our exploratory study tested the hypothesis that they may present characteristic EEG rhythms from quiet wakefulness to light sleep during diurnal recordings. METHODS Datasets of 34 ADMCI and 22 matched healthy elderly (Nold) subjects were obtained from international archives. EEG recordings lasted approximately 30 min. Transitions of EEG activity from quiet wakefulness (alpha-dominant) to light sleep (theta-dominant ripples) were scored according to Hori's vigilance stages. Cortical source activities were computed using the eLORETA software. RESULTS ADMCI (t-ADMCI, N = 18) over Nold (t-Nold, N = 11) participants were characterized by greater frontal EEG delta source activities and a lesser reduction (reactivity) in the posterior alpha source activities from quiet wakefulness to ripples. Notably, EEG delta source activities during quiet wakefulness were also greater in the ADMCI group transitioning to light sleep as compared to patients without said vigilance reduction. CONCLUSIONS These results suggest that ADMCI patients with a greater susceptibility to daytime sleepiness may show characteristic EEG delta and alpha rhythms in the transition from quiet vigilance to daytime sleep. SIGNIFICANCE Our study showed a derangement of EEG rhythms during the transition to sleep possibly specific to AD.
Collapse
Affiliation(s)
- Enrico Michele Salamone
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Matteo Carpi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Roberta Lizio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Ali Eldellaa
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Veronica Henao Isaza
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Burcu Bölükbaş
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Medical, Movement and Well-being Sciences, University of Naples Parthenope, Naples, Italy
| | - Marco Salvatore
- Department of Medical, Movement and Well-being Sciences, University of Naples Parthenope, Naples, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye; IBG: International Biomedicine and Genome Center, Izmir, Turkey
| | - Federico Massa
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Pardini
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | | | | | | | | | | | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - John Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Nesrin Helvacı Yılmaz
- Medipol University Istanbul Parkinson's Disease and Movement Disorders Center (PARMER), Istanbul, Turkey
| | - İlayda Kıyı
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Hilal Kula
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Sofia Cuoco
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Italy
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Italy
| | - Anita D'Anselmo
- Department of Aging Medicine and Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Laura Bonanni
- Department of Aging Medicine and Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Roberta Biundo
- Department of Neuroscience, University of Padua, Padua (PD), Italy
| | - Fabrizia D'Antonio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Angelo Antonini
- Department of Neuroscience, University of Padua, Padua (PD), Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino (FR), Italy.
| |
Collapse
|
2
|
Ran L, Liu J, Lan X, Zhou X, Tan Y, Zhang J, Tang Y, Tang L, Zhang J, Liu D. White matter microstructure damage measured by automated fiber quantification correlates with pain symptoms in lung cancer patients. Brain Imaging Behav 2024; 18:1524-1535. [PMID: 39356440 DOI: 10.1007/s11682-024-00942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
To investigative the white matter (WM) alterations in lung cancer patients with cancer pain (CP+), and explore the correlations between damaged WM fiber tracts and clinical indicators. Twenty-six CP+, 26 lung cancer patients without CP (CP-), and 31 healthy controls (HC) were recruited. All participants underwent diffusion tensor imaging (DTI) and clinical assessments. Automated fiber quantification (AFQ) technique was performed to identify the 20 WM fiber bundles, and the fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were extracted. Intergroup comparisons of these diffusion metrics were conducted based on the entire fiber bundle level and 100 node levels along each tract. The associations between altered diffusion metrics and the numeric rating scale (NRS) scores, as well as the pain duration, were analyzed. At the entire level, the CP + group showed impaired WM structure in the right cingulum hippocampus (CH_R). At the pointwise level, the CP + group exhibited extensive nodal FA reduction or MD, RD, and AD elevation. In addition, the AD of the posterior portion of the right inferior longitudinal fasciculus (ILF_R, nodes 71-75) in the CP + group was positively correlated with the pain duration, and the FA of CH_R (nodes 22-38) was negatively correlated with NRS score. Extensive WM microstructural damage may be a pattern of brain abnormalities in lung cancer patients with CP, and in particular, specific nodal disruption along pain-related fiber tracts may be a sensitive imaging biomarker to characterize the severity and duration of CP.
Collapse
Affiliation(s)
- Li Ran
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Jiang Liu
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Xiaosong Lan
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Xiaoyu Zhou
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Yong Tan
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Jing Zhang
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Yu Tang
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Lin Tang
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China.
| | - Daihong Liu
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China.
| |
Collapse
|
3
|
Attaallah B, Toniolo S, Maio MR, Husain M. Apathy and effort-based decision-making in Alzheimer's disease and subjective cognitive impairment. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70013. [PMID: 39416486 PMCID: PMC11480904 DOI: 10.1002/dad2.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Apathy is a significant feature in Alzheimer's disease (AD) and subjective cognitive impairment (SCI), though its mechanisms are not well established. METHODS An effort-based decision-making (EBDM) framework was applied to investigate apathy in 30 AD patients, 41 SCI participants, and 55 healthy controls (HC). Data were analyzed using a drift-diffusion model (DDM) to uncover latent psychological processes. RESULTS SCI participants reported higher apathy than AD patients and HC. However, informant reports of apathy in AD patients were higher than self-reports and indicated significant apathy compared to HC. Both the AD and SCI groups showed reduced sensitivity to effort changes, linked to executive dysfunction in AD and apathy in SCI. Increased resting functional cortical connectivity with the nucleus accumbens (NA) was associated with higher apathy in SCI. DISCUSSION These results highlight a similar disruption of EBDM in AD and SCI, differentially related to executive functioning in AD and apathy in SCI. Highlights This is the first study investigating apathy using an effort-based decision-making (EBDM) framework in Alzheimer's disease (AD) and subjective cognitive impairment (SCI).Self-reports underestimate apathy in AD patients when compared to informant reports and healthy controls (HC). SCI participants, in whom self and informant reports were more concordant, also showed higher degrees of apathy.Both AD and SCI groups showed reduced sensitivity to effort.Reduced sensitivity to effort correlates with executive dysfunction in AD and apathy, but not depression, in SCI.Increased nucleus accumbens (ventral striatum) connectivity with the frontoparietal network was associated with higher apathy scores in SCI.The results thus suggest that while AD and SCI can have similar deficits in EBDM, these deficits correlate with distinct clinical manifestations: executive dysfunction in AD and apathy in SCI.
Collapse
Affiliation(s)
- Bahaaeddin Attaallah
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Centre for Preventive NeurologyQueen Mary University of LondonLondonUK
| | - Sofia Toniolo
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Maria Raquel Maio
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Masud Husain
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| |
Collapse
|
4
|
Luo K, Ma X, Jin X, Liu X, Li Y, Ma S, Hu J. Effectiveness of Yijinjing on cognitive and motor functions in patients with Parkinson's disease: study protocol for a randomized controlled trial. Front Neurol 2024; 15:1357777. [PMID: 38737352 PMCID: PMC11082389 DOI: 10.3389/fneur.2024.1357777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Background Parkinson's disease (PD) is a common neurodegenerative disorder that affects motor and non-motor functions, significantly reducing patients' quality of life. No effective drug-based treatments are known to solve this problem. Non-drug therapies such as Yijinjing exercise have shown potential in improving cognitive and motor functions in PD patients. However, solid evidence must still be provided to support their clinical efficacy. This study aims to evaluate the clinical efficacy of Yijinjing exercise interventions in PD patients and explore the underlying mechanisms between the cognitive and motor functions in PD. Methods This is a single-center randomized controlled trial in which 96 eligible PD patients will be randomly assigned to receive either Yijinjing exercise group or brisk walking group or control group in a ratio of 1:1:1. Interventions (Yijinjing exercise or brisk walking training, 40 min per session) will be provided in 3 sessions per week (Monday, Wednesday, Friday) for 12 weeks, with a total of 36 sessions. After the treatment, there will be a 1-month follow-up period. The primary outcomes will be measured using the Montreal Cognitive Assessment (MoCA) and the Unified Parkinson's Disease Rating Scale motor section (UPDRS-III). Secondary outcomes include balance function, executive function, walking function, sleep quality, and quality of life. Additionally, the prefrontal cerebral and sensorimotor cortex blood oxygen signal level will be collected to explore the underlying mechanisms. All outcomes will be assessed at baseline, at the end of 12 weeks of treatment and after an additional 1-month follow-up period. Discussion The results of the study protocol will provide high-quality evidence for the potential of intervention measures based on the Yijinjing exercise to improve the cognitive and activity levels of Parkinson's disease patients. We envision the Yijinjing exercise as a non-pharmacological family activity that can provide a new and more effective method for the treatment of Parkinson's disease patients or those at risk. Clinical trial registration This study was approved by the Ethics Committee of the Second Rehabilitation Hospital of Shanghai (2020-05-01). The trial has been registered in the China Clinical Trials Registry (ChiCTR2200055636).
Collapse
Affiliation(s)
- Kailiang Luo
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xinran Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueming Jin
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinhao Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yujia Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shujie Ma
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Jun Hu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| |
Collapse
|
5
|
Wang X, Yin Y, Wang X, Xu G, Tian J, Ma X. White matter microstructural alterations in patients with anti-N-methyl-D-aspartate receptor encephalitis: A tract-based spatial statistics study. Mult Scler Relat Disord 2024; 84:105500. [PMID: 38368748 DOI: 10.1016/j.msard.2024.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Cognitive impairment is common in patients with anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis; however, neural mechanisms underlying this impairment remain unclear. Diffusion tensor imaging (DTI) is a potential method for studying the condition of white matter fibers in patients with anti-NMDAR encephalitis, allowing for an analysis of the neuroimaging mechanisms of cognitive impairment in conjunction with cognitive scales. This study aimed to explore white matter microstructural alterations and their correlation with cognitive function in patients with anti-NMDAR encephalitis. METHODS DTI data were collected from 22 patients with anti-NMDAR encephalitis (aged 29.00(19.75, 39.50) years; 12 males, 10 females) and 20 healthy controls (HCs) (aged 24.50(21.25, 32.00); 12 males, 8 females) matched for age, sex, and educational level. Changes in the white matter microstructure were analyzed using tract-based spatial statistics. Pearson correlation analysis was used to explore the correlation between white matter integrity and neuropsychological scores. RESULTS Compared with HCs, patients with anti-NMDAR encephalitis showed decreased fractional anisotropy and increased mean diffusivity values in extensive white matter regions, which were associated with disease severity, memory, and executive and visuospatial functions. CONCLUSION Widespread impairment of the structural integrity of the white matter in the brain is significantly associated with cognitive dysfunction in patients with anti-NMDAR encephalitis, providing neuroimaging evidence for studying the underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Department of Nuclear Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China
| | - Yi Yin
- Department of Medical imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Xinzhi Wang
- Department of Medical imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Guang Xu
- Department of Neurology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Junzhang Tian
- Department of Nuclear Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China; The Second School of Clinical Medicine, Southern Medial University, Guangzhou, PR China
| | - Xiaofen Ma
- Department of Nuclear Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China; The Second School of Clinical Medicine, Southern Medial University, Guangzhou, PR China.
| |
Collapse
|
6
|
Zhong S, Lou J, Ma K, Shu Z, Chen L, Li C, Ye Q, Zhou L, Shen Y, Ye X, Zhang J. Disentangling in-vivo microstructural changes of white and gray matter in mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis. Brain Imaging Behav 2023; 17:764-777. [PMID: 37752311 DOI: 10.1007/s11682-023-00805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
The microstructural characteristics of white and gray matter in mild cognitive impairment (MCI) and the early-stage of Alzheimer's disease (AD) remain unclear. This study aimed to systematically identify the microstructural damages of MCI/AD in studies using neurite orientation dispersion and density imaging (NODDI), and explore their correlations with cognitive performance. Multiple databases were searched for eligible studies. The 10 eligible NODDI studies were finally included. Patients with MCI/AD showed overall significant reductions in neurite density index (NDI) of specific white matter structures in bilateral hemispheres (left hemisphere: -0.40 [-0.53, -0.27], P < 0.001; right: -0.33 [-0.47, -0.19], P < 0.001), involving the bilateral superior longitudinal fasciculus (SLF), uncinate fasciculus (UF), the left posterior thalamic radiation (PTR), and the left cingulum. White matter regions exhibited significant increased orientation dispersion index (ODI) (left: 0.25 [0.02, 0.48], P < 0.05; right: 0.27 [0.07, 0.46], P < 0.05), including the left cingulum, the right UF, and the bilateral parahippocampal cingulum (PHC), and PTR. Additionally, the ODI of gray matter showed significant reduction in bilateral hippocampi (left: -0.97 [-1.42, -0.51], P < 0.001; right: -0.90 [-1.35, -0.45], P < 0.001). The cognitive performance in MCI/AD was significantly associated with NDI (r = 0.50, P < 0.001). Our findings highlight the microstructural changes in MCI/AD were characterized by decreased fiber orientation dispersion in the hippocampus, and decreased neurite density and increased fiber orientation dispersion in specific white matter tracts, including the cingulum, UF, and PTR. Moreover, the decreased NDI may indicate the declined cognitive level of MCI/AD patients.
Collapse
Affiliation(s)
- Shuchang Zhong
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jingjing Lou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ke Ma
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhenyu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lin Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chao Li
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qing Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liang Zhou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ye Shen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangming Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jie Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Hung CC, Chao YP, Lee Y, Huang CW, Huang SH, Chang CC, Cheng CH. Cingulate white matter mediates the effects of fecal Ruminococcus on neuropsychiatric symptoms in patients with amyloid-positive amnestic mild cognitive impairment. BMC Geriatr 2023; 23:720. [PMID: 37936084 PMCID: PMC10631051 DOI: 10.1186/s12877-023-04417-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Microbiota-gut-brain axis interacts with one another to regulate brain functions. However, whether the impacts of gut dysbiosis on limbic white matter (WM) tracts contribute to the neuropsychiatric symptoms (NPS) in patients with amyloid-positive amnestic mild cognitive impairment (aMCI+), have not been explored yet. This study aimed to investigate the mediation effects of limbic WM integrity on the association between gut microbiota and NPS in patients with aMCI+. METHODS Twenty patients with aMCI + and 20 healthy controls (HCs) were enrolled. All subjects underwent neuropsychological assessments and their microbial compositions were characterized using 16S rRNA Miseq sequencing technique. Amyloid deposition inspected by positron emission tomography imaging and limbic WM tracts (i.e., fornix, cingulum, and uncinate fasciculus) detected by diffusion tensor imaging were additionally measured in patients with aMCI+. We employed a regression-based mediation analysis using Hayes's PROCESS macro in this study. RESULTS The relative abundance of genera Ruminococcus and Lactococcus was significantly decreased in patients with aMCI + versus HCs. The relative abundance of Ruminococcus was negatively correlated with affective symptom cluster in the aMCI + group. Notably, this association was mediated by WM integrity of the left cingulate gyrus. CONCLUSIONS Our findings suggest Ruminococcus as a potential target for the management of affective impairments in patients with aMCI+.
Collapse
Affiliation(s)
- Chun-Che Hung
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Road, 333, Taoyuan, Taiwan
- Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yejin Lee
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Chi-Wei Huang
- Department of Neurology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung university College of Medicine, No. 123 Ta-Pei Rd., Niau-Sung Dist, 833, Kaohsiung, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung university College of Medicine, No. 123 Ta-Pei Rd., Niau-Sung Dist, 833, Kaohsiung, Taiwan.
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Road, 333, Taoyuan, Taiwan.
- Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
8
|
Dolphin H, Dyer AH, McHale C, O'Dowd S, Kennelly SP. An Update on Apathy in Alzheimer's Disease. Geriatrics (Basel) 2023; 8:75. [PMID: 37489323 PMCID: PMC10366907 DOI: 10.3390/geriatrics8040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Apathy is a complex multi-dimensional syndrome that affects up to 70% of individuals with Alzheimer's disease (AD). Whilst many frameworks to define apathy in AD exist, most include loss of motivation or goal-directed behaviour as the central feature. Apathy is associated with significant impact on persons living with AD and their caregivers and is also associated with accelerated cognitive decline across the AD spectrum. Neuroimaging studies have highlighted a key role of fronto-striatial circuitry including the anterior cingulate cortex (ACC), orbito-frontal cortex (OFC) and associated subcortical structures. Importantly, the presence and severity of apathy strongly correlates with AD stage and neuropathological biomarkers of amyloid and tau pathology. Following from neurochemistry studies demonstrating a central role of biogenic amine neurotransmission in apathy syndrome in AD, recent clinical trial data suggest that apathy symptoms may improve following treatment with agents such as methylphenidate-which may have an important role alongside emerging non-pharmacological treatment strategies. Here, we review the diagnostic criteria, rating scales, prevalence, and risk factors for apathy in AD. The underlying neurobiology, neuropsychology and associated neuroimaging findings are reviewed in detail. Finally, we discuss current treatment approaches and strategies aimed at targeting apathy syndrome in AD, highlighting areas for future research and clinical trials in patient cohorts.
Collapse
Affiliation(s)
- Helena Dolphin
- Tallaght Institute of Memory and Cognition, Tallaght University Hospital, D24NR0A Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D08W9RT Dublin, Ireland
| | - Adam H Dyer
- Tallaght Institute of Memory and Cognition, Tallaght University Hospital, D24NR0A Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D08W9RT Dublin, Ireland
| | - Cathy McHale
- Tallaght Institute of Memory and Cognition, Tallaght University Hospital, D24NR0A Dublin, Ireland
| | - Sean O'Dowd
- Tallaght Institute of Memory and Cognition, Tallaght University Hospital, D24NR0A Dublin, Ireland
- Department of Neurology, Tallaght University Hospital, D24NR0A Dublin, Ireland
- Academic Unit of Neurology, Trinity College Dublin, D02R590 Dublin, Ireland
| | - Sean P Kennelly
- Tallaght Institute of Memory and Cognition, Tallaght University Hospital, D24NR0A Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D08W9RT Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, D08W9RT Dublin, Ireland
| |
Collapse
|
9
|
Chokesuwattanaskul A, Zanon Zotin MC, Schoemaker D, Sveikata L, Gurol ME, Greenberg SM, Viswanathan A. Apathy in Patients With Cerebral Amyloid Angiopathy: A Multimodal Neuroimaging Study. Neurology 2023; 100:e2007-e2016. [PMID: 36941070 PMCID: PMC10186225 DOI: 10.1212/wnl.0000000000207200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/03/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVE To analyze the prevalence and associated clinical characteristics of apathy in sporadic cerebral amyloid angiopathy and investigate whether apathy was associated with disease burden and disconnections of key structures in the reward circuit through a structural and functional multimodal neuroimaging approach. METHODS Thirty-seven participants with probable sporadic cerebral amyloid angiopathy without symptomatic intracranial hemorrhage or dementia (mean age, 73.3 ± 7.2 years, % male = 59.5%) underwent a detailed neuropsychological evaluation, including measures of apathy and depression, and a multimodal MR neuroimaging study. A multiple linear regression analysis was used to assess the association of apathy with conventional small vessel disease neuroimaging markers. A voxel-based morphometry with a small volume correction within regions previously associated with apathy and a whole-brain tract-based spatial statistics were performed to identify differences in the gray matter and white matter between the apathetic and nonapathetic groups. Gray matter regions significantly associated with apathy were further evaluated for their functional alterations as seeds in the seed-based resting-state functional connectivity analysis. Potential confounders, namely, age, sex, and measures of depression, were entered as covariates in all analyses. RESULTS A higher composite small vessel disease marker score (CAA-SVD) was associated with a higher degree of apathy (standardized coefficient = 1.35 (0.07-2.62), adjusted R2 = 27.90, p = 0.04). Lower gray matter volume of the bilateral orbitofrontal cortices was observed in the apathetic group than in the nonapathetic group (F = 13.20, family-wise error-corrected p = 0.028). The apathetic group demonstrated a widespread decrease in white matter microstructural integrity compared with the nonapathetic group. These tracts connect key regions within and between related reward circuits. Finally, there were no significant functional alterations between the apathetic and nonapathetic groups. DISCUSSION Our findings revealed the orbitofrontal cortex as a key region in the reward circuit associated with apathy in sporadic cerebral amyloid angiopathy, independent from depression. Apathy was shown to be associated with a higher CAA-SVD score and an extensive disruption of white matter tracts, which suggested that a higher burden of CAA pathology and the disruption in large-scale white matter networks may underlie manifestations of apathy.
Collapse
Affiliation(s)
- Anthipa Chokesuwattanaskul
- From the Department of Neurology (A.C., M.C.Z.Z., D.S., L.S., M.E.G., S.M.G., A.V.), J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston; Division of Neurology (A.C.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Cognitive Clinical and Computational Neuroscience Research Unit (A.C.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Medical Imaging (M.C.Z.Z.), Center for Imaging Sciences and Medical Physics, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Division of Neurology, Department of Clinical Neurosciences (L.S.), Geneva University Hospital, Faculty of Medicine, University of Geneva, Switzerland.
| | - Maria Clara Zanon Zotin
- From the Department of Neurology (A.C., M.C.Z.Z., D.S., L.S., M.E.G., S.M.G., A.V.), J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston; Division of Neurology (A.C.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Cognitive Clinical and Computational Neuroscience Research Unit (A.C.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Medical Imaging (M.C.Z.Z.), Center for Imaging Sciences and Medical Physics, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Division of Neurology, Department of Clinical Neurosciences (L.S.), Geneva University Hospital, Faculty of Medicine, University of Geneva, Switzerland
| | - Dorothée Schoemaker
- From the Department of Neurology (A.C., M.C.Z.Z., D.S., L.S., M.E.G., S.M.G., A.V.), J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston; Division of Neurology (A.C.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Cognitive Clinical and Computational Neuroscience Research Unit (A.C.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Medical Imaging (M.C.Z.Z.), Center for Imaging Sciences and Medical Physics, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Division of Neurology, Department of Clinical Neurosciences (L.S.), Geneva University Hospital, Faculty of Medicine, University of Geneva, Switzerland
| | - Lukas Sveikata
- From the Department of Neurology (A.C., M.C.Z.Z., D.S., L.S., M.E.G., S.M.G., A.V.), J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston; Division of Neurology (A.C.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Cognitive Clinical and Computational Neuroscience Research Unit (A.C.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Medical Imaging (M.C.Z.Z.), Center for Imaging Sciences and Medical Physics, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Division of Neurology, Department of Clinical Neurosciences (L.S.), Geneva University Hospital, Faculty of Medicine, University of Geneva, Switzerland
| | - M Edip Gurol
- From the Department of Neurology (A.C., M.C.Z.Z., D.S., L.S., M.E.G., S.M.G., A.V.), J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston; Division of Neurology (A.C.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Cognitive Clinical and Computational Neuroscience Research Unit (A.C.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Medical Imaging (M.C.Z.Z.), Center for Imaging Sciences and Medical Physics, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Division of Neurology, Department of Clinical Neurosciences (L.S.), Geneva University Hospital, Faculty of Medicine, University of Geneva, Switzerland
| | - Steven M Greenberg
- From the Department of Neurology (A.C., M.C.Z.Z., D.S., L.S., M.E.G., S.M.G., A.V.), J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston; Division of Neurology (A.C.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Cognitive Clinical and Computational Neuroscience Research Unit (A.C.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Medical Imaging (M.C.Z.Z.), Center for Imaging Sciences and Medical Physics, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Division of Neurology, Department of Clinical Neurosciences (L.S.), Geneva University Hospital, Faculty of Medicine, University of Geneva, Switzerland
| | - Anand Viswanathan
- From the Department of Neurology (A.C., M.C.Z.Z., D.S., L.S., M.E.G., S.M.G., A.V.), J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston; Division of Neurology (A.C.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Cognitive Clinical and Computational Neuroscience Research Unit (A.C.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Medical Imaging (M.C.Z.Z.), Center for Imaging Sciences and Medical Physics, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Division of Neurology, Department of Clinical Neurosciences (L.S.), Geneva University Hospital, Faculty of Medicine, University of Geneva, Switzerland
| |
Collapse
|
10
|
Steffens DC, Fahed M, Manning KJ, Wang L. The neurobiology of apathy in depression and neurocognitive impairment in older adults: a review of epidemiological, clinical, neuropsychological and biological research. Transl Psychiatry 2022; 12:525. [PMID: 36572691 PMCID: PMC9792580 DOI: 10.1038/s41398-022-02292-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
Apathy is a common condition that involves diminished initiative, diminished interest and diminished emotional expression or responsiveness. It is highly prevalent in the context of a variety of neuropsychiatric disorders and is related to poor health outcomes. Presence of apathy is associated with cognitive and functional decline in dementia. Despite its negative impact on health, there is no definitive treatment for apathy, a clinical reality that may be due in part to lack of knowledge about assessment, neuropsychological features and neurobiological underpinnings. Here, we review and synthesize evidence from clinical, epidemiological, neuropsychological, peripheral biomarker and neuroimaging research. Apathy is a common feature of depression and cognitive disorders and is associated with impairment in executive function. Neuropsychological and neuroimaging studies point to dysfunction of brain circuitry involving the prefrontal cortex, especially the dorsolateral prefrontal cortex circuit, the dorsomedial prefrontal cortex circuit, and the ventromedial prefrontal cortex circuit. However, inconsistent findings, particularly in neuroimaging may be due to heterogeneity of apathy symptoms (with a need to better elucidate subtypes), neuropsychiatric comorbidities, the severity of cognitive impairment and other factors. These factors need to be accounted for in future studies so that biomarker research can make progress. On the whole, the literature on apathy has identified likely neurocognitive, peripheral biomarker and neuroimaging targets for understanding apathy, but also points to the need to address methodological issues that will better inform future studies. In turn, as we learn more about the underpinning of apathy and its subtypes, subsequent research can focus on new neurally based interventions that will strengthen the clinical management of apathy in the context of its comorbidities.
Collapse
Affiliation(s)
- David C Steffens
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Mario Fahed
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Kevin J Manning
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
11
|
Manca R, Jones SA, Venneri A. Macrostructural and Microstructural White Matter Alterations Are Associated with Apathy across the Clinical Alzheimer's Disease Spectrum. Brain Sci 2022; 12:1383. [PMID: 36291317 PMCID: PMC9599811 DOI: 10.3390/brainsci12101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022] Open
Abstract
Apathy is the commonest neuropsychiatric symptom in Alzheimer's disease (AD). Previous findings suggest that apathy is caused by a communication breakdown between functional neural networks involved in motivational-affective processing. This study investigated the relationship between white matter (WM) damage and apathy in AD. Sixty-one patients with apathy (AP-PT) and 61 without apathy (NA-PT) were identified from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database and matched for cognitive status, age and education. Sixty-one cognitively unimpaired (CU) participants were also included as controls. Data on cognitive performance, cerebrospinal fluid biomarkers, brain/WM hyperintensity volumes and diffusion tensor imaging indices were compared across groups. No neurocognitive differences were found between patient groups, but the AP-PT group had more severe neuropsychiatric symptoms. Compared with CU participants, only apathetic patients had deficits on the Clock Drawing Test. AP-PT had increased WM damage, both macrostructurally, i.e., larger WM hyperintensity volume, and microstructurally, i.e., increased radial/axial diffusivity and reduced fractional anisotropy in the fornix, cingulum, anterior thalamic radiations and superior longitudinal and uncinate fasciculi. AP-PT showed signs of extensive WM damage, especially in associative tracts in the frontal lobes, fornix and cingulum. Disruption in structural connectivity might affect crucial functional inter-network communication, resulting in motivational deficits and worse cognitive decline.
Collapse
Affiliation(s)
- Riccardo Manca
- Department of Life Sciences, Brunel University London, Uxbridge UB8 3BH, UK
| | - Sarah A. Jones
- Rotherham Doncaster and South Humber NHS Foundation Trust, Rotherham DN4 8QN, UK
| | - Annalena Venneri
- Department of Life Sciences, Brunel University London, Uxbridge UB8 3BH, UK
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
12
|
Yan Z, Wang X, Zhu Q, Shi Z, Chen X, Han Y, Zheng Q, Wei Y, Wang J, Li Y. Alterations in White Matter Fiber Tracts Characterized by Automated Fiber-Tract Quantification and Their Correlations With Cognitive Impairment in Neuromyelitis Optica Spectrum Disorder Patients. Front Neurosci 2022; 16:904309. [PMID: 35844220 PMCID: PMC9283762 DOI: 10.3389/fnins.2022.904309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To investigate whether patients with neuromyelitis optica spectrum disorder (NMOSD) have tract-specific alterations in the white matter (WM) and the correlations between the alterations and cognitive impairment. Materials and Methods In total, 40 patients with NMOSD and 20 healthy controls (HCs) who underwent diffusion tensor imaging (DTI) scan and neuropsychological scale assessments were enrolled. Automated fiber-tract quantification (AFQ) was applied to identify and quantify 100 equally spaced nodes of 18 specific WM fiber tracts for each participant. Then the group comparisons in DTI metrics and correlations between different DTI metrics and neuropsychological scales were performed. Results Regardless of the entire or pointwise level in WM fiber tracts, patients with NMOSD exhibited a decreased fractional anisotropy (FA) in the left inferior fronto-occipital fasciculus (L_IFOF) and widespread increased mean diffusion (MD), axial diffusivity (AD), and radial diffusivity (RD), especially for the thalamic radiation (TR), corticospinal tract (CST), IFOF, inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF) [p < 0.05, false discovery rate (FDR) correction], and the pointwise analyses performed more sensitive. Furthermore, the negative correlations among MD, AD, RD, and symbol digit modalities test (SDMT) scores in the left TR (L_TR) were found in NMOSD. Conclusion Patients with NMOSD exhibited the specific nodes of WM fiber tract damage, which can enhance our understanding of WM microstructural abnormalities in NMOSD. In addition, the altered DTI metrics were correlated with cognitive impairment, which can be used as imaging markers for the early identification of NMOSD cognitive impairment.
Collapse
|
13
|
Yang Z, Sheng X, Qin R, Chen H, Shao P, Xu H, Yao W, Zhao H, Xu Y, Bai F. Cognitive Improvement via Left Angular Gyrus-Navigated Repetitive Transcranial Magnetic Stimulation Inducing the Neuroplasticity of Thalamic System in Amnesic Mild Cognitive Impairment Patients. J Alzheimers Dis 2022; 86:537-551. [PMID: 35068464 DOI: 10.3233/jad-215390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Stimulating superficial brain regions highly associated with the hippocampus by repetitive transcranial magnetic stimulation (rTMS) may improve memory of Alzheimer’s disease (AD) spectrum patients. Objective: We recruited 16 amnesic mild cognitive impairment (aMCI) and 6 AD patients in the study. All the patients were stimulated to the left angular gyrus, which was confirmed a strong link to the hippocampus through neuroimaging studies, by the neuro-navigated rTMS for four weeks. Methods: Automated fiber quantification using diffusion tensor imaging metrics and graph theory analysis on functional network were employed to detect the neuroplasticity of brain networks. Results: After neuro-navigated rTMS intervention, the episodic memory of aMCI patients and Montreal Cognitive Assessment score of two groups were significantly improved. Increased FA values of right anterior thalamic radiation among aMCI patients, while decreased functional network properties of thalamus subregions were observed, whereas similar changes not found in AD patients. It is worth noting that the improvement of cognition was associated with the neuroplasticity of thalamic system. Conclusion: We speculated that the rTMS intervention targeting left angular gyrus may be served as a strategy to improve cognitive impairment at the early stage of AD patients, supporting by the neuroplasticity of thalamic system.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xiaoning Sheng
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Haifeng Chen
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Pengfei Shao
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Hengheng Xu
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Weina Yao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
14
|
Jiang Y, Gao Q, Liu Y, Gao B, Che Y, Lin L, Jiang J, Chang P, Song Q, Wang W, Wang N, Miao Y. Reduced White Matter Integrity in Patients With End-Stage and Non-end-Stage Chronic Kidney Disease: A Tract-Based Spatial Statistics Study. Front Hum Neurosci 2021; 15:774236. [PMID: 34955791 PMCID: PMC8709581 DOI: 10.3389/fnhum.2021.774236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Reduced white matter (WM) integrity has been implicated in chronic kidney disease (CKD), especially in end-stage renal disease (ESRD). However, whether the differences in WM abnormalities exist in ESRD and non-end-stage CKD (NES-CKD) remains unclear. Hence, this study aimed to investigate the WM microstructural changes between the two stages using diffusion tensor imaging (DTI) and explore the related influencing factors. Methods: Diffusion tensor imaging’ images were prospectively acquired from 18 patients with ESRD, 22 patients with NES-CKD, and 19 healthy controls (HCs). Tract-based spatial statistics (TBSS) was performed to assess the voxel-wise differences in WM abnormalities among the three groups. The relationships between DTI parameters and biochemical data were also analyzed. Results: Compared with NES-CKDs, FA value was significantly decreased, and AD value increased in ESRDs mainly in brain regions of bilateral anterior thalamic radiation (ATR), the genu and body of corpus callosum (CC), bilateral anterior corona radiata, superior corona radiata, and superior longitudinal fasciculus. Besides, extensive and symmetrical deep WM damages were observed in patients with ESRD, accompanied by increased MD and RD values. Multiple regression analysis revealed that uric acid and serum phosphorus level can be used as independent predictors of WM microstructural abnormalities in clusters with statistical differences in DTI parameters between ESRD and NES-CKD groups. Conclusion: In the progression of CKD, patients with ESRD have more severe WM microstructural abnormalities than NES-CKDs, and this progressive deterioration may be related to uric acid and phosphate levels.
Collapse
Affiliation(s)
- Yuhan Jiang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiuyi Gao
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yangyingqiu Liu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingbing Gao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yiwei Che
- Department of Radiology, The Third People's Hospital of Dalian, Dalian, China
| | | | - Jian Jiang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peipei Chang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingwei Song
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Weiwei Wang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nan Wang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Miao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Jiang Y, Liu Y, Gao B, Che Y, Lin L, Jiang J, Chang P, Song Q, Wang N, Wang W, Miao Y. Segmental Abnormalities of White Matter Microstructure in End-Stage Renal Disease Patients: An Automated Fiber Quantification Tractography Study. Front Neurosci 2021; 15:765677. [PMID: 34938154 PMCID: PMC8685541 DOI: 10.3389/fnins.2021.765677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: End-stage renal disease (ESRD) results in extensive white matter abnormalities, but the specific damage segment cannot be identified. This study aimed to determine the segmental abnormalities of white matter microstructure in ESRD and its relationship with cognitive and renal function indicators. Methods: Eighteen ESRD patients and 19 healthy controls (HCs) were prospectively recruited. All participants underwent DTI and clinical assessments. Automatic fiber quantification (AFQ) was applied to generate bundle profiles along 16 main white matter tracts. We compared the DTI parameters between groups. Besides, we used partial correlation and multiple linear regression analyses to explore the associations between white matter integrity and cognitive performance as well as renal function indicators. Results: In the global tract level, compared to HCs, ESRD patients had greater MD, AD, and RD values and lower FA value in several fibers (P < 0.05, FDR correction). In the point-wise level, extensive damage existed in specific locations of different fiber tracts, particularly in the left hemisphere (P < 0.05, FDR correction). Among these tracts, the mean AD values of the left cingulum cingulate correlated negatively with MoCA score. Urea and UA level were independent predictors of the AD value of superior component of the left corticospinal. Besides, urea level was the independent predictors of mean MD value of left anterior thalamic radiation (ATR). Conclusion: White matter fiber tract damage in ESRD patients may be characterized by abnormalities in its specific location, especially in the left hemisphere. Aberrational specific located fibers were related to cognitive impairment and renal dysfunction.
Collapse
Affiliation(s)
- Yuhan Jiang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yangyingqiu Liu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingbing Gao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yiwei Che
- Department of Radiology, The Third People's Hospital of Dalian, Dalian, China
| | | | - Jian Jiang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peipei Chang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingwei Song
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nan Wang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Weiwei Wang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Miao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Navarro-Main B, Castaño-León AM, Hilario A, Lagares A, Rubio G, Periañez JA, Rios-Lago M, Inertia Group Collaborators. Apathetic symptoms and white matter integrity after traumatic brain injury. Brain Inj 2021; 35:1043-1053. [PMID: 34357825 DOI: 10.1080/02699052.2021.1953145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PRIMARY OBJECTIVE The aim of the study was twofold. First, to study the relationship among apathy in the long term, initial clinical measures, and standard outcome scores after traumatic brain injury (TBI). Second, to describe white matter integrity correlates of apathy symptoms. RESEARCH DESIGN Correlational study. Methods and Procedures: Correlation and Bayesian networks analyses were performed in a sample of 40 patients with moderate to severe TBI in order to identify the relationship among clinical variables, functionality, and apathy. A diffusion tensor imaging study was developed in 25 participants to describe correlations between fractional anisotropy (FA) measures and apathetic symptoms. MAIN OUTCOMES AND RESULTS Correlation analysis revealed associations between pairs of variables as apathy in the long term and functional score at discharge from hospital. Bayesian network illustrated the relevant role of axonal injury mediating the relationship between apathy and initial clinical variables. FA in the superior longitudinal fasciculus, the inferior longitudinal fasciculus, and the internal capsule were negatively correlated with apathy measures. Widespread brain areas showed positive correlations between FA and apathy. CONCLUSIONS These results highlight the relevance of white matter integrity measures in initial assessment after TBI and its relationship with apathetic manifestations in the chronic phase.
Collapse
Affiliation(s)
- B Navarro-Main
- 12 De Octubre Hospital.,I+12 Investigation Institute, INERTIA Research Group.,Faculty of Psychology, Doctoral School UNED
| | - A M Castaño-León
- 12 De Octubre Hospital.,I+12 Investigation Institute, INERTIA Research Group
| | - A Hilario
- 12 De Octubre Hospital.,I+12 Investigation Institute, INERTIA Research Group
| | - A Lagares
- 12 De Octubre Hospital.,I+12 Investigation Institute, INERTIA Research Group
| | - G Rubio
- 12 De Octubre Hospital.,I+12 Investigation Institute, INERTIA Research Group
| | | | | | | |
Collapse
|