1
|
Hur J, Tillman RM, Kim HC, Didier P, Anderson AS, Islam S, Stockbridge MD, De Los Reyes A, DeYoung KA, Smith JF, Shackman AJ. Adolescent social anxiety is associated with diminished discrimination of anticipated threat and safety in the bed nucleus of the stria terminalis. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2025; 134:41-56. [PMID: 39509181 PMCID: PMC11748169 DOI: 10.1037/abn0000940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Social anxiety-which typically emerges in adolescence-lies on a continuum and, when extreme, can be devastating. Socially anxious individuals are prone to heightened fear, anxiety, and the avoidance of contexts associated with potential social scrutiny. Yet most neuroimaging research has focused on acute social threat. Much less attention has been devoted to understanding the neural systems recruited during the uncertain anticipation of potential encounters with social threat. Here we used a novel functional magnetic resonance imaging paradigm to probe the neural circuitry engaged during the anticipation and acute presentation of threatening faces and voices in a racially diverse sample of 66 adolescents selectively recruited to encompass a range of social anxiety and enriched for clinically significant levels of distress and impairment. Results demonstrated that adolescents with more severe social anxiety symptoms experience heightened distress when anticipating encounters with social threat, and reduced discrimination of uncertain social threat and safety in the bed nucleus of the stria terminalis, a key division of the central extended amygdala (EAc). Although the EAc-including the bed nucleus of the stria terminalis and central nucleus of the amygdala-was robustly engaged by the acute presentation of threatening faces and voices, the degree of EAc engagement was unrelated to the severity of social anxiety. Together, these observations provide a neurobiologically grounded framework for conceptualizing adolescent social anxiety and set the stage for the kinds of prospective-longitudinal and mechanistic research that will be necessary to determine causation and, ultimately, to develop improved interventions for this often-debilitating illness. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
Collapse
Affiliation(s)
- Juyoen Hur
- Department of Psychology, Yonsei University, Seoul 03722,
Republic of Korea
| | - Rachael M. Tillman
- Department of Neuropsychology, Children’s National
Hospital, Washington, DC 20010 USA
| | - Hyung Cho Kim
- Department of Psychology, University of Maryland, College
Park, MD 20742 USA
- Neuroscience and Cognitive Science Program, University of
Maryland, College Park, MD 20742 USA
| | - Paige Didier
- Department of Psychology, University of Maryland, College
Park, MD 20742 USA
| | - Allegra S. Anderson
- Department of Psychological Sciences, Vanderbilt
University, Nashville, TN 37240 USA
| | - Samiha Islam
- Department of Psychology, University of Pennsylvania,
Philadelphia, PA 19104 USA
| | - Melissa D. Stockbridge
- Department of Neurology, School of Medicine, Johns Hopkins
University, Baltimore, MD 21287 USA
| | - Andres De Los Reyes
- Department of Psychology, University of Maryland, College
Park, MD 20742 USA
| | - Kathryn A. DeYoung
- Department of Psychology, University of Maryland, College
Park, MD 20742 USA
- TheraQuest LLC, Bethesda, MD 20817
| | - Jason F. Smith
- Department of Psychology, University of Maryland, College
Park, MD 20742 USA
| | - Alexander J. Shackman
- Department of Psychology, University of Maryland, College
Park, MD 20742 USA
- Neuroscience and Cognitive Science Program, University of
Maryland, College Park, MD 20742 USA
- Maryland Neuroimaging Center, University of Maryland,
College Park, MD 20742 USA
| |
Collapse
|
2
|
Akiki TJ, Jubeir J, Bertrand C, Tozzi L, Williams LM. Neural circuit basis of pathological anxiety. Nat Rev Neurosci 2025; 26:5-22. [PMID: 39604513 DOI: 10.1038/s41583-024-00880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
Anxiety disorders are the most prevalent mental health conditions worldwide. Unfortunately, the understanding of the precise neurobiological mechanisms that underlie these disorders remains limited. Current diagnostic classifications, based on observable symptoms rather than underlying pathophysiology, do not capture the heterogeneity within and across anxiety disorders. Recent advances in functional neuroimaging have provided new insights into the neural circuits implicated in pathological anxiety, revealing dysfunctions that cut across traditional diagnostic boundaries. In this Review, we synthesize evidence that highlights abnormalities in neurobehavioural systems related to negative valence, positive valence, cognitive systems and social processes. We emphasize that pathological anxiety arises not only from heightened reactivity in acute threat ('fear') circuits but also from alterations in circuits that mediate distant (potential) and sustained threat, reward processing, cognitive control and social processing. We discuss how circuit vulnerabilities can lead to the emergence and maintenance of pathological anxiety. Once established, these neural abnormalities can be exacerbated by maladaptive behaviours that prevent extinction learning and perpetuate anxiety disorders. By delineating the specific neural mechanisms in each neurobiological system, we aim to contribute to a more comprehensive understanding of the neurobiology of anxiety disorders, potentially informing future research directions in this field.
Collapse
Affiliation(s)
- Teddy J Akiki
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- National Center for PTSD, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jenna Jubeir
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Claire Bertrand
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Leonardo Tozzi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
3
|
Zhang P, Zhang J, Wang M, Feng S, Yuan Y, Ding L. Research hotspots and trends of neuroimaging in social anxiety: a CiteSpace bibliometric analysis based on Web of Science and Scopus database. Front Behav Neurosci 2024; 18:1448412. [PMID: 39713279 PMCID: PMC11659959 DOI: 10.3389/fnbeh.2024.1448412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Background This study focused on the research hotspots and development trends of the neuroimaging of social anxiety (SA) in the past 25 years. Methods We selected 1,305 studies on SA neuroimaging from the Web of Science and Scopus from January 1998 to December 2023. CiteSpace was used to analyze the number of published articles visually, cited references, cooperation among authors and institutions, co-occurrence of keywords, clustering of keywords, burst of keywords, and time zone of co-occurring keywords. Results A total of 1,305 articles were included, and the annual number of articles published over nearly 25 years showed the overall trend is on the rise. The analysis of author and institutional collaboration reveals that most authors collaborate closely. Among them, the team led by Pine, Daniel S published 59 articles, making it the most central team. Harvard University is identified as the most central institution in this network. The research hotspots can be categorized into four areas: research techniques, cognitive processing research areas, core brain regions and brain networks, and the neural predictors of treatment outcomes in SA. The most recent burst keywords are "cognitive behavioral therapy," "systematic review," "machine learning," "major clinical study," "transcranial direct current stimulation," "depression," and "outcome assessment," which provided clues on research frontiers. Based on the burst map and keyword time zone map, it appears that exploring the activity of brain regions involved in cognitive processing, such as face processing and attentional bias, as well as the comorbidity of SA and depression, through brain imaging technology, using brain signals as predictors of treatment outcomes in SA. Conclusion This study conducted a comprehensive, objective, and visual analysis of publications, and revealed hot topics and trends concerning the study of the brain mechanism of SA from 1998 to 2023. This work might assist researchers in identifying new insights on potential collaborators and institutions, hot topics, and research directions.
Collapse
Affiliation(s)
- Peng Zhang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Jianing Zhang
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Mingliang Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Shuyuan Feng
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Yuqing Yuan
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Lin Ding
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| |
Collapse
|
4
|
Hur J, Tillman RM, Kim HC, Didier P, Anderson AS, Islam S, Stockbridge MD, De Los Reyes A, DeYoung KA, Smith JF, Shackman AJ. Adolescent social anxiety is associated with diminished discrimination of anticipated threat and safety in the bed nucleus of the stria terminalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564701. [PMID: 38853920 PMCID: PMC11160578 DOI: 10.1101/2023.10.30.564701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Social anxiety-which typically emerges in adolescence-lies on a continuum and, when extreme, can be devastating. Socially anxious individuals are prone to heightened fear, anxiety, and the avoidance of contexts associated with potential social scrutiny. Yet most neuroimaging research has focused on acute social threat. Much less attention has been devoted to understanding the neural systems recruited during the uncertain anticipation of potential encounters with social threat. Here we used a novel fMRI paradigm to probe the neural circuitry engaged during the anticipation and acute presentation of threatening faces and voices in a racially diverse sample of 66 adolescents selectively recruited to encompass a range of social anxiety and enriched for clinically significant levels of distress and impairment. Results demonstrated that adolescents with more severe social anxiety symptoms experience heightened distress when anticipating encounters with social threat, and reduced discrimination of uncertain social threat and safety in the bed nucleus of the stria terminalis (BST), a key division of the central extended amygdala (EAc). Although the EAc-including the BST and central nucleus of the amygdala-was robustly engaged by the acute presentation of threatening faces and voices, the degree of EAc engagement was unrelated to the severity of social anxiety. Together, these observations provide a neurobiologically grounded framework for conceptualizing adolescent social anxiety and set the stage for the kinds of prospective-longitudinal and mechanistic research that will be necessary to determine causation and, ultimately, to develop improved interventions for this often-debilitating illness.
Collapse
|
5
|
Dobbertin M, Blair KS, Aloi J, Bajaj S, Bashford-Largo J, Mathur A, Zhang R, Carollo E, Schwartz A, Elowsky J, Ringle JL, Tyler P, Blair RJ. Neural correlates of automatic emotion regulation and their association with suicidal ideation in adolescents during the first 90-days of residential care. Transl Psychiatry 2024; 14:54. [PMID: 38263400 PMCID: PMC10806086 DOI: 10.1038/s41398-023-02723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/09/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Suicide is the second leading cause of death for adolescents in the United States. However, relatively little is known about the forms of atypical neuro-cognitive function that are correlates of suicidal ideation (SI). One form of cognitive/affective function that, when dysfunctional, is associated with SI is emotion regulation. However, very little work has investigated the neural correlates of emotion dysregulation in adolescents with SI. METHODS Participants (N = 111 aged 12-18, 32 females, 31 [27.9%] reporting SI) were recruited shortly after their arrival at a residential care facility where they had been referred for behavioral and mental health problems. Daily reports of SI were collected during the participants' first 90-days in residential care. Participants were presented with a task-fMRI measure of emotion regulation - the Affective Number Stroop task shortly after recruitment. Participants were divided into two groups matched for age, sex and IQ based on whether they demonstrated SI. RESULTS Participants who demonstrated SI showed increased recruitment of regions including dorsomedial prefrontal cortex/supplemental motor area and parietal cortex during task (congruent and incongruent) relative to view trials in the context of emotional relative to neutral distracters. CONCLUSIONS Participants with SI showed increased recruitment of regions implicated in executive control during the performance of a task indexing automatic emotion regulation. Such data might suggest a relative inefficiency in the recruitment of these regions in individuals with SI.
Collapse
Affiliation(s)
- Matthew Dobbertin
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA.
| | - Karina S Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Joseph Aloi
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sahil Bajaj
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | - Johannah Bashford-Largo
- Multimodal Clinical Neuroimaging Laboratory, Institute for Human Neuroscience, Boys Town, NE, USA
| | - Avantika Mathur
- Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, TN, USA
| | - Ru Zhang
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Erin Carollo
- Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | | | - Jaimie Elowsky
- University of Nebraska Department of Psychology, Lincoln, NE, USA
| | - J L Ringle
- Child and Family Translational Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Patrick Tyler
- Child and Family Translational Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - R James Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| |
Collapse
|
6
|
Liu J, Xie S, Hu Y, Ding Y, Zhang X, Liu W, Zhang L, Ma C, Kang Y, Jin S, Xia Y, Hu Z, Liu Z, Cheng W, Yang Z. Age-dependent alterations in the coordinated development of subcortical regions in adolescents with social anxiety disorder. Eur Child Adolesc Psychiatry 2024; 33:51-64. [PMID: 36542201 DOI: 10.1007/s00787-022-02118-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Subcortical brain regions play essential roles in the pathology of social anxiety disorder (SAD). While adolescence is the peak period of SAD, the relationships between altered development of the subcortical regions during this period and SAD are still unclear. This study investigated the age-dependent alterations in structural co-variance among subcortical regions and between subcortical and cortical regions, aiming to reflect aberrant coordination during development in the adolescent with SAD. High-resolution T1-weighted images were obtained from 76 adolescents with SAD and 67 healthy controls (HC), ranging from 11 to 17.9 years. Symptom severity was evaluated with the Social Anxiety Scale for Children (SASC) and the Depression Self Rating Scale for Children (DSRS-C). Structural co-variance and sliding age-window analyses were used to detect age-dependent group differences in inter-regional coordination patterns among subcortical regions and between subcortical and cortical regions. The volume of the striatum significantly correlated with SAD symptom severity. The SAD group exhibited significantly enhanced structural co-variance among key regions of the striatum (putamen and caudate). While the co-variance decreased with age in healthy adolescents, the co-variance in SAD adolescents stayed high, leading to more apparent group differences in middle adolescence. Moreover, the striatum's mean structural co-variance with cortical regions decreased with age in HC but increased with age in SAD. Adolescents with SAD suffer aberrant developmental coordination among the key regions of the striatum and between the striatum and cortical regions. The degree of incoordination is age-dependent, which may represent a neurodevelopmental trait of SAD.
Collapse
Affiliation(s)
- Jingjing Liu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Shuqi Xie
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Yang Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Yue Ding
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Xiaochen Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Wenjing Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Lei Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Changminghao Ma
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Yinzhi Kang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Shuyu Jin
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Yufeng Xia
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Zhishan Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Zhen Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Wenhong Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China.
| | - Zhi Yang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China.
- Institute of Psychological and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China.
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Lin H, Bruchmann M, Straube T. Altered Putamen Activation for Social Comparison-Related Feedback in Social Anxiety Disorder: A Pilot Study. Neuropsychobiology 2023; 82:359-372. [PMID: 37717563 DOI: 10.1159/000531762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/13/2023] [Indexed: 09/19/2023]
Abstract
INTRODUCTION Social anxiety disorder (SAD) is characterized by abnormal processing of performance-related social stimuli. Previous studies have shown altered emotional experiences and activations of different sub-regions of the striatum during processing of social stimuli in patients with SAD. However, whether and to what extent social comparisons affect behavioural and neural responses to feedback stimuli in patients with SAD is unknown. MATERIALS AND METHODS To address this issue, emotional ratings and functional magnetic resonance imaging (fMRI) responses were assessed while patients suffering from SAD and healthy controls (HC) were required to perform a choice task and received performance feedback (correct, incorrect, non-informative) that varied in relation to the performance of fictitious other participants (a few, half, or most of others had the same outcome). RESULTS Across all performance feedback conditions, fMRI analyses revealed reduced activations in bilateral putamen when feedback was assumed to be received by only a few compared to half of the other participants in patients with SAD. Nevertheless, analysis of rating data showed a similar modulation of valence and arousal ratings in patients with SAD and HC depending on social comparison-related feedback. CONCLUSIONS This suggests altered neural processing of performance feedback depending on social comparisons in patients with SAD.
Collapse
Affiliation(s)
- Huiyan Lin
- Laboratory for Behavioral and Regional Finance, Guangdong University of Finance, Guangzhou, China
- Institute of Applied Psychology, Guangdong University of Finance, Guangzhou, China
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Xu Y, Zhang Y. Abnormal voxel-mirrored homotopic connectivity in first-episode, drug-naïve patients with obsessive-compulsive disorder. Eur J Neurosci 2023; 58:3531-3539. [PMID: 37592392 DOI: 10.1111/ejn.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Prior studies suggest that obsessive-compulsive disorder (OCD) can cause both anatomical and functional variations in the brain, but to date, altered functional synchronization between two functional hemispheres remains unclear in OCD patients. Voxel-mirrored homotopic connectivity (VMHC) is defined as the temporal correlation of spontaneous low-frequency blood oxygenation level-dependent signal fluctuations across mirror regions of hemisphere revealing the homotopic connectivity between each voxel in one hemisphere and its mirrored counterpart in the contralateral hemisphere. To investigate the alterations of brain regional function and VMHC in patients with OCD, the current study enrolled 103 OCD patients and 118 healthy controls, undergoing resting-state functional magnetic resonance imaging. Compared to healthy controls (HCs), patients had decreased VMHC in bilateral cerebellum, lingual and fusiform gyrus; bilateral paracentral lobule, pre and postcentral gyrus; and bilateral superior and middle temporal gyrus, putamen and bilateral precuneus without global signal regression. And we found mostly similar results after regressing global signals; apart from the regions mentioned above, decreased in bilateral cuneus and calcarine was also showed. Furthermore, the mean VMHC values of the left cerebellum were negatively correlated with the obsession scores (ρ = -.204, π = .039). The decreased values in right fusiform and putamen were negatively correlated with duration of disease (ρ = -.205, π = .038; ρ = -.196, π = .047). We confirmed a significant VMHC reduction in OCD patients in broad areas. Our findings suggest that the patients tend to disconnect information exchange across hemispheres.
Collapse
Affiliation(s)
- Yinhuan Xu
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Oubraim S, Shen RY, Haj-Dahmane S. Oxytocin excites dorsal raphe serotonin neurons and bidirectionally gates their glutamate synapses. iScience 2023; 26:106707. [PMID: 37250336 PMCID: PMC10214716 DOI: 10.1016/j.isci.2023.106707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Oxytocin (OXT) modulates wide spectrum of social and emotional behaviors via modulation of numerous neurotransmitter systems, including serotonin (5-HT). However, how OXT controls the function of dorsal raphe nucleus (DRN) 5-HT neurons remains unknown. Here, we reveal that OXT excites and alters the firing pattern of 5-HT neurons via activation of postsynaptic OXT receptors (OXTRs). In addition, OXT induces cell-type-specific depression and potentiation of DRN glutamate synapses by two retrograde lipid messengers, 2-arachidonoylglycerol (2-AG) and arachidonic acid (AA), respectively. Neuronal mapping demonstrates that OXT preferentially potentiates glutamate synapses of 5-HT neurons projecting to medial prefrontal cortex (mPFC) and depresses glutamatergic inputs to 5-HT neurons projecting to lateral habenula (LHb) and central amygdala (CeA). Thus, by engaging distinct retrograde lipid messengers, OXT exerts a target-specific gating of glutamate synapses on the DRN. As such, our data uncovers the neuronal mechanisms by which OXT modulates the function of DRN 5-HT neurons.
Collapse
Affiliation(s)
- Saida Oubraim
- Department of Pharmacology and Toxicology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
| | - Roh-Yu Shen
- Department of Pharmacology and Toxicology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
- University at Buffalo Neuroscience Program, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
- University at Buffalo Neuroscience Program, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
| |
Collapse
|
10
|
Zhu X, Lazarov A, Dolan S, Bar-Haim Y, Dillon DG, Pizzagalli DA, Schneier F. Resting state connectivity predictors of symptom change during gaze-contingent music reward therapy of social anxiety disorder. Psychol Med 2023; 53:3115-3123. [PMID: 35314008 PMCID: PMC9612546 DOI: 10.1017/s0033291721005171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/10/2021] [Accepted: 11/29/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Social anxiety disorder (SAD) is common, first-line treatments are often only partially effective, and reliable predictors of treatment response are lacking. Here, we assessed resting state functional connectivity (rsFC) at pre-treatment and during early treatment as a potential predictor of response to a novel attention bias modification procedure, gaze-contingent music reward therapy (GC-MRT). METHODS Thirty-two adults with SAD were treated with GC-MRT. rsFC was assessed with multi-voxel pattern analysis of fMRI at pre-treatment and after 2-3 weeks. For comparison, 20 healthy control (HC) participants without treatment were assessed twice for rsFC over the same time period. All SAD participants underwent clinical evaluation at pre-treatment, early-treatment (week 2-3), and post-treatment. RESULTS SAD and depressive symptoms improved significantly from pre-treatment to post-treatment. After 2-3 weeks of treatment, decreased connectivity between the executive control network (ECN) and salience network (SN), and increased connectivity within the ECN predicted improvement in SAD and depressive symptoms at week 8. Increased connectivity between the ECN and default mode network (DMN) predicted greater improvement in SAD but not depressive symptoms at week 8. Connectivity within the DMN decreased significantly after 2-3 weeks of treatment in the SAD group, while no changes were found in HC over the same time interval. CONCLUSION We identified early changes in rsFC during a course of GC-MRT for SAD that predicted symptom change. Connectivity changes within the ECN, ECN-DMN, and ECN-SN may be related to mechanisms underlying the clinical effects of GC-MRT and warrant further study in controlled trials.
Collapse
Affiliation(s)
- Xi Zhu
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
| | - Amit Lazarov
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sarah Dolan
- New York State Psychiatric Institute, New York, USA
| | - Yair Bar-Haim
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Daniel G Dillon
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Diego A Pizzagalli
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Franklin Schneier
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
| |
Collapse
|
11
|
Groenewold NA, Bas-Hoogendam JM, Amod AR, Laansma MA, Van Velzen LS, Aghajani M, Hilbert K, Oh H, Salas R, Jackowski AP, Pan PM, Salum GA, Blair JR, Blair KS, Hirsch J, Pantazatos SP, Schneier FR, Talati A, Roelofs K, Volman I, Blanco-Hinojo L, Cardoner N, Pujol J, Beesdo-Baum K, Ching CRK, Thomopoulos SI, Jansen A, Kircher T, Krug A, Nenadić I, Stein F, Dannlowski U, Grotegerd D, Lemke H, Meinert S, Winter A, Erb M, Kreifelts B, Gong Q, Lui S, Zhu F, Mwangi B, Soares JC, Wu MJ, Bayram A, Canli M, Tükel R, Westenberg PM, Heeren A, Cremers HR, Hofmann D, Straube T, Doruyter AGG, Lochner C, Peterburs J, Van Tol MJ, Gur RE, Kaczkurkin AN, Larsen B, Satterthwaite TD, Filippi CA, Gold AL, Harrewijn A, Zugman A, Bülow R, Grabe HJ, Völzke H, Wittfeld K, Böhnlein J, Dohm K, Kugel H, Schrammen E, Zwanzger P, Leehr EJ, Sindermann L, Ball TM, Fonzo GA, Paulus MP, Simmons A, Stein MB, Klumpp H, Phan KL, Furmark T, Månsson KNT, Manzouri A, Avery SN, Blackford JU, Clauss JA, Feola B, Harper JC, Sylvester CM, Lueken U, Veltman DJ, Winkler AM, Jahanshad N, Pine DS, Thompson PM, Stein DJ, Van der Wee NJA. Volume of subcortical brain regions in social anxiety disorder: mega-analytic results from 37 samples in the ENIGMA-Anxiety Working Group. Mol Psychiatry 2023; 28:1079-1089. [PMID: 36653677 PMCID: PMC10804423 DOI: 10.1038/s41380-022-01933-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/31/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023]
Abstract
There is limited convergence in neuroimaging investigations into volumes of subcortical brain regions in social anxiety disorder (SAD). The inconsistent findings may arise from variations in methodological approaches across studies, including sample selection based on age and clinical characteristics. The ENIGMA-Anxiety Working Group initiated a global mega-analysis to determine whether differences in subcortical volumes can be detected in adults and adolescents with SAD relative to healthy controls. Volumetric data from 37 international samples with 1115 SAD patients and 2775 controls were obtained from ENIGMA-standardized protocols for image segmentation and quality assurance. Linear mixed-effects analyses were adjusted for comparisons across seven subcortical regions in each hemisphere using family-wise error (FWE)-correction. Mixed-effects d effect sizes were calculated. In the full sample, SAD patients showed smaller bilateral putamen volume than controls (left: d = -0.077, pFWE = 0.037; right: d = -0.104, pFWE = 0.001), and a significant interaction between SAD and age was found for the left putamen (r = -0.034, pFWE = 0.045). Smaller bilateral putamen volumes (left: d = -0.141, pFWE < 0.001; right: d = -0.158, pFWE < 0.001) and larger bilateral pallidum volumes (left: d = 0.129, pFWE = 0.006; right: d = 0.099, pFWE = 0.046) were detected in adult SAD patients relative to controls, but no volumetric differences were apparent in adolescent SAD patients relative to controls. Comorbid anxiety disorders and age of SAD onset were additional determinants of SAD-related volumetric differences in subcortical regions. To conclude, subtle volumetric alterations in subcortical regions in SAD were detected. Heterogeneity in age and clinical characteristics may partly explain inconsistencies in previous findings. The association between alterations in subcortical volumes and SAD illness progression deserves further investigation, especially from adolescence into adulthood.
Collapse
Affiliation(s)
- Nynke A Groenewold
- Neuroscience Institute, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.
- South African Medical Research Council (SA-MRC) Unit on Child and Adolescent Health, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.
| | - Janna Marie Bas-Hoogendam
- Department of Psychiatry, Leiden University Medical Center, Leiden, Netherlands
- Department of Developmental and Educational Psychology, Institute of Psychology, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
| | - Alyssa R Amod
- Neuroscience Institute, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Max A Laansma
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Laura S Van Velzen
- Orygen & Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Moji Aghajani
- Leiden University, Institute of Education & Child Studies, Section Forensic Family & Youth Care, Leiden, Netherlands
| | - Kevin Hilbert
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hyuntaek Oh
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Ramiro Salas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Michael E DeBakey VA Medical Center, Center for Translational Research on Inflammatory Diseases, Houston, TX, USA
| | - Andrea P Jackowski
- LiNC, Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Pedro M Pan
- LiNC, Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Giovanni A Salum
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - James R Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Karina S Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Joy Hirsch
- Departments of Psychiatry & Neurobiology, Yale School of Medicine, New Haven, CT, USA
| | - Spiro P Pantazatos
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Franklin R Schneier
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Ardesheer Talati
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Karin Roelofs
- Donders Institute for Brain, Cognition and Behavior, Radboud University Behavioral Science Institute, Radboud University, Nijmegen, Netherlands
| | - Inge Volman
- Wellcome Centre for Integrative Neuroimaging Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
| | - Narcís Cardoner
- Department of Mental Health, University Hospital Parc Taulí-I3PT, Barcelona, Spain, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Carlos III Health Institute, Madrid, Spain
| | - Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
| | - Katja Beesdo-Baum
- Behavioral Epidemiology, Institute of Clinical Psycholog and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Andreas Jansen
- Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry, University of Marburg, Marburg, Germany
- Department of Psychiatry, University Hospital of Bonn, Bonn, Germany
| | - Igor Nenadić
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Michael Erb
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Benjamin Kreifelts
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Fei Zhu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Benson Mwangi
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mon-Ju Wu
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ali Bayram
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Mesut Canli
- Department of Physiology, Istanbul University, Istanbul, Turkey
| | - Raşit Tükel
- Department of Psychiatry, Istanbul University, Istanbul, Turkey
| | - P Michiel Westenberg
- Department of Developmental and Educational Psychology, Institute of Psychology, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
| | - Alexandre Heeren
- Psychological Science Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Henk R Cremers
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | | | - Christine Lochner
- SA-MRC Unit on Risk and Resilience in Mental Disorders, Stellenbosch University, Stellenbosch, South Africa
| | - Jutta Peterburs
- Institute of Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Marie-José Van Tol
- Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Bart Larsen
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Courtney A Filippi
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Andrea L Gold
- Department of Psychiatry and Human Behavior, Brown University Warren Alpert Medical School, Providence, RI, USA
| | - Anita Harrewijn
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - André Zugman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- University Clinic for Radiology, University of Münster, Münster, Germany
| | - Elisabeth Schrammen
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Peter Zwanzger
- KBO-Inn-Salzach-Klinikum, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University of Munich, Munich, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lisa Sindermann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Tali M Ball
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Gregory A Fonzo
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | | | - Alan Simmons
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Murray B Stein
- Departments of Psychiatry & School of Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Heide Klumpp
- Departments of Psychology & Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - K Luan Phan
- Department of Psychiatry & Behavioral Health, the Ohio State University, Columbus, OH, USA
| | - Tomas Furmark
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | | | | | - Suzanne N Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Chad M Sylvester
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC location VUMC, Amsterdam, Netherlands
| | - Anderson M Winkler
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Dan J Stein
- Neuroscience Institute, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- SA-MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Nic J A Van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
| |
Collapse
|
12
|
Yu J, Zhou P, Yuan S, Wu Y, Wang C, Zhang N, Li CSR, Liu N. Symptom provocation in obsessive-compulsive disorder: A voxel-based meta-analysis and meta-analytic connectivity modeling. J Psychiatr Res 2022; 146:125-134. [PMID: 34971910 DOI: 10.1016/j.jpsychires.2021.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/04/2021] [Accepted: 12/11/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a heterogeneous psychiatric illness with a complex array of symptoms and potentially distinct neural underpinnings. We employed meta-analysis and connectivity modeling of symptom dimensions to delineate the circuit mechanisms of OCD. METHODS With the activation likelihood estimation (ALE) algorithm we performed meta-analysis of whole-brain functional magnetic resonance imaging (fMRI) studies of symptom provocation. We contrasted all OCD patients and controls in a primary analysis and divided the studies according to clinical symptoms in secondary meta-analyses. Finally, we employed meta-analytic connectivity modeling analyses (MACMs) to examine co-activation patterns of the brain regions revealed in the primary meta-analysis. RESULTS A total of 14 experiments from 12 eligible studies with a total of 238 OCD patients (124 men) and 219 healthy controls (120 men) were included in the primary analysis. OCD patients showed higher activation in the right caudate body/putamen/insula and lower activation in the left orbitofrontal cortex (OFC), left inferior frontal gyrus (IFG), left caudate body/middle cingulate cortex (MCC), right middle temporal gyrus (MTG), middle occipital gyrus (MOG) and right lateral occipital gyrus (LOG). MACMs revealed significant co-activation between left IFG and left caudate body/MCC, left MOG and right LOG, right LOG and MTG. In the secondary meta-analyses, the washing subgroup showed higher activation in the right OFC, bilateral ACC, left MOG and right caudate body. CONCLUSION OCD patients showed elevated dorsal striatal activation during symptom provocation. In contrast, the washing subgroup engaged higher activation in frontal, temporal and posterior cortical structures as well as right caudate body. Broadly consistent with the proposition of cortico-striatal-thalamic-cortical circuit dysfunction, these findings highlight potentially distinct neural circuits that may underlie the symptoms and potentially etiological subtypes of OCD.
Collapse
Affiliation(s)
- Jianping Yu
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Ping Zhou
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Shiting Yuan
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Yun Wu
- Functional Brain Imaging Institute of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Chun Wang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Ning Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
13
|
Dulka BN, Trask S, Helmstetter FJ. Age-Related Memory Impairment and Sex-Specific Alterations in Phosphorylation of the Rpt6 Proteasome Subunit and Polyubiquitination in the Basolateral Amygdala and Medial Prefrontal Cortex. Front Aging Neurosci 2021; 13:656944. [PMID: 33897408 PMCID: PMC8062735 DOI: 10.3389/fnagi.2021.656944] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
Aging is marked by an accumulation of damaged and modified brain proteins, and the ubiquitin-proteasome system (UPS) is important for cellular protein degradation. Recent work has established a critical role for the UPS in memory and synaptic plasticity, but the role of the UPS in age-related cognitive decline remains poorly understood. We trained young, middle-aged, and aged male and female rats using trace fear conditioning (TFC) to investigate the effects of age and sex on memory. We then measured markers of UPS-related protein degradation (phosphorylation of the Rpt6 proteasome regulatory subunit and K48-linked polyubiquitination) using western blots. We found that aged males, but not aged females, showed behavioral deficits at memory retrieval. Aged males also displayed reduced phosphorylation of the Rpt6 proteasome subunit and accumulation of K48 in the basolateral amygdala, while aged females displayed a similar pattern in the medial prefrontal cortex. These findings suggest that markers of UPS function are differentially affected by age and sex in a brain region-dependent manner. Together these results provide an important step toward understanding the UPS and circuit-level differences in aging males and females.
Collapse
Affiliation(s)
- Brooke N Dulka
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Sydney Trask
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|