1
|
Yi T, Liu Y, Wei W, He S, Jin K. Microstructural abnormalities of the right hemisphere in preschool autism spectrum disorders. J Psychiatr Res 2024; 180:258-264. [PMID: 39454493 DOI: 10.1016/j.jpsychires.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND This study aims to investigate microstructural abnormalities within and between hemispheres in preschool children with autism spectrum disorders (ASD) using diffusion basis spectrum imaging (DBSI). METHODS A total of 35 ASD patients and 32 healthy controls (HC), matched for sex and age, underwent DBSI at 3T. We analyzed DBSI-derived indices of brain white matter using tract-based spatial statistics (TBSS) to compare ASD and HC groups. Support vector machine (SVM) classification was employed to evaluate the potential of positive DBSI parameters in distinguishing ASD patients. Additionally, correlation analyses were conducted to explore relationships between positive DBSI parameters and clinical scales. RESULTS Patients in the ASD group exhibited significantly higher fiber ratios in the right brainstem tracts, increased radial diffusivity in the left superior longitudinal fasciculus, and reduced fractional anisotropy (FA) in various fiber tracts, including projection, commissural, and association fibers, compared to HC. Notably, the FA of the right cingulum correlated positively with the Gesell scale (r = 0.439, p = 0.008) and achieved a specificity of 90% in identifying ASD. CONCLUSION The DBSI findings suggest asynchronous myelination in the right hemisphere and cerebellum in preschool ASD, with the FA value of the right cingulate gyrus appearing to be a reliable marker for ASD and may serve as a potential diagnostic parameter for preschool ASD.
Collapse
Affiliation(s)
- Ting Yi
- Department of Radiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital) , 410007, Changsha, China
| | - Yuqing Liu
- Department of Radiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital) , 410007, Changsha, China
| | - Weian Wei
- Department of Radiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital) , 410007, Changsha, China
| | - Siping He
- Department of Radiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital) , 410007, Changsha, China
| | - Ke Jin
- Department of Radiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital) , 410007, Changsha, China.
| |
Collapse
|
2
|
He J, Wang Y. Superficial white matter microstructural imaging method based on time-space fractional-order diffusion. Phys Med Biol 2024; 69:065010. [PMID: 38394673 DOI: 10.1088/1361-6560/ad2ca1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
Objective. Microstructure imaging based on diffusion magnetic resonance signal is an advanced imaging technique that enablesin vivomapping of the brain's microstructure. Superficial white matter (SWM) plays an important role in brain development, maturation, and aging, while fewer microstructure imaging methods address the SWM due to its complexity. Therefore, this study aims to develop a diffusion propagation model to investigate the microstructural characteristics of the SWM region.Approach. In this paper, we hypothesize that the effect of cell membrane permeability and the water exchange between soma and dendrites cannot be neglected for typical clinical diffusion times (20 ms
Collapse
Affiliation(s)
- Jianglin He
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Yuanjun Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
3
|
Yang HC, Lavadi RS, Sauerbeck AD, Wallendorf M, Kummer TT, Song SK, Lin TH. Diffusion basis spectrum imaging detects subclinical traumatic optic neuropathy in a closed-head impact mouse model of traumatic brain injury. Front Neurol 2023; 14:1269817. [PMID: 38152638 PMCID: PMC10752006 DOI: 10.3389/fneur.2023.1269817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/12/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction Traumatic optic neuropathy (TON) is the optic nerve injury secondary to brain trauma leading to visual impairment and vision loss. Current clinical visual function assessments often fail to detect TON due to slow disease progression and clinically silent lesions resulting in potentially delayed or missed treatment in patients with traumatic brain injury (TBI). Methods Diffusion basis spectrum imaging (DBSI) is a novel imaging modality that can potentially fill this diagnostic gap. Twenty-two, 16-week-old, male mice were equally divided into a sham or TBI (induced by moderate Closed-Head Impact Model of Engineered Rotational Acceleration device) group. Briefly, mice were anesthetized with isoflurane (5% for 2.5 min followed by 2.5% maintenance during injury induction), had a helmet placed over the head, and were placed in a holder prior to a 2.1-joule impact. Serial visual acuity (VA) assessments, using the Virtual Optometry System, and DBSI scans were performed in both groups of mice. Immunohistochemistry (IHC) and histological analysis of optic nerves was also performed after in vivo MRI. Results VA of the TBI mice showed unilateral or bilateral impairment. DBSI of the optic nerves exhibited bilateral involvement. IHC results of the optic nerves revealed axonal loss, myelin injury, axonal injury, and increased cellularity in the optic nerves of the TBI mice. Increased DBSI axon volume, decreased DBSI λ||, and elevated DBSI restricted fraction correlated with decreased SMI-312, decreased SMI-31, and increased DAPI density, respectively, suggesting that DBSI can detect coexisting pathologies in the optic nerves of TBI mice. Conclusion DBSI provides an imaging modality capable of detecting subclinical changes of indirect TON in TBI mice.
Collapse
Affiliation(s)
- Hsin-Chieh Yang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Raj Swaroop Lavadi
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew D. Sauerbeck
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael Wallendorf
- Department of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Terrance T. Kummer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
- VA Medical Center, St. Louis, MO, United States
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Tsen-Hsuan Lin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
4
|
Li ZA, Samara A, Ray MK, Rutlin J, Raji CA, Shimony JS, Sun P, Song SK, Hershey T, Eisenstein SA. Childhood obesity is linked to putative neuroinflammation in brain white matter, hypothalamus, and striatum. Cereb Cortex Commun 2023; 4:tgad007. [PMID: 37207193 PMCID: PMC10191798 DOI: 10.1093/texcom/tgad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
Neuroinflammation is both a consequence and driver of overfeeding and weight gain in rodent obesity models. Advances in magnetic resonance imaging (MRI) enable investigations of brain microstructure that suggests neuroinflammation in human obesity. To assess the convergent validity across MRI techniques and extend previous findings, we used diffusion basis spectrum imaging (DBSI) to characterize obesity-associated alterations in brain microstructure in 601 children (age 9-11 years) from the Adolescent Brain Cognitive DevelopmentSM Study. Compared with children with normal-weight, greater DBSI restricted fraction (RF), reflecting neuroinflammation-related cellularity, was seen in widespread white matter in children with overweight and obesity. Greater DBSI-RF in hypothalamus, caudate nucleus, putamen, and, in particular, nucleus accumbens, correlated with higher baseline body mass index and related anthropometrics. Comparable findings were seen in the striatum with a previously reported restriction spectrum imaging (RSI) model. Gain in waist circumference over 1 and 2 years related, at nominal significance, to greater baseline RSI-assessed restricted diffusion in nucleus accumbens and caudate nucleus, and DBSI-RF in hypothalamus, respectively. Here we demonstrate that childhood obesity is associated with microstructural alterations in white matter, hypothalamus, and striatum. Our results also support the reproducibility, across MRI methods, of findings of obesity-related putative neuroinflammation in children.
Collapse
Affiliation(s)
- Zhaolong Adrian Li
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Amjad Samara
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 United States
| | - Mary Katherine Ray
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Cyrus A Raji
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 United States
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Peng Sun
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Sheng-Kwei Song
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 United States
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Sarah A Eisenstein
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| |
Collapse
|
5
|
Voskuhl RR, MacKenzie-Graham A. Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis. Front Mol Neurosci 2022; 15:1024058. [PMID: 36340686 PMCID: PMC9629273 DOI: 10.3389/fnmol.2022.1024058] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 08/19/2023] Open
Abstract
Animal models of multiple sclerosis (MS), specifically experimental autoimmune encephalomyelitis (EAE), have been used extensively to develop anti-inflammatory treatments. However, the similarity between MS and one particular EAE model does not end at inflammation. MS and chronic EAE induced in C57BL/6 mice using myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 share many neuropathologies. Beyond both having white matter lesions in spinal cord, both also have widespread neuropathology in the cerebral cortex, hippocampus, thalamus, striatum, cerebellum, and retina/optic nerve. In this review, we compare neuropathologies in each of these structures in MS with chronic EAE in C57BL/6 mice, and find evidence that this EAE model is well suited to study neuroaxonal degeneration in MS.
Collapse
Affiliation(s)
- Rhonda R. Voskuhl
- UCLA MS Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|