1
|
Krukow P, Domagała A, Kiersztyn A, Blose BA, Lai A, Silverstein SM. The Retinal Age Gap as a Marker of Accelerated Aging in the Early Course of Schizophrenia. Schizophr Bull 2025:sbaf038. [PMID: 40227154 DOI: 10.1093/schbul/sbaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
BACKGROUND AND HYPOTHESIS Given the available findings confirming accelerated brain aging in schizophrenia (SZ), we conducted a study aimed at verifying whether quantitative retinal morphological data enable age prediction and whether schizophrenia patients present with a positive retinal age gap (RAG). STUDY DESIGN Two samples of patients and controls were enrolled: one included 59 SZ patients and 60 controls, all of whom underwent optical coherence tomography (OCT) enabling the measurement of 72 variables. A second sample of 65 SZ patients and 70 controls was then combined with the first sample, to generate a database where each subject was represented by 28 morphological variables. Four different machine learning (ML) algorithms were used for age prediction based on z-standardized OCT data. The associations between RAG, demographic, and clinical data were also analyzed. STUDY RESULTS Patients from both samples had significantly higher retinal age and positive RAG ranging between 5.88 and 7.44 years depending on the specific sample. Predictions based on the larger group but with fewer OCT variables exhibited higher prediction relative error. All ML algorithms generated similar outcomes regarding retinal age. RAG correlated with the dose of antipsychotic medication and the severity of symptoms. Correlations with chronological age showed that RAG was the highest in younger patients, and from the age of about 45 years, it decreased. CONCLUSIONS ML-based results corroborated accelerated retinal aging in schizophrenia and showed its associations with pharmacological treatment and syndrome severity. The finding of a larger RAG in younger patients is novel and requires replication.
Collapse
Affiliation(s)
- Paweł Krukow
- Department of Clinical Neuropsychiatry, Faculty of Medicine, Medical University of Lublin, 20-439 Lublin, Poland
| | - Adam Domagała
- Non-public Health Care Facility KAMIMED, Psychiatric Department, 21-210 Milanów, Poland
| | - Adam Kiersztyn
- Department of Computational Intelligence, Lublin University of Technology, 20-618 Lublin, Poland
| | - Brittany A Blose
- Department of Psychiatry, University of Rochester Medical Center, NY, 14642 Rochester, USA
| | - Adriann Lai
- Department of Psychiatry, University of Rochester Medical Center, NY, 14642 Rochester, USA
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, NY, 14642 Rochester, USA
| |
Collapse
|
2
|
Panikratova YR, Tomyshev AS, Abdullina EG, Rodionov GI, Arkhipov AY, Tikhonov DV, Bozhko OV, Kaleda VG, Strelets VB, Lebedeva IS. Resting-state functional connectivity correlates of brain structural aging in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2025; 275:755-766. [PMID: 38914851 DOI: 10.1007/s00406-024-01837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
A large body of research has shown that schizophrenia patients demonstrate increased brain structural aging. Although this process may be coupled with aberrant changes in intrinsic functional architecture of the brain, they remain understudied. We hypothesized that there are brain regions whose whole-brain functional connectivity at rest is differently associated with brain structural aging in schizophrenia patients compared to healthy controls. Eighty-four male schizophrenia patients and eighty-six male healthy controls underwent structural MRI and resting-state fMRI. The brain-predicted age difference (b-PAD) was a measure of brain structural aging. Resting-state fMRI was applied to obtain global correlation (GCOR) maps comprising voxelwise values of the strength and sign of functional connectivity of a given voxel with the rest of the brain. Schizophrenia patients had higher b-PAD compared to controls (mean between-group difference + 2.9 years). Greater b-PAD in schizophrenia patients, compared to controls, was associated with lower whole-brain functional connectivity of a region in frontal orbital cortex, inferior frontal gyrus, Heschl's Gyrus, plana temporale and polare, insula, and opercular cortices of the right hemisphere (rFTI). According to post hoc seed-based correlation analysis, decrease of functional connectivity with the posterior cingulate gyrus, left superior temporal cortices, as well as right angular gyrus/superior lateral occipital cortex has mainly driven the results. Lower functional connectivity of the rFTI was related to worse verbal working memory and language production. Our findings demonstrate that well-established frontotemporal functional abnormalities in schizophrenia are related to increased brain structural aging.
Collapse
Affiliation(s)
| | | | | | - Georgiy I Rodionov
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | - Andrey Yu Arkhipov
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - Valeria B Strelets
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
3
|
Di Camillo F, Grimaldi DA, Cattarinussi G, Di Giorgio A, Locatelli C, Khuntia A, Enrico P, Brambilla P, Koutsouleris N, Sambataro F. Magnetic resonance imaging-based machine learning classification of schizophrenia spectrum disorders: a meta-analysis. Psychiatry Clin Neurosci 2024; 78:732-743. [PMID: 39290174 PMCID: PMC11612547 DOI: 10.1111/pcn.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Recent advances in multivariate pattern recognition have fostered the search for reliable neuroimaging-based biomarkers in psychiatric conditions, including schizophrenia. These approaches consider the complex pattern of alterations in brain function and structure, overcoming the limitations of traditional univariate methods. To assess the reliability of neuroimaging-based biomarkers and the contribution of study characteristics in distinguishing individuals with schizophrenia spectrum disorder (SSD) from healthy controls (HCs), we conducted a systematic review of the studies that used multivariate pattern recognition for this objective. METHODS We systematically searched PubMed, Scopus, and Web of Science for studies on SSD classification using multivariate pattern analysis on magnetic resonance imaging data. We employed a bivariate random-effects meta-analytic model to explore the classification of sensitivity (SE) and specificity (SP) across studies while also evaluating the moderator effects of clinical and non-clinical variables. RESULTS A total of 119 studies (with 12,723 patients with SSD and 13,196 HCs) were identified. The meta-analysis estimated a SE of 79.1% (95% confidence interval [CI], 77.1%-81.0%) and a SP of 80.0% (95% CI, 77.8%-82.0%). In particular, the Positive and Negative Syndrome Scale and the Global Assessment of Functioning scores, age, age of onset, duration of untreated psychosis, deep learning, algorithm type, features selection, and validation methods had significant effects on classification performance. CONCLUSIONS Multivariate pattern analysis reliably identifies neuroimaging-based biomarkers of SSD, achieving ∼80% SE and SP. Despite clinical heterogeneity, discernible brain modifications effectively differentiate SSD from HCs. Classification performance depends on patient-related and methodological factors crucial for the development, validation, and application of prospective models in clinical settings.
Collapse
Affiliation(s)
| | | | - Giulia Cattarinussi
- Department of Neuroscience (DNS)University of PadovaPaduaItaly
- Padova Neuroscience CenterUniversity of PadovaPaduaItaly
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
| | | | - Clara Locatelli
- Department of Mental Health and AddictionsASST Papa Giovanni XXIIIBergamoItaly
| | - Adyasha Khuntia
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian UniversityMunichGermany
- International Max Planck Research School for Translational Psychiatry (IMPRS‐TP)MunichGermany
- Max‐Planck‐Institute of PsychiatryMunichGermany
| | - Paolo Enrico
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian UniversityMunichGermany
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- Department of Neurosciences and Mental HealthFondazione IRCSS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Paolo Brambilla
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- Department of Neurosciences and Mental HealthFondazione IRCSS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Nikolaos Koutsouleris
- Max‐Planck‐Institute of PsychiatryMunichGermany
- Department of PsychiatryMunich University HospitalMunichGermany
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
| | - Fabio Sambataro
- Department of Neuroscience (DNS)University of PadovaPaduaItaly
- Padova Neuroscience CenterUniversity of PadovaPaduaItaly
| |
Collapse
|
4
|
Hua JPY, Abram SV, Loewy RL, Stuart B, Fryer SL, Vinogradov S, Mathalon DH. Brain Age Gap in Early Illness Schizophrenia and the Clinical High-Risk Syndrome: Associations With Experiential Negative Symptoms and Conversion to Psychosis. Schizophr Bull 2024; 50:1159-1170. [PMID: 38815987 PMCID: PMC11349027 DOI: 10.1093/schbul/sbae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
BACKGROUND AND HYPOTHESIS Brain development/aging is not uniform across individuals, spawning efforts to characterize brain age from a biological perspective to model the effects of disease and maladaptive life processes on the brain. The brain age gap represents the discrepancy between estimated brain biological age and chronological age (in this case, based on structural magnetic resonance imaging, MRI). Structural MRI studies report an increased brain age gap (biological age > chronological age) in schizophrenia, with a greater brain age gap related to greater negative symptom severity. Less is known regarding the nature of this gap early in schizophrenia (ESZ), if this gap represents a psychosis conversion biomarker in clinical high-risk (CHR-P) individuals, and how altered brain development and/or aging map onto specific symptom facets. STUDY DESIGN Using structural MRI, we compared the brain age gap among CHR-P (n = 51), ESZ (n = 78), and unaffected comparison participants (UCP; n = 90), and examined associations with CHR-P psychosis conversion (CHR-P converters n = 10; CHR-P non-converters; n = 23) and positive and negative symptoms. STUDY RESULTS ESZ showed a greater brain age gap relative to UCP and CHR-P (Ps < .010). CHR-P individuals who converted to psychosis showed a greater brain age gap (P = .043) relative to CHR-P non-converters. A larger brain age gap in ESZ was associated with increased experiential (P = .008), but not expressive negative symptom severity. CONCLUSIONS Consistent with schizophrenia pathophysiological models positing abnormal brain maturation, results suggest abnormal brain development is present early in psychosis. An increased brain age gap may be especially relevant to motivational and functional deficits in schizophrenia.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco VA Medical Center, University of California, San Francisco, CA, USA
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Samantha V Abram
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Barbara Stuart
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Susanna L Fryer
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Daniel H Mathalon
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Kim WS, Heo DW, Maeng J, Shen J, Tsogt U, Odkhuu S, Zhang X, Cheraghi S, Kim SW, Ham BJ, Rami FZ, Sui J, Kang CY, Suk HI, Chung YC. Deep Learning-based Brain Age Prediction in Patients With Schizophrenia Spectrum Disorders. Schizophr Bull 2024; 50:804-814. [PMID: 38085061 PMCID: PMC11283195 DOI: 10.1093/schbul/sbad167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/29/2024]
Abstract
BACKGROUND AND HYPOTHESIS The brain-predicted age difference (brain-PAD) may serve as a biomarker for neurodegeneration. We investigated the brain-PAD in patients with schizophrenia (SCZ), first-episode schizophrenia spectrum disorders (FE-SSDs), and treatment-resistant schizophrenia (TRS) using structural magnetic resonance imaging (sMRI). STUDY DESIGN We employed a convolutional network-based regression (SFCNR), and compared its performance with models based on three machine learning (ML) algorithms. We pretrained the SFCNR with sMRI data of 7590 healthy controls (HCs) selected from the UK Biobank. The parameters of the pretrained model were transferred to the next training phase with a new set of HCs (n = 541). The brain-PAD was analyzed in independent HCs (n = 209) and patients (n = 233). Correlations between the brain-PAD and clinical measures were investigated. STUDY RESULTS The SFCNR model outperformed three commonly used ML models. Advanced brain aging was observed in patients with SCZ, FE-SSDs, and TRS compared to HCs. A significant difference in brain-PAD was observed between FE-SSDs and TRS with ridge regression but not with the SFCNR model. Chlorpromazine equivalent dose and cognitive function were correlated with the brain-PAD in SCZ and FE-SSDs. CONCLUSIONS Our findings indicate that there is advanced brain aging in patients with SCZ and higher brain-PAD in SCZ can be used as a surrogate marker for cognitive dysfunction. These findings warrant further investigations on the causes of advanced brain age in SCZ. In addition, possible psychosocial and pharmacological interventions targeting brain health should be considered in early-stage SCZ patients with advanced brain age.
Collapse
Affiliation(s)
- Woo-Sung Kim
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Da-Woon Heo
- Department of Artificial Intelligence, Korea University, Seoul, Korea
| | - Junyeong Maeng
- Department of Artificial Intelligence, Korea University, Seoul, Korea
| | - Jie Shen
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
- Department of Psychiatry, Yanbian University, Medical School, Yanji, China
| | - Uyanga Tsogt
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Soyolsaikhan Odkhuu
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Xuefeng Zhang
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Sahar Cheraghi
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Fatima Zahra Rami
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Jing Sui
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Chae Yeong Kang
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Heung-Il Suk
- Department of Artificial Intelligence, Korea University, Seoul, Korea
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
6
|
Seitz-Holland J, Haas SS, Penzel N, Reichenberg A, Pasternak O. BrainAGE, brain health, and mental disorders: A systematic review. Neurosci Biobehav Rev 2024; 159:105581. [PMID: 38354871 PMCID: PMC11119273 DOI: 10.1016/j.neubiorev.2024.105581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
The imaging-based method of brainAGE aims to characterize an individual's vulnerability to age-related brain changes. The present study systematically reviewed brainAGE findings in neuropsychiatric conditions and discussed the potential of brainAGE as a marker for biological age. A systematic PubMed search (from inception to March 6th, 2023) identified 273 articles. The 30 included studies compared brainAGE between neuropsychiatric and healthy groups (n≥50). We presented results qualitatively and adapted a bias risk assessment questionnaire. The imaging modalities, design, and input features varied considerably between studies. While the studies found higher brainAGE in neuropsychiatric conditions (11 mild cognitive impairment/ dementia, 11 schizophrenia spectrum/ other psychotic and bipolar disorder, six depression/ anxiety, two multiple groups), the associations with clinical characteristics were mixed. While brainAGE is sensitive to group differences, limitations include the lack of diverse training samples, multi-modal studies, and external validation. Only a few studies obtained longitudinal data, and all have used algorithms built solely to predict chronological age. These limitations impede the validity of brainAGE as a biological age marker.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nora Penzel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Chen CL, Cheng SY, Montaser-Kouhsari L, Wu WC, Hsu YC, Tai CH, Tseng WYI, Kuo MC, Wu RM. Advanced brain aging in Parkinson's disease with cognitive impairment. NPJ Parkinsons Dis 2024; 10:62. [PMID: 38493188 PMCID: PMC10944471 DOI: 10.1038/s41531-024-00673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Patients with Parkinson's disease and cognitive impairment (PD-CI) deteriorate faster than those without cognitive impairment (PD-NCI), suggesting an underlying difference in the neurodegeneration process. We aimed to verify brain age differences in PD-CI and PD-NCI and their clinical significance. A total of 94 participants (PD-CI, n = 27; PD-NCI, n = 34; controls, n = 33) were recruited. Predicted age difference (PAD) based on gray matter (GM) and white matter (WM) features were estimated to represent the degree of brain aging. Patients with PD-CI showed greater GM-PAD (7.08 ± 6.64 years) and WM-PAD (8.82 ± 7.69 years) than those with PD-NCI (GM: 1.97 ± 7.13, Padjusted = 0.011; WM: 4.87 ± 7.88, Padjusted = 0.049) and controls (GM: -0.58 ± 7.04, Padjusted = 0.004; WM: 0.88 ± 7.45, Padjusted = 0.002) after adjusting demographic factors. In patients with PD, GM-PAD was negatively correlated with MMSE (Padjusted = 0.011) and MoCA (Padjusted = 0.013) and positively correlated with UPDRS Part II (Padjusted = 0.036). WM-PAD was negatively correlated with logical memory of immediate and delayed recalls (Padjusted = 0.003 and Padjusted < 0.001). Also, altered brain regions in PD-CI were identified and significantly correlated with brain age measures, implicating the neuroanatomical underpinning of neurodegeneration in PD-CI. Moreover, the brain age metrics can improve the classification between PD-CI and PD-NCI. The findings suggest that patients with PD-CI had advanced brain aging that was associated with poor cognitive functions. The identified neuroimaging features and brain age measures can serve as potential biomarkers of PD-CI.
Collapse
Affiliation(s)
- Chang-Le Chen
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shao-Ying Cheng
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
| | | | - Wen-Chao Wu
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Yih Isaac Tseng
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.
- Acroviz Inc, Taipei, Taiwan.
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ming-Che Kuo
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan.
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Tseng WYI, Hsu YC, Huang LK, Hong CT, Lu YH, Chen JH, Fu CK, Chan L. Brain Age Is Associated with Cognitive Outcomes of Cholinesterase Inhibitor Treatment in Patients with Mild Cognitive Impairment. J Alzheimers Dis 2024; 98:1095-1106. [PMID: 38517785 DOI: 10.3233/jad-231109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Background The effect of cholinesterase inhibitor (ChEI) on mild cognitive impairment (MCI) is controversial. Brain age has been shown to predict Alzheimer's disease conversion from MCI. Objective The study aimed to show that brain age is related to cognitive outcomes of ChEI treatment in MCI. Methods Brain MRI, the Clinical Dementia Rating (CDR) and Mini-Mental State Exam (MMSE) scores were retrospectively retrieved from a ChEI treatment database. Patients who presented baseline CDR of 0.5 and received ChEI treatment for at least 2 years were selected. Patients with stationary or improved cognition as verified by the CDR and MMSE were categorized to the ChEI-responsive group, and those with worsened cognition were assigned to the ChEI-unresponsive group. A gray matter brain age model was built with a machine learning algorithm by training T1-weighted MRI data of 362 healthy participants. The model was applied to each patient to compute predicted age difference (PAD), i.e. the difference between brain age and chronological age. The PADs were compared between the two groups. Results 58 patients were found to fit the ChEI-responsive criteria in the patient data, and 58 matched patients that fit the ChEI-unresponsive criteria were compared. ChEI-unresponsive patients showed significantly larger PAD than ChEI-responsive patients (8.44±8.78 years versus 3.87±9.02 years, p = 0.0067). Conclusions Gray matter brain age is associated with cognitive outcomes after 2 years of ChEI treatment in patients with the CDR of 0.5. It might facilitate the clinical trials of novel therapeutics for MCI.
Collapse
Affiliation(s)
| | | | - Li-Kai Huang
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City, Taiwan (R.O.C.)
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Chien-Tai Hong
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City, Taiwan (R.O.C.)
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan (R.O.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Yueh-Hsun Lu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan (R.O.C.)
- Department of Radiology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan (R.O.C.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Jia-Hung Chen
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City, Taiwan (R.O.C.)
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | | | - Lung Chan
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City, Taiwan (R.O.C.)
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan (R.O.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| |
Collapse
|
9
|
Jirsaraie RJ, Gorelik AJ, Gatavins MM, Engemann DA, Bogdan R, Barch DM, Sotiras A. A systematic review of multimodal brain age studies: Uncovering a divergence between model accuracy and utility. PATTERNS (NEW YORK, N.Y.) 2023; 4:100712. [PMID: 37123443 PMCID: PMC10140612 DOI: 10.1016/j.patter.2023.100712] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Brain aging is a complex, multifaceted process that can be challenging to model in ways that are accurate and clinically useful. One of the most common approaches has been to apply machine learning to neuroimaging data with the goal of predicting age in a data-driven manner. Building on initial brain age studies that were derived solely from T1-weighted scans (i.e., unimodal), recent studies have incorporated features across multiple imaging modalities (i.e., "multimodal"). In this systematic review, we show that unimodal and multimodal models have distinct advantages. Multimodal models are the most accurate and sensitive to differences in chronic brain disorders. In contrast, unimodal models from functional magnetic resonance imaging were most sensitive to differences across a broad array of phenotypes. Altogether, multimodal imaging has provided us valuable insight for improving the accuracy of brain age models, but there is still much untapped potential with regard to achieving widespread clinical utility.
Collapse
Affiliation(s)
- Robert J. Jirsaraie
- Division of Computational and Data Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Aaron J. Gorelik
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Martins M. Gatavins
- Division of Computational and Data Sciences, Washington University in St. Louis, St. Louis, MO, USA
- Undergraduate Neuroscience Program, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Denis A. Engemann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
- Université Paris-Saclay, Inria, CEA, Palaiseau, France
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Deanna M. Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Aristeidis Sotiras
- Department of Radiology and Institute for Informatics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Corresponding author
| |
Collapse
|
10
|
Investigating brain aging trajectory deviations in different brain regions of individuals with schizophrenia using multimodal magnetic resonance imaging and brain-age prediction: a multicenter study. Transl Psychiatry 2023; 13:82. [PMID: 36882419 PMCID: PMC9992684 DOI: 10.1038/s41398-023-02379-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Although many studies on brain-age prediction in patients with schizophrenia have been reported recently, none has predicted brain age based on different neuroimaging modalities and different brain regions in these patients. Here, we constructed brain-age prediction models with multimodal MRI and examined the deviations of aging trajectories in different brain regions of participants with schizophrenia recruited from multiple centers. The data of 230 healthy controls (HCs) were used for model training. Next, we investigated the differences in brain age gaps between participants with schizophrenia and HCs from two independent cohorts. A Gaussian process regression algorithm with fivefold cross-validation was used to train 90, 90, and 48 models for gray matter (GM), functional connectivity (FC), and fractional anisotropy (FA) maps in the training dataset, respectively. The brain age gaps in different brain regions for all participants were calculated, and the differences in brain age gaps between the two groups were examined. Our results showed that most GM regions in participants with schizophrenia in both cohorts exhibited accelerated aging, particularly in the frontal lobe, temporal lobe, and insula. The parts of the white matter tracts, including the cerebrum and cerebellum, indicated deviations in aging trajectories in participants with schizophrenia. However, no accelerated brain aging was noted in the FC maps. The accelerated aging in 22 GM regions and 10 white matter tracts in schizophrenia potentially exacerbates with disease progression. In individuals with schizophrenia, different brain regions demonstrate dynamic deviations of brain aging trajectories. Our findings provided more insights into schizophrenia neuropathology.
Collapse
|
11
|
Zhu JD, Tsai SJ, Lin CP, Lee YJ, Yang AC. Predicting aging trajectories of decline in brain volume, cortical thickness and fractional anisotropy in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:1. [PMID: 36596800 PMCID: PMC9810255 DOI: 10.1038/s41537-022-00325-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
Brain-age prediction is a novel approach to assessing deviated brain aging trajectories in different diseases. However, most studies have used an average brain age gap (BAG) of individuals with schizophrenia of different illness durations for comparison with healthy participants. Therefore, this study investigated whether declined brain structures as reflected by BAGs may be present in schizophrenia in terms of brain volume, cortical thickness, and fractional anisotropy across different illness durations. We used brain volume, cortical thickness, and fractional anisotropy as features to train three models from the training dataset. Three models were applied to predict brain ages in the hold-out test and schizophrenia datasets and calculate BAGs. We divided the schizophrenia dataset into multiple groups based on the illness duration using a sliding time window approach for ANCOVA analysis. The brain volume and cortical thickness models revealed that, in comparison with healthy controls, individuals with schizophrenia had larger BAGs across different illness durations, whereas the BAG in terms of fractional anisotropy did not differ from that of healthy controls after disease onset. Moreover, the BAG at the initial stage of schizophrenia was the largest in the cortical thickness model. In contrast, the BAG from approximately two decades after disease onset was the largest in the brain volume model. Our findings suggest that schizophrenia differentially affects the decline of different brain structures during the disease course. Moreover, different trends of decline in thickness and volume-based measures suggest a differential decline in dimensions of brain structure throughout the course of schizophrenia.
Collapse
Grants
- This work was supported by grants from the National Science and Technology Council, Taiwan (grant number 110-2321-B-A49A-502 and 110-2628-B-A49A-509, and 110-2634-F-075-001 to Albert C. Yang). Dr. Albert C. Yang was also supported by the Mt. Jade Young Scholarship Award from the Ministry of Education, Taiwan, as well as Brain Research Center, National Yang Ming Chiao Tung University, and the Ministry of Education (Aim for the Top University Plan), Taipei, Taiwan.
- Mr. J. D. Zhu was supported by the scholarship (108-2926-I-010-001-MY4) from the National Science and Technology Council, Taiwan.
- This work was supported by grants from the National Science and Technology Council, Taiwan (grant number 110-2321-B-A49A-502 and 110-2628-B-A49A-509, and 110-2634-F-075-001 to S. J. Tsai).
Collapse
Affiliation(s)
- Jun-Ding Zhu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ju Lee
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Albert C Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
12
|
Remiszewski N, Bryant JE, Rutherford SE, Marquand AF, Nelson E, Askar I, Lahti AC, Kraguljac NV. Contrasting Case-Control and Normative Reference Approaches to Capture Clinically Relevant Structural Brain Abnormalities in Patients With First-Episode Psychosis Who Are Antipsychotic Naive. JAMA Psychiatry 2022; 79:1133-1138. [PMID: 36169987 PMCID: PMC9520436 DOI: 10.1001/jamapsychiatry.2022.3010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022]
Abstract
Importance To make progress toward precision psychiatry, it is crucial to move beyond case-control studies and instead capture individual variations and interpret them in the context of a normal range of biological systems. Objective To evaluate whether baseline deviations from a normative reference range in subcortical volumes are better predictors of antipsychotic treatment response than raw volumes in patients with first-episode psychosis (FEP) who were naive to antipsychotic medication. Design, Setting, and Participants In this prospective longitudinal study, patients with first-episode psychosis who were referred from different clinical settings (emergency department, inpatient units, and outpatient clinics) at the University of Alabama at Birmingham were included. A total of 286 patients were screened, 114 consented, 104 enrolled in the treatment trial, and 85 completed the trial. Patients were observed for 16 weeks. Controls were matched by age and sex. Data were collected between June 2016 and July 2021, and data were analyzed from August 2021 to June 2022. Interventions Risperidone on a flexible dosing scheme for 16 weeks. There was an option to switch to aripiprazole for excessive adverse effects. Main Outcomes and Measures The main outcome of this study was to evaluate, in patients with FEP who were naive to antipsychotic medication, the association of baseline raw volumes and volume deviations in subcortical brain regions with response to antipsychotic medication. Raw brain volumes or volume deviation changes after treatment were not examined. Results Of 190 included participants, 111 (58.4%) were male, and the mean (SD) age was 23.7 (5.5) years. Volumes and deviations were quantified in 98 patients with FEP, and data from 92 controls were used as comparison for case-control contrasts and reference curve calibration. In case-control contrasts, patients with FEP had lower raw thalamus (P = .002; F = 9.63; df = 1), hippocampus (P = .009; F = 17.23; df = 1), amygdala (P = .01; F = 6.55; df = 1), ventral diencephalon (P = .03; F = 4.84; df = 1), and brainstem volumes (P = .004; F = 8.39; df = 1). Of 98 patients, 36 patients with FEP (36%) displayed extreme deviations. Associations with treatment response significantly differed between raw volume and deviation measures in the caudate (z = -2.17; P = .03) and putamen (z = -2.15; P = .03). Conclusions and Relevance These data suggest that normative modeling allows capture of interindividual heterogeneity of regional brain volumes in patients with FEP and characterize structural pathology in a clinically relevant fashion. This holds promise for progress in precision medicine in psychiatry, where group-level studies have failed to derive reliable maps of structural pathology.
Collapse
Affiliation(s)
- Natalie Remiszewski
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - James Edward Bryant
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Saige E. Rutherford
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Andre F. Marquand
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Eric Nelson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Ibrahim Askar
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| |
Collapse
|