1
|
Marino S, Menna G, Bilgin L, Mattogno PP, Gaudino S, Quaranta D, Caraglia N, Olivi A, Berger MS, Doglietto F, Della Pepa GM. "False friends" in Language Subcortical Mapping: A Systematic Literature Review. World Neurosurg 2024; 190:350-361.e20. [PMID: 38968990 DOI: 10.1016/j.wneu.2024.06.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Subcortical brain mapping in awake glioma surgery might optimize the extent of resection while minimizing neurological morbidity, but it requires a correct interpretation of responses evoked during surgery. To define, with a systematic review: 1) a comprehensive 'map' of the principal white matter bundles involved in awake surgery on language-related networks, describing the most employed tests and the expected responses; 2) In linguistics, a false friend is a word in a different language that looks or sounds like a word in given language but differs significantly in meaning. Similarly, our aim is to give the surgeons a comprehensive review of potentially misleading responses, namely "false friends", in subcortical language mapping. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Standardized data extraction was conducted. RESULTS Out of a total of 224 initial papers, 67 were included for analysis. Expected responses, common tests, and potential "false friends" were recorded for each of the following white matter bundles: frontal aslant tract, superior and inferior longitudinal fascicles, arcuate fascicle, inferior fronto-occipital fascicle, uncinate fascicle. Practical examples are discussed to underline the risk of intraoperative fallouts ("false friends") that might lead to an early interruption (false positive) or a risky surgical removal (false negative). CONCLUSIONS This paper represents a critical review of the present status of subcortical awake mapping and underlines practical "false-friend" in mapping critical crossroads in language-related networks.
Collapse
Affiliation(s)
- Salvatore Marino
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| | - Grazia Menna
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| | - Lal Bilgin
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| | - Pier Paolo Mattogno
- Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Simona Gaudino
- Diagnostic Neuroradiology Unit, Department of Radiological and Hematological Sciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Davide Quaranta
- Neurology Unit, Neurorehabilitation and Neuropsychology Service, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico, San Giovanni Rotondo, Italy
| | - Naike Caraglia
- Neurology Unit, Neurorehabilitation and Neuropsychology Service, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico, San Giovanni Rotondo, Italy
| | - Alessandro Olivi
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy; Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Francesco Doglietto
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy; Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Giuseppe Maria Della Pepa
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy; Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy.
| |
Collapse
|
2
|
Herbet G, Duffau H, Mandonnet E. Predictors of cognition after glioma surgery: connectotomy, structure-function phenotype, plasticity. Brain 2024; 147:2621-2635. [PMID: 38573324 DOI: 10.1093/brain/awae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/19/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
Determining preoperatively the maximal extent of resection that would preserve cognitive functions is the core challenge of brain tumour surgery. Over the past decade, the methodological framework to achieve this goal has been thoroughly renewed: the population-level topographically-focused voxel-based lesion-symptom mapping has been progressively overshadowed by machine learning (ML) algorithmics, in which the problem is framed as predicting cognitive outcomes in a patient-specific manner from a typically large set of variables. However, the choice of these predictors is of utmost importance, as they should be both informative and parsimonious. In this perspective, we first introduce the concept of connectotomy: instead of parameterizing resection topography through the status (intact/resected) of a huge number of voxels (or parcels) paving the whole brain in the Cartesian 3D-space, the connectotomy models the resection in the connectivity space, by computing a handful number of networks disconnection indices, measuring how the structural connectivity sustaining each network of interest was hit by the resection. This connectivity-informed reduction of dimensionality is a necessary step for efficiently implementing ML tools, given the relatively small number of patient-examples in available training datasets. We further argue that two other major sources of interindividual variability must be considered to improve the accuracy with which outcomes are predicted: the underlying structure-function phenotype and neuroplasticity, for which we provide an in-depth review and propose new ways of determining relevant predictors. We finally discuss the benefits of our approach for precision surgery of glioma.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier 34090, France
- Praxiling lab, UMR5267 CNRS & Paul Valéry University, Montpellier 34090, France
- Department of Medicine, University of Montpellier, Montpellier 34090, France
- Institut Universitaire de France, Paris 75000, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier 34090, France
- Department of Medicine, University of Montpellier, Montpellier 34090, France
- Team 'Plasticity of Central Nervous System, Stem Cells and Glial Tumors', U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, Montpellier 34000, France
| | - Emmanuel Mandonnet
- Department of Neurosurgery, Lariboisière Hospital, AP-HP, Paris 75010, France
- Frontlab, CNRS UMR 7225, INSERM U1127, Paris Brain Institute (ICM), Paris 75013, France
- Université de Paris Cité, UFR de médecine, Paris 75005, France
| |
Collapse
|
3
|
de Zwart B, Ruis C. An update on tests used for intraoperative monitoring of cognition during awake craniotomy. Acta Neurochir (Wien) 2024; 166:204. [PMID: 38713405 PMCID: PMC11076349 DOI: 10.1007/s00701-024-06062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Mapping higher-order cognitive functions during awake brain surgery is important for cognitive preservation which is related to postoperative quality of life. A systematic review from 2018 about neuropsychological tests used during awake craniotomy made clear that until 2017 language was most often monitored and that the other cognitive domains were underexposed (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). The field of awake craniotomy and cognitive monitoring is however developing rapidly. The aim of the current review is therefore, to investigate whether there is a change in the field towards incorporation of new tests and more complete mapping of (higher-order) cognitive functions. METHODS We replicated the systematic search of the study from 2018 in PubMed and Embase from February 2017 to November 2023, yielding 5130 potentially relevant articles. We used the artificial machine learning tool ASReview for screening and included 272 papers that gave a detailed description of the neuropsychological tests used during awake craniotomy. RESULTS Comparable to the previous study of 2018, the majority of studies (90.4%) reported tests for assessing language functions (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). Nevertheless, an increasing number of studies now also describe tests for monitoring visuospatial functions, social cognition, and executive functions. CONCLUSIONS Language remains the most extensively tested cognitive domain. However, a broader range of tests are now implemented during awake craniotomy and there are (new developed) tests which received more attention. The rapid development in the field is reflected in the included studies in this review. Nevertheless, for some cognitive domains (e.g., executive functions and memory), there is still a need for developing tests that can be used during awake surgery.
Collapse
Affiliation(s)
- Beleke de Zwart
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands.
| | - Carla Ruis
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Novakova L, Gajdos M, Barton M, Brabenec L, Zeleznikova Z, Moravkova I, Rektorova I. Striato-cortical functional connectivity changes in mild cognitive impairment with Lewy bodies. Parkinsonism Relat Disord 2024; 121:106031. [PMID: 38364623 DOI: 10.1016/j.parkreldis.2024.106031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Functional connectivity changes in clinically overt neurodegenerative diseases such as dementia with Lewy bodies have been described, but studies on connectivity changes in the pre-dementia phase are scarce. OBJECTIVES We concentrated on evaluating striato-cortical functional connectivity differences between patients with Mild Cognitive Impairment with Lewy bodies and healthy controls and on assessing the relation to cognition. METHODS Altogether, we enrolled 77 participants (47 patients, of which 35 met all the inclusion criteria for the final analysis, and 30 age- and gender-matched healthy controls, of which 28 met all the inclusion criteria for the final analysis) to study the seed-based connectivity of the dorsal, middle, and ventral striatum. We assessed correlations between functional connectivity in the regions of between-group differences and neuropsychological scores of interest (visuospatial and executive domains z-scores). RESULTS Subjects with Mild Cognitive Impairment with Lewy Bodies, as compared to healthy controls, showed increased connectivity from the dorsal part of the striatum particularly to the bilateral anterior part of the temporal cortex with an association with executive functions. CONCLUSIONS We were able to capture early abnormal connectivity within cholinergic and noradrenergic pathways that correlated with cognitive functions known to be linked to cholinergic/noradrenergic deficits. The knowledge of specific alterations may improve our understanding of early neural changes in pre-dementia stages and enhance research of disease modifying therapy.
Collapse
Affiliation(s)
- Lubomira Novakova
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic
| | - Martin Gajdos
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic
| | - Marek Barton
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic
| | - Lubos Brabenec
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic
| | - Zaneta Zeleznikova
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ivona Moravkova
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Irena Rektorova
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
5
|
Gasa-Roqué A, Rofes A, Simó M, Juncadella M, Rico Pons I, Camins A, Gabarrós A, Rodríguez-Fornells A, Sierpowska J. Understanding language and cognition after brain surgery - Tumour grade, fine-grained assessment tools and, most of all, individualized approach. J Neuropsychol 2024; 18 Suppl 1:158-182. [PMID: 37822293 DOI: 10.1111/jnp.12343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 10/13/2023]
Abstract
Cognitive performance influences the quality of life and survival of people with glioma. Thus, a detailed neuropsychological and language evaluation is essential. In this work, we tested if an analysis of errors in naming can indicate semantic and/or phonological impairments in 87 awake brain surgery patients. Secondly, we explored how language and cognition change after brain tumour resection. Finally, we checked if low-tumour grade had a protective effect on cognition. Our results indicated that naming errors can be useful to monitor semantic and phonological processing, as their number correlated with scores on tasks developed by our team for testing these domains. Secondly, we showed that - although an analysis at a whole group level indicates a decline in language functions - significantly more individual patients improve or remain stable when compared to the ones who declined. Finally, we observed that having LGG, when compared with HGG, favours patients' outcome after surgery, most probably due to brain plasticity mechanisms. We provide new evidence of the importance of applying a broader neuropsychological assessment and an analysis of naming errors in patients with glioma. Our approach may potentially ensure better detection of cognitive deficits and contribute to better postoperative outcomes. Our study also shows that an individualized approach in post-surgical follow-ups can reveal reassuring results showing that significantly more patients remain stable or improve and can be a promising avenue for similar reports. Finally, the study captures that plasticity mechanisms may act as protective in LGG versus HGG after surgery.
Collapse
Affiliation(s)
- Anna Gasa-Roqué
- Neurology Section, Hospital Universitari de Bellvitge (HUB), Campus Bellvitge, L'Hospitalet de Llobregat, University of Barcelona - IDIBELL, Barcelona, Spain
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-IDIBELL], L'Hospitalet de Llobregat, Barcelona, Spain
| | - Adrià Rofes
- Center for Language and Cognition, University of Groningen (CLCG), Groningen, The Netherlands
| | - Marta Simó
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge-ICO, IDIBELL, L'Hospitalet, Barcelona, Spain
| | | | - Imma Rico Pons
- Neurology Section, Hospital Universitari de Bellvitge (HUB), Campus Bellvitge, L'Hospitalet de Llobregat, University of Barcelona - IDIBELL, Barcelona, Spain
| | - Angels Camins
- Institut de Diagnòstic per la Imatge, Centre Bellvitge, L'Hospitalet de Llobregat, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Andreu Gabarrós
- Neurosurgery Section, Hospital Universitari de Bellvitge (HUB), Campus Bellvitge, L'Hospitalet de Llobregat, University of Barcelona - IDIBELL, Barcelona, Spain
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-IDIBELL], L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
| | - Joanna Sierpowska
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-IDIBELL], L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Coletta L, Avesani P, Zigiotto L, Venturini M, Annicchiarico L, Vavassori L, Ng S, Duffau H, Sarubbo S. Integrating direct electrical brain stimulation with the human connectome. Brain 2024; 147:1100-1111. [PMID: 38048613 PMCID: PMC10907080 DOI: 10.1093/brain/awad402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/20/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023] Open
Abstract
Neurological and neurodevelopmental conditions are a major public health concern for which new therapies are urgently needed. The development of effective therapies relies on the precise mapping of the neural substrates causally involved in behaviour generation. Direct electrical stimulation (DES) performed during cognitive and neurological monitoring in awake surgery is currently considered the gold standard for the causal mapping of brain functions. However, DES is limited by the focal nature of the stimulation sites, hampering a real holistic exploration of human brain functions at the network level. We used 4137 DES points derived from 612 glioma patients in combination with human connectome data-resting-state functional MRI, n = 1000 and diffusion weighted imaging, n = 284-to provide a multimodal description of the causal macroscale functional networks subtending 12 distinct behavioural domains. To probe the validity of our procedure, we (i) compared the network topographies of healthy and clinical populations; (ii) tested the predictive capacity of DES-derived networks; (iii) quantified the coupling between structural and functional connectivity; and (iv) built a multivariate model able to quantify single subject deviations from a normative population. Lastly, we probed the translational potential of DES-derived functional networks by testing their specificity and sensitivity in identifying critical neuromodulation targets and neural substrates associated with postoperative language deficits. The combination of DES and human connectome data resulted in an average 29.4-fold increase in whole brain coverage compared to DES alone. DES-derived functional networks are predictive of future stimulation points (97.8% accuracy) and strongly supported by the anatomical connectivity of subcortical stimulations. We did not observe any significant topographical differences between the patients and the healthy population at both group and single subject level. Showcasing concrete clinical applications, we found that DES-derived functional networks overlap with effective neuromodulation targets across several functional domains, show a high degree of specificity when tested with the intracranial stimulation points of a different stimulation technique and can be used effectively to characterize postoperative behavioural deficits. The integration of DES with the human connectome fundamentally advances the quality of the functional mapping provided by DES or functional imaging alone. DES-derived functional networks can reliably predict future stimulation points, have a strong correspondence with the underlying white matter and can be used for patient specific functional mapping. Possible applications range from psychiatry and neurology to neuropsychology, neurosurgery and neurorehabilitation.
Collapse
Affiliation(s)
- Ludovico Coletta
- Neuroinformatics Laboratory (NiLab), Bruno Kessler Foundation (FBK), Trento 38123, Italy
- Center for Mind/Brain Sciences – CIMeC, University of Trento, Rovereto 38068, Italy
| | - Paolo Avesani
- Neuroinformatics Laboratory (NiLab), Bruno Kessler Foundation (FBK), Trento 38123, Italy
- Center for Mind/Brain Sciences – CIMeC, University of Trento, Rovereto 38068, Italy
| | - Luca Zigiotto
- Department of Neurosurgery, S. Chiara Hospital, Trento 38122, Italy
- Structural and Functional Connectivity Lab Project, S. Chiara Hospital, Trento 38122, Italy
- Department of Psychology, S. Chiara Hospital, Trento 38122, Italy
| | - Martina Venturini
- Department of Biotechnology and Life Sciences, Division of Neurosurgery, University of Insubria, Ospedale di Circolo e Fondazione Macchi, Varese 21100, Italy
| | - Luciano Annicchiarico
- Department of Neurosurgery, S. Chiara Hospital, Trento 38122, Italy
- Structural and Functional Connectivity Lab Project, S. Chiara Hospital, Trento 38122, Italy
| | - Laura Vavassori
- Center for Mind/Brain Sciences – CIMeC, University of Trento, Rovereto 38068, Italy
- Department of Neurosurgery, S. Chiara Hospital, Trento 38122, Italy
- Structural and Functional Connectivity Lab Project, S. Chiara Hospital, Trento 38122, Italy
| | - Sam Ng
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier 34094, France
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier 34295, France
| | - Hugues Duffau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier 34094, France
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier 34295, France
| | - Silvio Sarubbo
- Department of Neurosurgery, S. Chiara Hospital, Trento 38122, Italy
- Structural and Functional Connectivity Lab Project, S. Chiara Hospital, Trento 38122, Italy
| |
Collapse
|
7
|
Collée E, van den Berg E, Visch-Brink E, Vincent A, Dirven C, Satoer D. Differential contribution of language and executive functioning to verbal fluency performance in glioma patients. J Neuropsychol 2024; 18 Suppl 1:19-40. [PMID: 38087828 DOI: 10.1111/jnp.12356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 04/13/2024]
Abstract
Glioma patients often suffer from deficits in language and executive functioning. Performance in verbal fluency (generating words within one minute according to a semantic category-category fluency, or given letter-letter fluency) is typically impaired in this patient group. While both language and executive functioning play a role in verbal fluency, the relative contribution of both domains remains unclear. We aim to retrospectively investigate glioma patients' performance on verbal and nonverbal fluency and to explore the influence of language and executive functioning on verbal fluency. Sixty-nine adults with gliomas in eloquent areas underwent a neuropsychological test battery (verbal fluency, nonverbal fluency, language, and executive functioning tests) before surgery (T1) and a subgroup of 31 patients also at three (T2) and twelve months (T3) after surgery. Preoperatively, patients were impaired in all verbal fluency tasks and dissociations were found based on tumour location. In contrast, nonverbal fluency was intact. Different language and executive functioning tests predicted performance on category fluency animals and letter fluency, while no significant predictors for category fluency professions were found. The longitudinal results indicated that category fluency professions deteriorated after surgery (T1-T2, T1-T3) and that nonverbal fluency improved after surgery (T1-T3, T2-T3). Verbal fluency performance can provide information on different possible underlying deficits in language and executive functioning in glioma patients, depending on verbal fluency task selection. Efficient task (order) selection can be based on complexity. Category fluency professions can be selected to detect more permanent long-term deficits.
Collapse
Affiliation(s)
- Ellen Collée
- Department of Neurosurgery, Erasmus MC - University Medical Centre, Rotterdam, The Netherlands
| | - Esther van den Berg
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Evy Visch-Brink
- Department of Neurosurgery, Erasmus MC - University Medical Centre, Rotterdam, The Netherlands
| | - Arnaud Vincent
- Department of Neurosurgery, Erasmus MC - University Medical Centre, Rotterdam, The Netherlands
| | - Clemens Dirven
- Department of Neurosurgery, Erasmus MC - University Medical Centre, Rotterdam, The Netherlands
| | - Djaina Satoer
- Department of Neurosurgery, Erasmus MC - University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Zigiotto L, Amorosino G, Saviola F, Jovicich J, Annicchiarico L, Rozzanigo U, Olivetti E, Avesani P, Sarubbo S. Spontaneous unilateral spatial neglect recovery after brain tumour resection: A multimodal diffusion and rs-fMRI case report. J Neuropsychol 2024; 18 Suppl 1:91-114. [PMID: 37431064 DOI: 10.1111/jnp.12339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2023]
Abstract
Patients with unilateral spatial neglect (USN) are unable to explore or to report stimuli presented in the left personal and extra-personal space. USN is usually caused by lesion of the right parietal lobe: nowadays, it is also clear the key role of structural connections (the second and the third branch of the right Superior Longitudinal Fasciculus, respectively, SLF II and III) and functional networks (Dorsal and Ventral Attention Network, respectively, DAN and VAN) in USN. In this multimodal case report, we have merged those structural and functional information derived from a patient with a right parietal lobe tumour and USN before surgery. Functional, structural and neuropsychological data were also collected 6 months after surgery, when the USN was spontaneously recovered. Diffusion metrics and Functional Connectivity (FC) of the right SLF and DAN, before and after surgery, were compared with the same data of a patient with a tumour in a similar location, but without USN, and with a control sample. Results indicate an impairment in the right SLF III and a reduction of FC of the right DAN in patients with USN before surgery compared to controls; after surgery, when USN was recovered, patient's diffusion metrics and FC showed no differences compared to the controls. This single case and its multimodal approach reinforce the crucial role of the right SLF III and DAN in the development and recovery of egocentric and allocentric extra-personal USN, highlighting the need to preserve these structural and functional areas during brain surgery.
Collapse
Affiliation(s)
- Luca Zigiotto
- Department of Neurosurgery, 'S. Chiara' Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
- Structural and Functional Connectivity Lab Project, 'S. Chiara' Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
- Department of Psychology, 'S. Chiara' Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Gabriele Amorosino
- Neuroinformatics Laboratory (NILab), Bruno Kessler Foundation (FBK), Trento, Italy
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Francesca Saviola
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Luciano Annicchiarico
- Department of Neurosurgery, 'S. Chiara' Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
- Structural and Functional Connectivity Lab Project, 'S. Chiara' Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Umberto Rozzanigo
- Department of Neuroradiology, 'S. Chiara' Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Emanuele Olivetti
- Neuroinformatics Laboratory (NILab), Bruno Kessler Foundation (FBK), Trento, Italy
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Paolo Avesani
- Neuroinformatics Laboratory (NILab), Bruno Kessler Foundation (FBK), Trento, Italy
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, 'S. Chiara' Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
- Structural and Functional Connectivity Lab Project, 'S. Chiara' Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| |
Collapse
|
9
|
Bonosi L, Torrente A, Brighina F, Tito Petralia CC, Merlino P, Avallone C, Gulino V, Costanzo R, Brunasso L, Iacopino DG, Maugeri R. Corticocortical Evoked Potentials in Eloquent Brain Tumor Surgery. A Systematic Review. World Neurosurg 2024; 181:38-51. [PMID: 37832637 DOI: 10.1016/j.wneu.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Eloquent brain tumor surgery involves the delicate task of resecting tumors located in regions of the brain responsible for critical functions, such as language, motor control, and sensory perception. Preserving these functions is of paramount importance to maintain the patient's quality of life. Corticocortical evoked potentials (CCEPs) have emerged as a valuable intraoperative monitoring technique that aids in identifying and preserving eloquent cortical areas during surgery. This systematic review aimed to assess the utility of CCEPs in eloquent brain tumor surgery and determine their effectiveness in improving patient outcomes. A comprehensive literature search was conducted using electronic databases, including PubMed/Medline and Scopus. The search strategy identified 11 relevant articles for detailed analysis. The findings of the included studies consistently demonstrated the potential of CCEPs in guiding surgical decision making, minimizing the risk of postoperative neurological deficits, and mapping functional connectivity during surgery. However, further research and standardization are needed to fully establish the clinical benefits and refine the implementation of CCEPs in routine neurosurgical practice.
Collapse
Affiliation(s)
- Lapo Bonosi
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy.
| | - Angelo Torrente
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Cateno Concetto Tito Petralia
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Pietro Merlino
- Department of Neuroscience, Psychology, Pharmacology and Child Health, Neurosurgery Clinic, Careggi University Hospital and University of Florence, Florence, Italy
| | - Chiara Avallone
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Vincenzo Gulino
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Roberta Costanzo
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Lara Brunasso
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
10
|
Vavassori L, Venturini M, Zigiotto L, Annicchiarico L, Corsini F, Avesani P, Petit L, De Benedictis A, Sarubbo S. The arcuate fasciculus: Combining structure and function into surgical considerations. Brain Behav 2023; 13:e3107. [PMID: 37280786 PMCID: PMC10454270 DOI: 10.1002/brb3.3107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Two Centuries from today, Karl Friedrich Burdach attributed the nomenclature "arcuate fasciculus" to a white matter (WM) pathway connecting the frontal to the temporal cortices by arching around the Sylvian fissure. Although this label remained essentially unvaried, the concepts related to it and the characterization of the structural properties of this bundle evolved along with the methodological progress of the past years. Concurrently, the functional relevance of the arcuate fasciculus (AF) classically restricted to the linguistic domain has extended to further cognitive abilities. These features make it a relevant structure to consider in a large variety of neurosurgical procedures. OBJECTIVE Herein, we build on our previous review uncovering the connectivity provided by the Superior Longitudinal System, including the AF, and provide a handy representation of the structural organization of the AF by considering the frequency of defined reports in the literature. By adopting the same approach, we implement an account of which functions are mediated by this WM bundle. We highlight how this information can be transferred to the neurosurgical field by presenting four surgical cases of glioma resection requiring the evaluation of the relationship between the AF and the nearby structures, and the safest approaches to adopt. CONCLUSIONS Our cumulative overview reports the most common wiring patterns and functional implications to be expected when approaching the study of the AF, while still considering seldom descriptions as an account of interindividual variability. Given its extension and the variety of cortical territories it reaches, the AF is a pivotal structure for different cognitive functions, and thorough understanding of its structural wiring and the functions it mediates is necessary for preserving the patient's cognitive abilities during glioma resection.
Collapse
Affiliation(s)
- Laura Vavassori
- Department of NeurosurgeryAzienda Provinciale per i Servizi Sanitari (APSS), “S. Chiara” HospitalTrento Provincia Autonoma di TrentoItaly
- Center for Mind and Brain Sciences (CIMeC)University of TrentoTrento Provincia Autonoma di TrentoItaly
| | - Martina Venturini
- Department of NeurosurgeryAzienda Provinciale per i Servizi Sanitari (APSS), “S. Chiara” HospitalTrento Provincia Autonoma di TrentoItaly
| | - Luca Zigiotto
- Department of NeurosurgeryAzienda Provinciale per i Servizi Sanitari (APSS), “S. Chiara” HospitalTrento Provincia Autonoma di TrentoItaly
| | - Luciano Annicchiarico
- Department of NeurosurgeryAzienda Provinciale per i Servizi Sanitari (APSS), “S. Chiara” HospitalTrento Provincia Autonoma di TrentoItaly
| | - Francesco Corsini
- Department of NeurosurgeryAzienda Provinciale per i Servizi Sanitari (APSS), “S. Chiara” HospitalTrento Provincia Autonoma di TrentoItaly
| | - Paolo Avesani
- Center for Mind and Brain Sciences (CIMeC)University of TrentoTrento Provincia Autonoma di TrentoItaly
- Neuroinfrmatics Laboratory (NiLab)Bruno Kessler FoundationPovo Provincia Autonoma di TrentoItaly
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives (GIN‐IMN), UMR5293, CNRS, CEAUniversity of BordeauxBordeauxFrance
| | | | - Silvio Sarubbo
- Department of NeurosurgeryAzienda Provinciale per i Servizi Sanitari (APSS), “S. Chiara” HospitalTrento Provincia Autonoma di TrentoItaly
| |
Collapse
|
11
|
Baranger M, Manera V, Sérignac C, Derreumaux A, Cancian E, Vandersteen C, Gros A, Guevara N. Evaluation of the Cognitive Function of Adults with Severe Hearing Loss Pre- and Post-Cochlear Implantation Using Verbal Fluency Testing. J Clin Med 2023; 12:jcm12113792. [PMID: 37297988 DOI: 10.3390/jcm12113792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Hearing loss is a major public health problem with significant evidence correlating it with cognitive performance. Verbal fluency tests are commonly used to assess lexical access. They provide a great deal of information about a subject's cognitive function. The aim of our study was to evaluate phonemic and semantic lexical access abilities in adults with bilateral severe to profound hearing loss and then to re-evaluate a cohort after cochlear implantation. 103 adult subjects underwent phonemic and semantic fluency tests during a cochlear implant candidacy evaluation. Of the total 103 subjects, 43 subjects underwent the same tests at 3 months post-implantation. Our results showed superior performance in phonemic fluency compared to semantic fluency in subjects prior to implantation. Phonemic fluency was positively correlated with semantic fluency. Similarly, individuals with congenital deafness had better semantic lexical access than individuals with acquired deafness. Results at 3 months post-implantation showed an improvement in phonemic fluency. No correlation was found between the evolution of pre- and post-implant fluency and the auditory gain of the cochlear implant, and we found no significant difference between congenital and acquired deafness. Our study shows an improvement in global cognitive function after cochlear implantation without differentiation of the phonemic-semantic pathway.
Collapse
Affiliation(s)
- Manon Baranger
- Département d'Orthophonie de Nice (DON), UFR Médecine, Université Côte d'Azur, 06107 Nice, France
- Laboratoire CobTeK, Université Côte d'Azur, 06100 Nice, France
| | - Valeria Manera
- Département d'Orthophonie de Nice (DON), UFR Médecine, Université Côte d'Azur, 06107 Nice, France
- Laboratoire CobTeK, Université Côte d'Azur, 06100 Nice, France
| | - Chloé Sérignac
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire, Université Côte d'Azur, 31 Avenue de Valombrose, 06100 Nice, France
| | - Alexandre Derreumaux
- Laboratoire CobTeK, Université Côte d'Azur, 06100 Nice, France
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice (University Hospital of Nice), Service Clinique Gériatrique du Cerveau et du Mouvement, Centre Mémoire Ressources et Recherche (Geriatric Brain and Movement Clinic, Memory Resources and Research Centre), 06100 Nice, France
| | - Elisa Cancian
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire, Université Côte d'Azur, 31 Avenue de Valombrose, 06100 Nice, France
| | - Clair Vandersteen
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire, Université Côte d'Azur, 31 Avenue de Valombrose, 06100 Nice, France
| | - Auriane Gros
- Département d'Orthophonie de Nice (DON), UFR Médecine, Université Côte d'Azur, 06107 Nice, France
- Laboratoire CobTeK, Université Côte d'Azur, 06100 Nice, France
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice (University Hospital of Nice), Service Clinique Gériatrique du Cerveau et du Mouvement, Centre Mémoire Ressources et Recherche (Geriatric Brain and Movement Clinic, Memory Resources and Research Centre), 06100 Nice, France
| | - Nicolas Guevara
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire, Université Côte d'Azur, 31 Avenue de Valombrose, 06100 Nice, France
| |
Collapse
|
12
|
Papagno C, Pascuzzo R, Ferrante C, Casarotti A, Riva M, Antelmi L, Gennari A, Mattavelli G, Bizzi A. Deficits in naming pictures of objects are associated with glioma infiltration of the inferior longitudinal fasciculus: A study with diffusion MRI tractography, volumetric MRI, and neuropsychology. Hum Brain Mapp 2023. [PMID: 37145980 DOI: 10.1002/hbm.26325] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023] Open
Abstract
It has been suggested that the inferior longitudinal fasciculus (ILF) may play an important role in several aspects of language processing such as visual object recognition, visual memory, lexical retrieval, reading, and specifically, in naming visual stimuli. In particular, the ILF appears to convey visual information from the occipital lobe to the anterior temporal lobe (ATL). However, direct evidence proving the essential role of the ILF in language and semantics remains limited and controversial. The first aim of this study was to prove that patients with a brain glioma damaging the left ILF would be selectively impaired in picture naming of objects; the second aim was to prove that patients with glioma infiltrating the ATL would not be impaired due to functional reorganization of the lexical retrieval network elicited by the tumor. We evaluated 48 right-handed patients with neuropsychological testing and magnetic resonance imaging (MRI) before and after surgery for resection of a glioma infiltrating aspects of the left temporal, occipital, and/or parietal lobes; diffusion tensor imaging (DTI) was acquired preoperatively in all patients. Damage to the ILF, inferior frontal occipital fasciculus (IFOF), uncinate fasciculus (UF), arcuate fasciculus (AF), and associated cortical regions was assessed by means of preoperative tractography and pre-/pos-toperative MRI volumetry. The association of fascicles damage with patients' performance in picture naming and three additional cognitive tasks, namely, verbal fluency (two verbal non-visual tasks) and the Trail Making Test (a visual attentional task), was evaluated. Nine patients were impaired in the naming test before surgery. ILF damage was demonstrated with tractography in six (67%) of these patients. The odds of having an ILF damage was 6.35 (95% CI: 1.27-34.92) times higher among patients with naming deficit than among those without it. The ILF was the only fascicle to be significantly associated with naming deficit when all the fascicles were considered together, achieving an adjusted odds ratio of 15.73 (95% CI: 2.30-178.16, p = .010). Tumor infiltration of temporal and occipital cortices did not contribute to increase the odd of having a naming deficit. ILF damage was found to be selectively associated with picture naming deficit and not with lexical retrieval assessed by means of verbal fluency. Early after surgery, 29 patients were impaired in naming objects. The association of naming deficit with percentage of ILF resection (assessed by 3D-MRI) was confirmed (beta = -56.78 ± 20.34, p = .008) through a robust multiple linear regression model; no significant association was found with damage of IFOF, UF or AF. Crucially, postoperative neuropsychological evaluation showed that naming scores of patients with tumor infiltration of the anterior temporal cortex were not significantly associated with the percentage of ILF damage (rho = .180, p > .999), while such association was significant in patients without ATL infiltration (rho = -.556, p = .004). The ILF is selectively involved in picture naming of objects; however, the naming deficits are less severe in patients with glioma infiltration of the ATL probably due to release of an alternative route that may involve the posterior segment of the AF. The left ILF, connecting the extrastriatal visual cortex to the anterior region of the temporal lobe, is crucial for lexical retrieval on visual stimulus, such as in picture naming. However, when the ATL is also damaged, an alternative route is released and the performance improves.
Collapse
Affiliation(s)
- Costanza Papagno
- CIMeC (Center for Mind/Brain Sciences), University of Trento, Rovereto, Italy
- CISmed (Center for Medical Sciences), University of Trento, Trento, Italy
| | - Riccardo Pascuzzo
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Camilla Ferrante
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | | | - Marco Riva
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luigi Antelmi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonio Gennari
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giulia Mattavelli
- ICoN Center, Scuola Universitaria Superiore IUSS, Pavia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Cognitive Neuroscience Laboratory of Pavia Institute, Pavia, Italy
| | - Alberto Bizzi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|