1
|
Xiao C, Stahel P, Morgantini C, Nahmias A, Dash S, Lewis GF. Glucagon-like peptide-2 mobilizes lipids from the intestine by a systemic nitric oxide-independent mechanism. Diabetes Obes Metab 2019; 21:2535-2541. [PMID: 31364232 DOI: 10.1111/dom.13839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022]
Abstract
AIM To test the hypothesis that gut hormone glucagon-like peptide-2 (GLP-2) mobilizes intestinal triglyceride (TG) stores and stimulates chylomicron secretion by a nitric oxide (NO)-dependent mechanism in humans. METHODS In a randomized, single-blind, cross-over study, 10 healthy male volunteers ingested a high-fat formula followed, 7 hours later, by one of three treatments: NO synthase inhibitor L-NG -monomethyl arginine acetate (L-NMMA) + GLP-2 analogue teduglutide, normal saline + teduglutide, or L-NMMA + placebo. TG in plasma and lipoprotein fractions were measured, along with measurement of blood flow in superior mesenteric and coeliac arteries using Doppler ultrasound in six participants. RESULTS Teduglutide rapidly increased mesenteric blood flow and TG concentrations in plasma, in TG-rich lipoproteins, and most robustly in chylomicrons. L-NMMA significantly attenuated teduglutide-induced enhancement of mesenteric blood flow but not TG mobilization and chylomicron secretion. CONCLUSIONS GLP-2 mobilization of TG stores and stimulation of chylomicron secretion from the small intestine appears to be independent of systemic NO in humans.
Collapse
Affiliation(s)
- Changting Xiao
- Department of Medicine and Department of Physiology, Division of Endocrinology and Metabolism, Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Priska Stahel
- Department of Medicine and Department of Physiology, Division of Endocrinology and Metabolism, Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Cecilia Morgantini
- Department of Medicine and Department of Physiology, Division of Endocrinology and Metabolism, Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Avital Nahmias
- Department of Medicine and Department of Physiology, Division of Endocrinology and Metabolism, Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Satya Dash
- Department of Medicine and Department of Physiology, Division of Endocrinology and Metabolism, Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Gary F Lewis
- Department of Medicine and Department of Physiology, Division of Endocrinology and Metabolism, Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
The Postprandial Appearance of Features of Cardiometabolic Risk: Acute Induction and Prevention by Nutrients and Other Dietary Substances. Nutrients 2019; 11:nu11091963. [PMID: 31438565 PMCID: PMC6770341 DOI: 10.3390/nu11091963] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
The purpose of this review is to provide an overview of diets, food, and food components that affect postprandial inflammation, endothelial function, and oxidative stress, which are related to cardiometabolic risk. A high-energy meal, rich in saturated fat and sugars, induces the transient appearance of a series of metabolic, signaling and physiological dysregulations or dysfunctions, including oxidative stress, low-grade inflammation, and endothelial dysfunction, which are directly related to the amplitude of postprandial plasma triglycerides and glucose. Low-grade inflammation and endothelial dysfunction are also known to cluster together with insulin resistance, a third risk factor for cardiovascular diseases (CVD) and type-II diabetes, thus making a considerable contribution to cardiometabolic risk. Because of the marked relevance of the postprandial model to nutritional pathophysiology, many studies have investigated whether adding various nutrients and other substances to such a challenge meal might mitigate the onset of these adverse effects. Some foods (e.g., nuts, berries, and citrus), nutrients (e.g., l-arginine), and other substances (various polyphenols) have been widely studied. Reports of favorable effects in the postprandial state have concerned plasma markers for systemic or vascular pro-inflammatory conditions, the activation of inflammatory pathways in plasma monocytes, vascular endothelial function (mostly assessed using physiological criteria), and postprandial oxidative stress. Although the literature is fragmented, this topic warrants further study using multiple endpoints and markers to investigate whether the interesting candidates identified might prevent or limit the postprandial appearance of critical features of cardiometabolic risk.
Collapse
|
3
|
Keshet R, Erez A. Arginine and the metabolic regulation of nitric oxide synthesis in cancer. Dis Model Mech 2018; 11:11/8/dmm033332. [PMID: 30082427 PMCID: PMC6124554 DOI: 10.1242/dmm.033332] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nitric oxide (NO) is a signaling molecule that plays important roles in diverse biological processes and thus its dysregulation is involved in the pathogenesis of various disorders. In cancer, NO has broad and sometimes dichotomous roles; it is involved in cancer initiation and progression, but also restricts cancer proliferation and invasion, and contributes to the anti-tumor immune response. The importance of NO in a range of cellular processes is exemplified by its tight spatial and dosage control at multiple levels, including via its transcriptional, post-translational and metabolic regulation. In this Review, we focus on the regulation of NO via the synthesis and availability of its precursor, arginine, and discuss the implications of this metabolic regulation for cancer biology and therapy. Despite the established contribution of NO to cancer pathogenesis, the implementation of NO-related cancer therapeutics remains limited, likely due to the challenge of targeting and inducing its protective functions in a cell- and dosage-specific manner. A better understanding of how arginine regulates the production of NO in cancer might thus support the development of anti-cancer drugs that target this key metabolic pathway, and other metabolic pathways involved in NO production.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Rendeiro C, Dong H, Saunders C, Harkness L, Blaze M, Hou Y, Belanger RL, Altieri V, Nunez MA, Jackson KG, Corona G, Lovegrove JA, Spencer JPE. Flavanone-rich citrus beverages counteract the transient decline in postprandial endothelial function in humans: a randomised, controlled, double-masked, cross-over intervention study. Br J Nutr 2016; 116:1999-2010. [PMID: 28065188 DOI: 10.1017/s0007114516004219] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Specific flavonoid-rich foods/beverages are reported to exert positive effects on vascular function; however, data relating to effects in the postprandial state are limited. The present study investigated the postprandial, time-dependent (0-7 h) impact of citrus flavanone intake on vascular function. An acute, randomised, controlled, double-masked, cross-over intervention study was conducted by including middle-aged healthy men (30-65 years, n 28) to assess the impact of flavanone intake (orange juice: 128·9 mg; flavanone-rich orange juice: 272·1 mg; homogenised whole orange: 452·8 mg; isoenergetic control: 0 mg flavanones) on postprandial (double meal delivering a total of 81 g of fat) endothelial function. Endothelial function was assessed by flow-mediated dilatation (FMD) of the brachial artery at 0, 2, 5 and 7 h. Plasma levels of naringenin/hesperetin metabolites (sulphates and glucuronides) and nitric oxide species were also measured. All flavanone interventions were effective at attenuating transient impairments in FMD induced by the double meal (7 h post intake; P<0·05), but no dose-response effects were observed. The effects on FMD coincided with the peak of naringenin/hesperetin metabolites in circulation (7 h) and sustained levels of plasma nitrite. In summary, citrus flavanones are effective at counteracting the negative impact of a sequential double meal on human vascular function, potentially through the actions of flavanone metabolites on nitric oxide.
Collapse
Affiliation(s)
- Catarina Rendeiro
- 1Department of Food and Nutritional Sciences,School of Chemistry, Food and Pharmacy,University of Reading,PO Box 226,Reading RG2 6AP,UK
| | - Honglin Dong
- 1Department of Food and Nutritional Sciences,School of Chemistry, Food and Pharmacy,University of Reading,PO Box 226,Reading RG2 6AP,UK
| | | | - Laura Harkness
- 3Global R+D Nutrition,PepsiCo Inc.,Valhalla, NY 10595,USA
| | - Melvin Blaze
- 4PepsiCo R+D Biological & Discovery Analytics,PepsiCo Inc.,New Haven, CT 06511,USA
| | - Yanpeng Hou
- 4PepsiCo R+D Biological & Discovery Analytics,PepsiCo Inc.,New Haven, CT 06511,USA
| | | | | | | | | | - Giulia Corona
- 1Department of Food and Nutritional Sciences,School of Chemistry, Food and Pharmacy,University of Reading,PO Box 226,Reading RG2 6AP,UK
| | - Julie A Lovegrove
- 1Department of Food and Nutritional Sciences,School of Chemistry, Food and Pharmacy,University of Reading,PO Box 226,Reading RG2 6AP,UK
| | - Jeremy P E Spencer
- 1Department of Food and Nutritional Sciences,School of Chemistry, Food and Pharmacy,University of Reading,PO Box 226,Reading RG2 6AP,UK
| |
Collapse
|
5
|
Deveaux A, Pham I, West SG, André E, Lantoine-Adam F, Bunouf P, Sadi S, Hermier D, Mathé V, Fouillet H, Huneau JF, Benamouzig R, Mariotti F. l-Arginine Supplementation Alleviates Postprandial Endothelial Dysfunction When Baseline Fasting Plasma Arginine Concentration Is Low: A Randomized Controlled Trial in Healthy Overweight Adults with Cardiometabolic Risk Factors. J Nutr 2016; 146:1330-40. [PMID: 27281800 DOI: 10.3945/jn.115.227959] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/19/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vascular endothelial dysfunction, the hallmark of early atherosclerosis, is induced transiently by a high-fat meal. High doses of free l-arginine supplements reduce fasting endothelial dysfunction. OBJECTIVE We sought to determine the effects of a low dose of a sustained-release (SR) l-arginine supplement on postprandial endothelial function in healthy overweight adults with cardiometabolic risk factors and to investigate whether this effect may vary by baseline arginine status. METHODS In a randomized, double-blind, 2-period crossover, placebo-controlled trial (4-wk treatment, 4-wk washout), we compared the effects of 1.5 g SR-l-arginine 3 times/d (4.5 g/d) with placebo in 33 healthy overweight adults [body mass index (BMI, in kg/m(2)): 25 to >30] with the hypertriglyceridemic waist (HTW) phenotype [plasma triglycerides > 150 mg/dL; waist circumference > 94 cm (men) or > 80 cm (women)]. The main outcome variable tested was postprandial endothelial function after a high-fat meal (900 kcal), as evaluated by use of flow-mediated dilation (FMD) and Framingham reactive hyperemia index (fRHI), after each treatment. By use of subgroup analysis, we determined whether the effect was related to the baseline plasma arginine concentration. RESULTS In the total population, the effects of SR-arginine supplementation on postprandial endothelial function were mixed and largely varied with baseline fasting arginine concentration (P-interaction < 0.05). In the lower half of the population (below the median of 78.2 μmol arginine/L plasma), but not the upper half, SR-arginine supplementation attenuated the postprandial decrease in both FMD (29% decrease with SR-arginine compared with 50% decrease with placebo) and fRHI (5% increase with SR-arginine compared with 49% decrease with placebo), resulting in significantly higher mean ± SEM values with SR-arginine (FMD: 4.0% ± 0.40%; fRHI: 0.41 ± 0.069) than placebo (FMD: 2.9% ± 0.31%; fRHI: 0.21 ± 0.060) at the end of the postprandial period (P < 0.05). CONCLUSIONS Supplementation with low-dose SR-arginine alleviates postprandial endothelial dysfunction in healthy HTW adults when the baseline plasma arginine concentration is relatively low. The benefits of arginine supplementation may be linked to a lower ability to mobilize endogenous arginine for nitric oxide synthesis during a postprandial challenge. This trial was registered at clinicaltrials.gov as NCT02354794.
Collapse
Affiliation(s)
- Ambre Deveaux
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Isabelle Pham
- Department of Physiology and Functional Investigations, Jean Verdier Hospital, Assistance Publique-Hôpitaux Paris, Bondy, France
| | - Sheila G West
- Departments of Nutritional Sciences and Biobehavioral Health, Pennsylvania State University, University Park, PA; and
| | - Etienne André
- Institut de Recherche Pierre Fabre, Boulogne-Billancourt, France
| | | | - Pierre Bunouf
- Institut de Recherche Pierre Fabre, Boulogne-Billancourt, France
| | - Samira Sadi
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Dominique Hermier
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Véronique Mathé
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Hélène Fouillet
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Jean-François Huneau
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Robert Benamouzig
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - François Mariotti
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, Paris, France;
| |
Collapse
|
6
|
Mariotti F, Valette M, Lopez C, Fouillet H, Famelart MH, Mathé V, Airinei G, Benamouzig R, Gaudichon C, Tomé D, Tsikas D, Huneau JF. Casein Compared with Whey Proteins Affects the Organization of Dietary Fat during Digestion and Attenuates the Postprandial Triglyceride Response to a Mixed High-Fat Meal in Healthy, Overweight Men. J Nutr 2015; 145:2657-64. [PMID: 26491119 DOI: 10.3945/jn.115.216812] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/25/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Postprandial lipemia is a risk factor for cardiovascular disease. The potential impacts of the type/nature of dietary protein on postprandial lipemia and associated dysregulations have been insufficiently investigated. OBJECTIVE We investigated the postprandial effect of including in a high-fat meal some milk protein fractions that markedly differ in their physicochemical properties and composition [either casein (CAS), whey protein (WHE), or α-lactalbumin-enriched whey protein (LAC)]. METHODS The protein fractions were incorporated as 15% energy in a high-fat meal in a 3-period, crossover postprandial study of 10 healthy overweight men with an elevated waist circumference (>94 cm). We measured postprandial changes in plasma lipids, amino acids, glucose, and oxidative stress markers, vascular function (using pulse contour analysis), and low-grade inflammation (using plasma markers). We also characterized in vitro the meal structures, including the size of the fat globule, and possible changes during digestion. RESULTS The type of protein did not affect postprandial plasma glucose, amino acids, insulin, or nonesterified fatty acids, but, compared with WHE and LAC, which did not differ, CAS markedly reduced postprandial triglycerides (TGs), achieving a 22 ± 10% reduction in the 6-h area under the curve (P < 0.05). Similar trends were shown for plasma chylomicrons [apolipoprotein (apo)B-48; P < 0.05]. However, there were no significant differences between the meals regarding postprandial oxidative stress (plasma hydroperoxides and malondialdehyde), endothelial dysfunction (salbutamol-induced changes in pulse contour analysis), or low-grade inflammation. In vitro studies showed that when the pH of the meal decreased to stomach pH values, the reduction in the solubility of casein resulted in a phase separation between fat and protein, whereas the proteins in the other meals remained suspended with fat globules. CONCLUSION In healthy overweight men, casein has specific physical interactions with fat that affect postprandial TGs, leading to the formation of fewer chylomicrons or an increase in chylomicron clearance. This trial was registered at clinicaltrials.gov as NCT00931151.
Collapse
Affiliation(s)
- François Mariotti
- AgroParisTech, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France; INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France;
| | - Marion Valette
- AgroParisTech, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France; INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Christelle Lopez
- INRA, UMR1253 Science and Technology of Milk and Egg, Rennes, France; Agrocampus Ouest, UMR1253 Science and Technology of Milk and Egg, Rennes, France; and
| | - Hélène Fouillet
- AgroParisTech, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France; INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Marie-Hélène Famelart
- INRA, UMR1253 Science and Technology of Milk and Egg, Rennes, France; Agrocampus Ouest, UMR1253 Science and Technology of Milk and Egg, Rennes, France; and
| | - Véronique Mathé
- AgroParisTech, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France; INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Gheorghe Airinei
- AgroParisTech, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France; INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Robert Benamouzig
- AgroParisTech, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France; INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Claire Gaudichon
- AgroParisTech, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France; INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Daniel Tomé
- AgroParisTech, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France; INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Dimitrios Tsikas
- Centre of Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Jean François Huneau
- AgroParisTech, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France; INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| |
Collapse
|
7
|
Sottero B, Gargiulo S, Russo I, Barale C, Poli G, Cavalot F. Postprandial Dysmetabolism and Oxidative Stress in Type 2 Diabetes: Pathogenetic Mechanisms and Therapeutic Strategies. Med Res Rev 2015; 35:968-1031. [PMID: 25943420 DOI: 10.1002/med.21349] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Postprandial dysmetabolism in type 2 diabetes (T2D) is known to impact the progression and evolution of this complex disease process. However, the underlying pathogenetic mechanisms still require full elucidation to provide guidance for disease prevention and treatment. This review focuses on the marked redox changes and inflammatory stimuli provoked by the spike in blood glucose and lipids in T2D individuals after meals. All the causes of exacerbated postprandial oxidative stress in T2D were analyzed, also considering the consequence of enhanced inflammation on vascular damage. Based on this in-depth analysis, current strategies of prevention and pharmacologic management of T2D were critically reexamined with particular emphasis on their potential redox-related rationale.
Collapse
Affiliation(s)
- Barbara Sottero
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| | - Isabella Russo
- Internal Medicine and Metabolic Disease Unit, Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| | - Cristina Barale
- Internal Medicine and Metabolic Disease Unit, Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| | - Franco Cavalot
- Internal Medicine and Metabolic Disease Unit, Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| |
Collapse
|
8
|
Magné J, Huneau JF, Borderie D, Mathé V, Bos C, Mariotti F. Plasma asymmetric and symmetric dimethylarginine in a rat model of endothelial dysfunction induced by acute hyperhomocysteinemia. Amino Acids 2015; 47:1975-82. [PMID: 25792109 DOI: 10.1007/s00726-015-1959-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/05/2015] [Indexed: 12/25/2022]
Abstract
Hyperhomocysteinemia induces vascular endothelial dysfunction, an early hallmark of atherogenesis. While higher levels of circulating asymmetric dimethylarginine (ADMA) and symmetric dimethyl arginine (SDMA), endogenous inhibitors of nitric oxide synthesis, have been associated with increased cardiovascular risk, the role that ADMA and SDMA play in the initiation of hyperhomocysteinemia-induced endothelial dysfunction remains still controversial. In the present study, we studied the changes of circulating ADMA and SDMA in a rat model of acutely hyperhomocysteinemia-induced endothelial dysfunction. In healthy rats, endothelium-related vascular reactivity (measured as acetylcholine-induced transient decrease in mean arterial blood pressure), plasma ADMA and SDMA, total plasma homocysteine (tHcy), cysteine and glutathione were measured before and 2, 4 and 6 h after methionine loading or vehicle. mRNA expression of hepatic dimethylarginine dimethylaminohydrolase-1 (DDAH1), a key protein responsible for ADMA metabolism, was measured 6 h after the methionine loading or the vehicle. Expectedly, methionine load induced a sustained increase in tHcy (up to 54.9 ± 1.9 µM) and a 30 % decrease in vascular reactivity compared to the baseline values. Plasma ADMA and SDMA decreased transiently after the methionine load. Hepatic mRNA expression of DDAH1, cathepsin D, and ubiquitin were significantly lower 6 h after the methionine load than after the vehicle. The absence of an elevation of circulating ADMA and SDMA in this model suggests that endothelial dysfunction induced by acute hyperhomocysteinemia cannot be explained by an up-regulation of protein arginine methyltransferases or a down-regulation of DDAH1. In experimental endothelial dysfunction induced by acute hyperhomocysteinemia, down-regulation of the proteasome is likely to dampen the release of ADMA and SDMA in the circulation.
Collapse
Affiliation(s)
- Joëlle Magné
- Atherosclerosis Research Unit, Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, 171 76, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
9
|
Mariotti F, Petzke KJ, Bonnet D, Szezepanski I, Bos C, Huneau JF, Fouillet H. Kinetics of the utilization of dietary arginine for nitric oxide and urea synthesis: insight into the arginine-nitric oxide metabolic system in humans. Am J Clin Nutr 2013; 97:972-9. [PMID: 23535108 DOI: 10.3945/ajcn.112.048025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The systemic availability of oral/dietary arginine and its utilization for nitric oxide (NO) synthesis remains unknown and may be related to a competitive hydrolysis of arginine into urea in the splanchnic area and systemic circulation. OBJECTIVES We investigated the kinetics and dose-dependency of dietary arginine utilization for NO compared with urea synthesis and studied the characteristics of the arginine-NO metabolic system in healthy humans. DESIGN We traced the metabolic fate and analyzed the utilization dynamics of dietary arginine after its ingestion at 2 nutritional amounts in healthy humans (n = 9) in a crossover design by using [(15)N-(15)N-(guanido)]-arginine, isotope ratio mass spectrometry techniques, and data analysis with a compartmental modeling approach. RESULTS Whatever the amount of dietary arginine, 60 ± 3% (±SEM) was converted to urea, with kinetics indicative of a first-pass splanchnic phenomenon. Despite this dramatic extraction, intact dietary arginine made a major contribution to the postprandial increase in plasma arginine. However, the model identified that the plasma compartment was a very minor (~2%) precursor for the conversion of dietary arginine into NO, which, in any case, was small (<0.1% of the dose). The whole-body and plasma kinetics of arginine metabolism were consistent with the suggested competitive metabolism by the arginase and NO synthase pathways. CONCLUSIONS The conversion of oral/dietary arginine into NO is not limited by the systemic availability of arginine but by a tight metabolic compartmentation at the systemic level. We propose an organization of the arginine metabolic system that explains the daily maintenance of NO homeostasis in healthy humans.
Collapse
Affiliation(s)
- François Mariotti
- UMR914 Nutrition Physiology and Ingestive Behavior CRNH-IdF, AgroParisTech, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhao Z, Pompey S, Dong H, Weng J, Garuti R, Michaely P. S-nitrosylation of ARH is required for LDL uptake by the LDL receptor. J Lipid Res 2013; 54:1550-1559. [PMID: 23564733 DOI: 10.1194/jlr.m033167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The LDL receptor (LDLR) relies upon endocytic adaptor proteins for internalization of lipoproteins. The results of this study show that the LDLR adaptor autosomal recessive hypercholesterolemia protein (ARH) requires nitric oxide to support LDL uptake. Nitric oxide nitrosylates ARH at C199 and C286, and these posttranslational modifications are necessary for association of ARH with the adaptor protein 2 (AP-2) component of clathrin-coated pits. In the absence of nitrosylation, ARH is unable to target LDL-LDLR complexes to coated pits, resulting in poor LDL uptake. The role of nitric oxide on LDLR function is specific for ARH because inhibition of nitric oxide synthase activity impairs ARH-supported LDL uptake but has no effect on other LDLR-dependent lipoprotein uptake processes, including VLDL remnant uptake and dab2-supported LDL uptake. These findings suggest that cells that depend upon ARH for LDL uptake can control which lipoproteins are internalized by their LDLRs through changes in nitric oxide.
Collapse
Affiliation(s)
- Zhenze Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Shanica Pompey
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Hongyun Dong
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Jian Weng
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Rita Garuti
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Peter Michaely
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX.
| |
Collapse
|
11
|
Huang K, Huang Y, Frankel J, Addis C, Jaswani L, Wehner PS, Mangiarua EI, McCumbee WD. The short-term consumption of a moderately high-fat diet alters nitric oxide bioavailability in lean female Zucker rats. Can J Physiol Pharmacol 2011; 89:245-57. [PMID: 21539468 DOI: 10.1139/y11-016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine whether short-term consumption of a moderately high-fat diet (MHFD) affects nitric oxide (NO) production, the concentration of stable NO metabolites (NOx) in urine and plasma of rats fed a MHFD (15.6 %g fat) or control diet (4.5 %g fat) was measured weekly for 4 weeks. Plasma and urine NOx levels were significantly depressed in the MHFD group by week 1 and remained so for the duration of the study. Decreased NO bioavailability may result from a decrease in NO production or the scavenging of NO by reactive oxygen species (ROS). Because endothelial NOS (eNOS) is the major contributor to NO production and circulating levels of NOx, eNOS expression was measured in several tissues. At week 1, there was a MHFD-associated decrease in eNOS expression in the liver. Subsequently, eNOS expression declined in the heart and kidney medulla of MHFD-fed rats at weeks 3 and 4, respectively. The expression of eNOS in the kidney cortex and adipose tissue did not change. These results suggest that a MHFD alters eNOS expression in a time-dependent and tissue-specific manner. In the liver, NOS activity and tissue levels of NOx and nitrotyrosine were measured. Nitrotyrosine levels were used as an indirect measure of the NO scavenged by ROS. There was a decrease in NOS activity, suggesting that the low levels of hepatic NOx were due, in part, to a decrease in NO production. In addition, there was a dramatic increase in nitrotyrosine formation, suggesting that the decline in hepatic NOx was also due to an increased interaction of NO with ROS. Tyrosine nitration commonly has detrimental effects on proteins. The decrease in NO and increase in protein nitration could potentially have adverse effects on tissue function.
Collapse
Affiliation(s)
- Kan Huang
- Departments of Pharmacology, Physiology, and Toxicology, Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25755, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Guelzim N, Mariotti F, Martin PGP, Lasserre F, Pineau T, Hermier D. A role for PPARα in the regulation of arginine metabolism and nitric oxide synthesis. Amino Acids 2010; 41:969-79. [PMID: 21063737 DOI: 10.1007/s00726-010-0797-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 10/22/2010] [Indexed: 01/08/2023]
Abstract
The pleiotropic effects of PPARα may include the regulation of amino acid metabolism. Nitric oxide (NO) is a key player in vascular homeostasis. NO synthesis may be jeopardized by a differential channeling of arginine toward urea (via arginase) versus NO (via NO synthase, NOS). This was studied in wild-type (WT) and PPARα-null (KO) mice fed diets containing either saturated fatty acids (COCO diet) or 18:3 n-3 (LIN diet). Metabolic markers of arginine metabolism were assayed in urine and plasma. mRNA levels of arginases and NOS were determined in liver. Whole-body NO synthesis and the conversion of systemic arginine into urea were assessed by using (15)N(2)-guanido-arginine and measuring urinary (15)NO(3) and [(15)N]-urea. PPARα deficiency resulted in a markedly lower whole-body NO synthesis, whereas the conversion of systemic arginine into urea remained unaffected. PPARα deficiency also increased plasma arginine and decreased citrulline concentration in plasma. These changes could not be ascribed to a direct effect on hepatic target genes, since NOS mRNA levels were unaffected, and arginase mRNA levels decreased in KO mice. Despite the low level in the diet, the nature of the fatty acids modulated some effects of PPARα deficiency, including plasma arginine and urea, which increased more in KO mice fed the LIN diet than in those fed the COCO diet. In conclusion, PPARα is largely involved in normal whole-body NO synthesis. This warrants further study on the potential of PPARα activation to maintain NO synthesis in the initiation of the metabolic syndrome.
Collapse
Affiliation(s)
- Najoua Guelzim
- UMR914 Nutrition Physiology and Ingestive Behavior, INRA, 16 rue Claude Bernard, 75005, Paris, France
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight recent publications examining nitric oxide production in health and disease and its association with clinical nutrition and alterations in metabolism. RECENT FINDINGS The role of the cofactor tetrahydrobiopterin in nitric oxide production and its relation with arginine availability is indicated as an important explanation for the arginine paradox. This offers potential for nitric oxide regulation by dietary factors such as arginine or its precursors and vitamin C. Because diets with a high saturated fat content induce high plasma fatty acid levels, endothelial nitric oxide production is often impaired due to a reduction in nitric oxide synthase 3 phosphorylation. Increasing the arginine availability by arginine therapy or arginase inhibition was, therefore, proposed as a potential therapy to treat hypertension. Recent studies in septic patients and transgenic mice models found that inadequate de-novo arginine production from citrulline reduces nitric oxide production. Citrulline supplementation may, therefore, be a novel therapeutic approach in conditions of arginine deficiency. SUMMARY Both lack and excess of nitric oxide production in diseases can have various important implications in which dietary factors can play a modulating role. Future research is needed to expand our understanding of the regulation and adequate measurement of nitric oxide production at the organ level and by the different nitric oxide synthase isoforms, also in relation to clinical nutrition.
Collapse
Affiliation(s)
- Yvette C Luiking
- Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | |
Collapse
|