1
|
Ascenzi P, De Simone G, Zingale GA, Coletta M. Nitrite binding to myoglobin and hemoglobin: Reactivity and structural aspects. J Inorg Biochem 2025; 265:112829. [PMID: 39854981 DOI: 10.1016/j.jinorgbio.2025.112829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Nitrite (NO2-) interacts with myoglobin (Mb) and hemoglobin (Hb) behaving as a ligand of both the ferrous (i.e., Mb(II) and Hb(II)) and ferric (i.e., Mb(III) and Hb(III)) forms. However, while the binding to the Fe(III) species corresponds to the formation of a stable complex (i.e., Mb(III)-NO2- and Hb(III)-NO2-), in the case of the ferrous forms the reaction proceeds with a nitrite reductase redox process, leading to the oxidation of the heme-protein with the reduction of NO2- to NO. This event is of the utmost importance for the rapid production of NO in vivo in the blood stream and in striated muscles, being crucial for the regulation of the blood flow, and thus for O2 supply to poorly oxygenated tissues, such as the eye's retina. Further, NO2- interacts with Mb(II)-O2 and Hb(II)-O2, inducing their oxidation with a complex mechanism, which has been only partially elucidated. Mb and Hb form the complex with NO2- through the O-nitrito binding mode (i.e., Fe-ONO-), which is regulated by residues paving the heme distal side; thus, in a site-directed mutant, where HisE7 is substituted by Val, the interaction occurs in the N-nitro binding mode (i.e., Fe-N(O)O-), like in most other heme-proteins. The structure-function relationships of the interaction of NO2- with both ferric and ferrous forms of Mb and Hb are discussed here.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Accademia Nazionale dei Lincei, Via della Lungara 10, 00165 Roma, Italy; Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146 Roma, Italy.
| | - Giovanna De Simone
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146 Roma, Italy
| | | | | |
Collapse
|
2
|
Freindorf M, Kraka E. Metal-ligand and hydrogen bonding in the active site of Fe(III)-, Mn(III)- and Co(III)-myoglobins. Dalton Trans 2025; 54:4096-4111. [PMID: 39898974 DOI: 10.1039/d4dt03246b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
We investigated in this work the strength of metal-ligand bonding in complexes formed between Fe(III)-, Mn(III)- and Co(III)-myoglobin and methanol, water, nitrite, and azide, serving as neutral and ionic prototype ligands, for the ε and δ protonation forms of the myoglobin distal histidine. In total, 24 complexes and 12 associated gas phase models were investigated combining a QM/MM protocol with our local vibrational mode analysis at the PBE0/6-31G(d,p)/AMBER level of theory. According to our results, complexes with methanol and water ligands form weaker metal-ligand bonds than those with nitrite and azide ligands. Furthermore, the strength of the metal-ligand bonds depends on the protonation form of the distal histidine. Among the three metals investigated in this study, Fe, the metal found in native myoglobin, turned out to be the most versatile candidate, providing the broadest range of metal-ligand bond strengths. We also analyzed potential hydrogen bonds formed between the ligand and the distal histidine of the heme pocket. The ε tautomer of histidine forms weaker O⋯H type hydrogen bonds whereas the δ tautomer forms stronger N⋯H type hydrogen bonds. Overall, our findings identify the strength of both metal-ligand and hydrogen bonds (fully captured by our local vibrational mode analysis) as a key parameter determining the catalytic activity and function of myoglobins. This is particularly relevant when considering neutral versus ionic ligands and other metals such as Mn or Co as alternatives to Fe. The insights gained through our investigation offer valuable guidance for strategically fine-tuning existing artificial myoglobins and designing new, versatile variants. We hope that our QM/MM - local mode analysis protocol will become a valuable addition to the research community's toolkit.
Collapse
Affiliation(s)
- Marek Freindorf
- Chemistry Department, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275, USA.
| | - Elfi Kraka
- Chemistry Department, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275, USA.
| |
Collapse
|
3
|
Valianti VK, Tselios C, Pinakoulaki E. Reversible thermally induced spin crossover in the myoglobin-nitrito adduct directly monitored by resonance Raman spectroscopy. RSC Adv 2023; 13:9020-9025. [PMID: 36950070 PMCID: PMC10025812 DOI: 10.1039/d3ra00225j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/12/2023] [Indexed: 03/24/2023] Open
Abstract
Myoglobin has been demonstrated to function as a nitrite reductase to produce nitric oxide during hypoxia. One of the most intriguing aspects of the myoglobin/nitrite interactions revealed so far is the unusual O-binding mode of nitrite to the ferric heme iron, although conflicting data have been reported for the electronic structure of this complex also raising the possibility of linkage isomerism. In this work, we applied resonance Raman spectroscopy in a temperature-dependent approach to investigate the binding of nitrite to ferric myoglobin and the properties of the formed adduct from ambient to low temperatures (293 K to 153 K). At ambient temperature the high spin state of the ferric heme Fe-O-N[double bond, length as m-dash]O species is present and upon decreasing the temperature the low spin state is populated, demonstrating that a thermally-induced spin crossover phenomenon takes place analogous to what has been observed in many transition metal complexes. The observed spin crossover is fully reversible and is not due to linkage isomerism, since the O-binding mode is retained upon the spin transition. The role of the heme pocket environment in controlling the nitrite binding mode and spin transition is discussed.
Collapse
Affiliation(s)
| | - Charalampos Tselios
- Department of Chemistry, University of Cyprus 2109 Aglantzia Cyprus
- Department of Chemical Engineering, Cyprus University of Technology Lemesos Cyprus
| | | |
Collapse
|
4
|
Foley EL, Hvitved AN, Eich RF, Olson JS. Mechanisms of nitric oxide reactions with Globins using mammalian myoglobin as a model system. J Inorg Biochem 2022; 233:111839. [DOI: 10.1016/j.jinorgbio.2022.111839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/15/2022]
|
5
|
Peng R, Wang L, Yu P, Carrier AJ, Oakes KD, Zhang X. Exacerbated Protein Oxidation and Tyrosine Nitration through Nitrite-Enhanced Fenton Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:353-359. [PMID: 34963286 DOI: 10.1021/acs.jafc.1c04591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nitrite is a common additive used during meat curing to prevent microbial contamination and retain an attractive red color in the product. However, the effects of nitrite on Fenton reactions catalyzed by free iron in meat products are not well understood, although such processes can induce protein oxidation and nitration, affecting the nutritional and aesthetic quality of meat products. This contribution reveals the mechanism through which nitrite affects Fenton reactions that generate reactive nitrogen and oxygen species by increasing the availability of Fe3+, facilitating its reduction and stabilizing Fe2+, and accelerating Fe3+/Fe2+ cycling, leading to exacerbated oxidative and nitrosative stress on proteins, with implications not only for meat processing but also in many biological and environmental processes due to the ubiquitous presence of iron, hydrogen peroxide, and nitrite in nature.
Collapse
Affiliation(s)
- Rui Peng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Li Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Pinting Yu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Ken D Oakes
- Department of Biology, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Xu Zhang
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
6
|
Serra I, Schmidt D, Pfanzagl V, Mlynek G, Hofbauer S, Djinović-Carugo K, Furtmüller PG, García-Rubio I, Van Doorslaer S, Obinger C. Impact of the dynamics of the catalytic arginine on nitrite and chlorite binding by dimeric chlorite dismutase. J Inorg Biochem 2021; 227:111689. [PMID: 34922158 DOI: 10.1016/j.jinorgbio.2021.111689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 12/03/2021] [Indexed: 01/04/2023]
Abstract
Chlorite dismutases (Clds) are heme b containing oxidoreductases able to decompose chlorite to chloride and molecular oxygen. This work analyses the impact of the distal, flexible and catalytic arginine on the binding of anionic angulate ligands like nitrite and the substrate chlorite. Dimeric Cld from Cyanothece sp. PCC7425 was used as a model enzyme. We have investigated wild-type CCld having the distal catalytic R127 hydrogen-bonded to glutamine Q74 and variants with R127 (i) being arrested in a salt-bridge with a glutamate (Q74E), (ii) being fully flexible (Q74V) or (iii) substituted by either alanine (R127A) or lysine (R127K). We present the electronic and spectral signatures of the high-spin ferric proteins and the corresponding low-spin nitrite complexes elucidated by UV-visible, circular dichroism and electron paramagnetic resonance spectroscopies. Furthermore, we demonstrate the impact of the dynamics of R127 on the thermal stability of the respective nitrite adducts and present the X-ray crystal structures of the nitrite complexes of wild-type CCld and the variants Q74V, Q74E and R127A. In addition, the molecular dynamics (MD) and the binding modi of nitrite and chlorite to the ferric wild-type enzyme and the mutant proteins and the interaction of the oxoanions with R127 have been analysed by MD simulations. The findings are discussed with respect to the role(s) of R127 in ligand and chlorite binding and substrate degradation.
Collapse
Affiliation(s)
- Ilenia Serra
- BIMEF Laboratory, Department of Chemistry, University of Antwerp, Belgium
| | - Daniel Schmidt
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Vera Pfanzagl
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Georg Mlynek
- Core Facility Biomolecular & Cellular Analysis, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, A-1190 Vienna, Austria; Department of Structural and Computational Biology, Max Perutz Laboratories, A-1030, Vienna, Austria
| | - Stefan Hofbauer
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max Perutz Laboratories, A-1030, Vienna, Austria; Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 5, SI-1000 Ljubljana, Slovenia
| | - Paul G Furtmüller
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Inés García-Rubio
- Department of Condensed Matter Physics, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain; Centro Universitario de la Defensa, 50090 Zaragoza, Spain
| | | | - Christian Obinger
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
7
|
Influence of the heme distal pocket on nitrite binding orientation and reactivity in Sperm Whale myoglobin. Biochem J 2021; 478:927-942. [PMID: 33543749 PMCID: PMC7925009 DOI: 10.1042/bcj20200596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 12/05/2022]
Abstract
Nitrite binding to recombinant wild-type Sperm Whale myoglobin (SWMb) was studied using a combination of spectroscopic methods including room-temperature magnetic circular dichroism. These revealed that the reactive species is free nitrous acid and the product of the reaction contains a nitrite ion bound to the ferric heme iron in the nitrito- (O-bound) orientation. This exists in a thermal equilibrium with a low-spin ground state and a high-spin excited state and is spectroscopically distinct from the purely low-spin nitro- (N-bound) species observed in the H64V SWMb variant. Substitution of the proximal heme ligand, histidine-93, with lysine yields a novel form of myoglobin (H93K) with enhanced reactivity towards nitrite. The nitrito-mode of binding to the ferric heme iron is retained in the H93K variant again as a thermal equilibrium of spin-states. This proximal substitution influences the heme distal pocket causing the pKa of the alkaline transition to be lowered relative to wild-type SWMb. This change in the environment of the distal pocket coupled with nitrito-binding is the most likely explanation for the 8-fold increase in the rate of nitrite reduction by H93K relative to WT SWMb.
Collapse
|
8
|
Nath AK, Ghosh C, Roy M, Seal M, Ghosh Dey S. Nitrite reductase activity of heme and copper bound Aβ peptides. Dalton Trans 2019; 48:7451-7461. [PMID: 31086893 DOI: 10.1039/c9dt00914k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A significant abundance of copper (Cu) and iron in amyloid β (Aβ) plaques, and several heme related metabolic disorders are directly correlated with Alzheimer's disease (AD), and these together with co-localization of Aβ plaques with heme rich deposits in the brains of AD sufferers indicates a possible association of the said metals with the disease. Recently, the Aβ peptides have been found to bind heme and Cu individually as well as simultaneously. Another significant finding relevant to this is the lower levels of nitrite and nitrate found in the brains of patients suffering from AD. In this study, a combination of absorption and electron paramagnetic resonance spectroscopy and kinetic assays have been used to study the interaction of nitrite with the metal bound Aβ complexes. The data indicate that heme(III)-Cu(i)-Aβ, heme(II)-Cu(i)-Aβ, heme(II)-Aβ and Cu(i)-Aβ can reduce nitrite to nitric oxide (NO), an important biological messenger also related to AD, and thus behave as nitrite reductases. However these complexes reduce nitrite at different rates with heme(III)-Cu(i)-Aβ being the fastest following an inner sphere electron transfer mechanism. The rest of the metal-Aβ adducts follow an outer sphere electron transfer mechanism during nitrite reduction. Protonation from the Arg5 residue triggering the N-O bond heterolysis in heme(III) bound nitrite with a simultaneous electron transfer from the Cu(i) center to produce NO is the rate determining step, indicating a proton transfer followed by electron transfer (PTET) mechanism.
Collapse
Affiliation(s)
- Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Chandradeep Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Manas Seal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
9
|
Wang B, Shi Y, Tejero J, Powell SM, Thomas LM, Gladwin MT, Shiva S, Zhang Y, Richter-Addo GB. Nitrosyl Myoglobins and Their Nitrite Precursors: Crystal Structural and Quantum Mechanics and Molecular Mechanics Theoretical Investigations of Preferred Fe -NO Ligand Orientations in Myoglobin Distal Pockets. Biochemistry 2018; 57:4788-4802. [PMID: 29999305 PMCID: PMC6474360 DOI: 10.1021/acs.biochem.8b00542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The globular dioxygen binding heme protein myoglobin (Mb) is present in several species. Its interactions with the simple nitrogen oxides, namely, nitric oxide (NO) and nitrite, have been known for decades, but the physiological relevance has only recently become more fully appreciated. We previously reported the O-nitrito mode of binding of nitrite to ferric horse heart wild-type (wt) MbIII and human hemoglobin. We have expanded on this work and report the interactions of nitrite with wt sperm whale (sw) MbIII and its H64A, H64Q, and V68A/I107Y mutants whose dissociation constants increase in the following order: H64Q < wt < V68A/I107Y < H64A. We also report their X-ray crystal structures that reveal the O-nitrito mode of binding of nitrite to these derivatives. The MbII-mediated reductions of nitrite to NO and structural data for the wt and mutant MbII-NOs are described. We show that their FeNO orientations vary with distal pocket identity, with the FeNO moieties pointing toward the hydrophobic interiors when the His64 residue is present but toward the hydrophilic exterior when this His64 residue is absent in this set of mutants. This correlates with the nature of H-bonding to the bound NO ligand (nitrosyl O vs N atom). Quantum mechanics and hybrid quantum mechanics and molecular mechanics calculations help elucidate the origin of the experimentally preferred NO orientations. In a few cases, the calculations reproduce the experimentally observed orientations only when the whole protein is taken into consideration.
Collapse
Affiliation(s)
- Bing Wang
- Price Family Foundation Institute of Structural Biology, and Department of Chemistry and Biochemistry,
University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Yelu Shi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Castle Point on Hudson,
Hoboken, NJ 07030
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, 3550 Terrace
Street, Pittsburgh, PA 15261
| | - Samantha M. Powell
- Price Family Foundation Institute of Structural Biology, and Department of Chemistry and Biochemistry,
University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Leonard M. Thomas
- Price Family Foundation Institute of Structural Biology, and Department of Chemistry and Biochemistry,
University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Mark T. Gladwin
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, 3550 Terrace
Street, Pittsburgh, PA 15261
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA
15213
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Castle Point on Hudson,
Hoboken, NJ 07030
| | - George B. Richter-Addo
- Price Family Foundation Institute of Structural Biology, and Department of Chemistry and Biochemistry,
University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| |
Collapse
|
10
|
Hathazi D, Scurtu F, Bischin C, Mot A, Attia AAA, Kongsted J, Silaghi-Dumitrescu R. The Reaction of Oxy Hemoglobin with Nitrite: Mechanism, Antioxidant-Modulated Effect, and Implications for Blood Substitute Evaluation. Molecules 2018; 23:molecules23020350. [PMID: 29414908 PMCID: PMC6017026 DOI: 10.3390/molecules23020350] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/27/2022] Open
Abstract
The autocatalytic reaction between nitrite and the oxy form of globins involves free radicals. For myoglobin (Mb), an initial binding of nitrite to the iron-coordinated oxygen molecule was proposed; the resulting ferrous-peroxynitrate species was not detected, but its decay product, the high-valent ferryl form, was demonstrated in stopped-flow experiments. Reported here are the stopped flow spectra recorded upon mixing oxy Hb (native, as well as chemically-derivatized in the form of several candidates of blood substitutes) with a supraphysiological concentration of nitrite. The data may be fitted to a simple kinetic model involving a transient met-aqua form, in contrast to the ferryl detected in the case of Mb in a similar reaction sequence. These data are in line with a previous observation of a transient accumulation of ferryl Hb under auto-catalytic conditions at much lower concentrations of nitrite (Grubina, R. et al. J. Biol. Chem. 2007, 282, 12916). The simple model for fitting the stopped-flow data leaves a small part of the absorbance changes unaccounted for, unless a fourth species is invoked displaying features similar to the oxy and tentatively assigned as ferrous-peroxynitrate. Density functional theory (DFT) calculations support this latter assignment. The reaction allows for differentiating between the reactivities of various chemically modified hemoglobins, including candidates for blood substitutes. Polymerization of hemoglobin slows the nitrite-induced oxidation, in sharp contrast to oxidative-stress type reactions which are generally accelerated, not inhibited. Sheep hemoglobin is found to be distinctly more resistant to reaction with nitrite compared to bovine Hb, at large nitrite concentrations (stopped-flow experiments directly observing the oxy + nitrite reaction) as well as under auto-catalytic conditions. Copolymerization of Hb with bovine serum albumin (BSA) using glutaraldehyde leads to a distinct increase of the lag time compared to native Hb as well as to any other form of derivatization examined in the present study. The Hb-BSA copolymer also displays a slower initial reaction with nitrite under stopped-flow conditions, compared to native Hb.
Collapse
Affiliation(s)
- Denisa Hathazi
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania.
| | - Florina Scurtu
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania.
| | - Cristina Bischin
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania.
| | - Augustin Mot
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania.
| | - Amr A A Attia
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania.
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania.
| |
Collapse
|
11
|
Nilsson ZN, Mandella BL, Sen K, Kekilli D, Hough MA, Moenne-Loccoz P, Strange RW, Andrew CR. Distinguishing Nitro vs Nitrito Coordination in Cytochrome c' Using Vibrational Spectroscopy and Density Functional Theory. Inorg Chem 2017; 56:13205-13213. [PMID: 29053273 PMCID: PMC5677563 DOI: 10.1021/acs.inorgchem.7b01945] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitrite coordination to heme cofactors is a key step in the anaerobic production of the signaling molecule nitric oxide (NO). An ambidentate ligand, nitrite has the potential to coordinate via the N- (nitro) or O- (nitrito) atoms in a manner that can direct its reactivity. Distinguishing nitro vs nitrito coordination, along with the influence of the surrounding protein, is therefore of particular interest. In this study, we probed Fe(III) heme-nitrite coordination in Alcaligenes xylosoxidans cytochrome c' (AXCP), an NO carrier that excludes anions in its native state but that readily binds nitrite (Kd ∼ 0.5 mM) following a distal Leu16 → Gly mutation to remove distal steric constraints. Room-temperature resonance Raman spectra (407 nm excitation) identify ν(Fe-NO2), δ(ONO), and νs(NO2) nitrite ligand vibrations in solution. Illumination with 351 nm UV light results in photoconversion to {FeNO}6 and {FeNO}7 states, enabling FTIR measurements to distinguish νs(NO2) and νas(NO2) vibrations from differential spectra. Density functional theory calculations highlight the connections between heme environment, nitrite coordination mode, and vibrational properties and confirm that nitrite binds to L16G AXCP exclusively through the N atom. Efforts to obtain the nitrite complex crystal structure were hampered by photochemistry in the X-ray beam. Although low dose crystal structures could be modeled with a mixed nitrite (nitro)/H2O distal population, their photosensitivity and partial occupancy underscores the value of the vibrational approach. Overall, this study sheds light on steric determinants of heme-nitrite binding and provides vibrational benchmarks for future studies of heme protein nitrite reactions.
Collapse
Affiliation(s)
- Zach N. Nilsson
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Brian L. Mandella
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Kakali Sen
- School of Biological Sciences, University of Essex, Colchester Essex, CO4 3SQ, United Kingdom
- Scientific Computing Department, STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD, United Kingdom
| | - Demet Kekilli
- School of Biological Sciences, University of Essex, Colchester Essex, CO4 3SQ, United Kingdom
| | - Michael A Hough
- School of Biological Sciences, University of Essex, Colchester Essex, CO4 3SQ, United Kingdom
| | - Pierre Moenne-Loccoz
- Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Richard W. Strange
- School of Biological Sciences, University of Essex, Colchester Essex, CO4 3SQ, United Kingdom
| | - Colin R. Andrew
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| |
Collapse
|
12
|
Van Doorslaer S, Cuypers B. Electron paramagnetic resonance of globin proteins – a successful match between spectroscopic development and protein research. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1392629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Bert Cuypers
- Department of Physics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
Bischin C, Mot A, Stefancu A, Leopold N, Hathazi D, Damian G, Silaghi-Dumitrescu R. Chlorite reactivity with myoglobin: Analogy with peroxide and nitrite chemistry? J Inorg Biochem 2017; 172:122-128. [PMID: 28458145 DOI: 10.1016/j.jinorgbio.2017.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
Abstract
Stopped-flow UV-vis data allow for the first time direct spectroscopic detection of a ferryl species during the reaction of met myoglobin (Mb) with chlorite, analogous to what is observed in the reaction with peroxides. Ferryl is also observed in the reaction of oxy Mb+chlorite. A pathway involving Fe-O-O-ClO2 is explored by analogy with the Fe-O-O-NO and Fe-O-O-NO2 previously proposed as intermediates in the reactions of oxy globins with nitric oxide and nitrite, respectively. However, Fe-O-O-ClO2 is not detectable in these stopped-flow experiments and is in fact, unlike its nitrogenous congeners, predicted by density functional theory (DFT) to be impossible for a heme complex. Deoxy Mb reacts with chlorite faster than met - suggesting that, unlike with hydrogen peroxide (with which deoxy Mb reacts slower than met), binding of chlorite to the heme is not a rate-determining step (hence, most likely, an outer-sphere electron transfer mechanism); to correlate this, a Fe-O-Cl-O adduct was not observed experimentally for the met or for the deoxy reactions - even though prior DFT calculations suggest it to be feasible and detectable.
Collapse
Affiliation(s)
- Cristina Bischin
- Department of Chemistry, Babes-Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Augustin Mot
- Department of Chemistry, Babes-Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Andrei Stefancu
- Department of Physics, Babes-Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Nicolae Leopold
- Department of Physics, Babes-Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Denisa Hathazi
- Department of Chemistry, Babes-Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Grigore Damian
- Department of Physics, Babes-Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry, Babes-Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania.
| |
Collapse
|
14
|
Nitrite coordination in myoglobin. J Inorg Biochem 2017; 166:49-54. [DOI: 10.1016/j.jinorgbio.2016.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 12/16/2022]
|
15
|
Malko D, Kucernak A, Lopes T. Performance of Fe–N/C Oxygen Reduction Electrocatalysts toward NO2–, NO, and NH2OH Electroreduction: From Fundamental Insights into the Active Center to a New Method for Environmental Nitrite Destruction. J Am Chem Soc 2016; 138:16056-16068. [DOI: 10.1021/jacs.6b09622] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Daniel Malko
- Department
of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Anthony Kucernak
- Department
of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Thiago Lopes
- Fuel
Cells and Hydrogen Center, Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo-SP 05508-000, Brazil
| |
Collapse
|
16
|
He C, Ogata H, Lubitz W. Elucidation of the heme active site electronic structure affecting the unprecedented nitrite dismutase activity of the ferriheme b proteins, the nitrophorins. Chem Sci 2016; 7:5332-5340. [PMID: 30155185 PMCID: PMC6020753 DOI: 10.1039/c6sc01019a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/23/2016] [Indexed: 12/14/2022] Open
Abstract
Nitrophorins (NPs) catalyze the nitrite dismutation reaction that is unprecedented in ferriheme proteins. Despite progress in studying the reaction mechanism, fundamental issues regarding the correlation of the structural features with the nitrite dismutase activity of NPs remain elusive. On the other hand, it has been shown that the nitrite complexes of NPs are unique among those of the ferriheme proteins since some of their electron paramagnetic resonance (EPR) spectra show significant highly anisotropic low spin (HALS) signals with large gmax values over 3.2. The origin of HALS signals in ferriheme proteins or models is not well understood, especially in cases where axial ligands other than histidine are present. In this study several mutations were introduced in NP4. The related nitrite coordination and dismutation reaction were investigated. As a result, the EPR spectra of the NP-nitrite complexes were found to be tightly correlated with the extent of heme ruffling and protonation state of the proximal His ligand-dictated by an extended H-bonding network at the heme active site. Furthermore, it is established that the two factors are essential in determining the nitrite dismutase activity of NPs. These results may provide a valuable guide for identifying or designing novel heme proteins with similar activity.
Collapse
Affiliation(s)
- Chunmao He
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , D-45470 , Mülheim an der Ruhr , Germany . ;
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , D-45470 , Mülheim an der Ruhr , Germany . ;
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , D-45470 , Mülheim an der Ruhr , Germany . ;
| |
Collapse
|
17
|
Lambrou A, Ioannou A, Pinakoulaki E. Spin Crossover in Nitrito-Myoglobin as Revealed by Resonance Raman Spectroscopy. Chemistry 2016; 22:12176-80. [PMID: 27417111 DOI: 10.1002/chem.201601738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Alexandra Lambrou
- Department of Chemistry; University of Cyprus, PO Box 20537; 1678 Nicosia Cyprus
| | - Androulla Ioannou
- Department of Chemistry; University of Cyprus, PO Box 20537; 1678 Nicosia Cyprus
| | - Eftychia Pinakoulaki
- Department of Chemistry; University of Cyprus, PO Box 20537; 1678 Nicosia Cyprus
| |
Collapse
|
18
|
Fujii H, Yamaki D, Ogura T, Hada M. The functional role of the structure of the dioxo-isobacteriochlorin in the catalytic site of cytochrome cd 1 for the reduction of nitrite. Chem Sci 2016; 7:2896-2906. [PMID: 30090283 PMCID: PMC6054029 DOI: 10.1039/c5sc04825g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/20/2016] [Indexed: 11/25/2022] Open
Abstract
Cytochrome cd1 is a key enzyme in bacterial denitrification and catalyzes one-electron reduction of nitrite (NO2-) to nitric oxide (NO) at the heme d1 center under anaerobic conditions. The heme d1 has a unique dioxo-isobacteriochlorin structure and is present only in cytochrome cd1. To reveal the functional role of the unique heme d1 in the catalytic nitrite reduction, we studied effect of the porphyrin macrocycle on each reaction step of the catalytic cycle of cytochrome cd1 using synthetic model complexes. The complexes investigated are iron complexes of dioxo-octaethylisobacteriochlorin (1), mono-oxo-octaethylchlorin (2) and octaethylporphyrin (3). We show here that the reduction potential for the transition from the ferric state to the ferrous state and the binding constant for binding of NO2- to the ferrous complex increases with a trend of 3 < 2 < 1. However, the reactivity of the ferrous nitrite complex with protons increases in the reversed order, 1 < 2 < 3. We also show that the iron bound NO of the ferric NO complex is readily replaced by addition of 1 equiv. of p-nitrophenolate. These results indicate that the dioxo-isobacteriochlorin structure is superior to porphyrin and mono-oxo-chlorin structures in the first iron reduction step, the second nitrite binding step, and the NO dissociation step, but inferior in the third nitrite reduction step. These results suggest that the heme d1 has evolved as the catalytic site of cytochrome cd1 to catalyze the nitrite reduction at the highest possible redox potential while maintaining its catalytic activity.
Collapse
Affiliation(s)
- Hiroshi Fujii
- Department of Chemistry, Biology and Environmental Science , Faculty of Science , Nara Women's University , Kitauoyanishi , Nara 630-8506 , Japan .
| | - Daisuke Yamaki
- Department of Chemistry , Graduate School of Science , Tokyo Metropolitan University , 1-1 Minami-Osawa , Hachioji , Tokyo 192-0397 , Japan
| | - Takashi Ogura
- Department of Life Science and Picobiology Institute , Graduate School of Life Science , University of Hyogo , RSC-UH Leading Program Center , 1-1-1 Koto, Sayo-cho, Sayo-gun , Hyogo 679-5148 , Japan
| | - Masahiko Hada
- Department of Chemistry , Graduate School of Science , Tokyo Metropolitan University , 1-1 Minami-Osawa , Hachioji , Tokyo 192-0397 , Japan
| |
Collapse
|
19
|
Zager RA. Marked protection against acute renal and hepatic injury after nitrited myoglobin + tin protoporphyrin administration. Transl Res 2015; 166:485-501. [PMID: 26117289 PMCID: PMC4609608 DOI: 10.1016/j.trsl.2015.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/02/2015] [Indexed: 01/30/2023]
Abstract
The phenomenon known as renal "ischemic preconditioning," whereby an initial ischemic insult induces resistance against subsequent kidney damage, has been well established in the experimental literature. However, a clinically applicable way to safely recapitulate this state has not been defined. We hypothesized that a unique combination of agents (nitrited myoglobin [N-Mgb] + tin protoporphyrin [SnPP]) can achieve these ends safely and synergistically, increasing cytoprotective proteins (eg, heme oxygenase 1 [HO-1], interleukin 10 [IL-10], and haptoglobin) in kidney cells. To test this hypothesis, CD-1 mice received 1 mg of N-Mgb and 1 μmol of SnPP, either alone or in combination. Renal cortical HO-1, haptoglobin, and IL-10 gene expressions (messenger RNA [mRNA], protein levels) were determined 4 and 18 hours later. Cytoresistance to 3 forms of acute kidney injury (AKI; glycerol-induced rhabdomyolysis, maleate nephrotoxicity, and postischemic AKI progression to chronic kidney disease [CKD]) was assessed. To ascertain whether cytoresistance might emerge in extrarenal organs, hepatic HO-1, IL-10, and haptoglobin levels were also measured, and resistance to 25 minutes of hepatic ischemia-reperfusion injury and hepatotoxicity (intraperitoneal glycerol injection) was sought. N-Mgb + SnPP induced additive or synergistic increases in renal HO-1, haptoglobin, and IL-10 mRNA and protein levels (up to 20-fold) without inducing any apparent renal or extrarenal damage. After 18 hours of post-treatment, marked or complete protection against glycerol-induced AKI, maleate-induced AKI, and postischemic AKI progression to CKD had emerged. Combined N-Mgb + SnPP was more protective than either agent alone (assessed in glycerol model). N-Mgb + SnPP also upregulated cytoprotective pathways in liver and induced marked protection against both hepatic ischemia-reperfusion and toxic liver damage. In conclusion, we posit that "preconditioning" with combined administration of N-Mgb + SnPP represents a promising approach for protecting against diverse forms of renal and nonrenal (hepatic) forms of tissue damage.
Collapse
Affiliation(s)
- Richard A Zager
- Fred Hutchinson Cancer Research Center, Seattle, Wash; Department of Medicine, University of Washington, Seattle, Wash.
| |
Collapse
|
20
|
Galinato MGI, Fogle RS, Stetz A, Galan JF. Modulating the nitrite reductase activity of globins by varying the heme substituents: Utilizing myoglobin as a model system. J Inorg Biochem 2015; 154:7-20. [PMID: 26544504 DOI: 10.1016/j.jinorgbio.2015.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/08/2015] [Accepted: 10/19/2015] [Indexed: 11/18/2022]
Abstract
Globins, such as hemoglobin (Hb) and myoglobin (Mb), have gained attention for their ability to reduce nitrite (NO2(-)) to nitric oxide (NO). The molecular interactions that regulate this chemistry are not fully elucidated, therefore we address this issue by investigating one part of the active site that may control this reaction. Here, the effects of the 2,4-heme substituents on the nitrite reductase (NiR) reaction, and on the structures and energies of the ferrous nitrite intermediates, are investigated using Mb as a model system. This is accomplished by studying Mbs with hemes that have different 2,4-R groups, namely diacetyldeuteroMb (-acetyl), protoMb (wild-type (wt) Mb, -vinyl), deuteroMb (-H), and mesoMb (-ethyl). While trends on the natural charge on Fe and O-atom of bound nitrite are observed among the series of Mbs, the Fe(II)-NPyr (Pyr=pyrrole) and Fe(II)-NHis93 (His=histidine) bond lengths do not significantly change. Kinetic analysis shows increasing NiR activity as follows: diacetyldeuteroMb<wt Mb<deuteroMb<mesoMb. Nitrite binding energy calculations of the different Mb(II)-nitrite conformations demonstrate the N-bound complexes to be more stable than the O-bound complexes for all the different types of heme structures, with diacetyldeuteroMb having the greatest nitrite binding affinity. Spectral deconvolution on the final product generated from the reaction between Mb(II) and NO2(-) for the reconstituted Mbs indicates the formation of 1:1 Mb(III) and Mb(II)-NO. The electronic changes induced by the -R groups on the 2,4-positions do not alter the stoichiometric ratio of the products, resembling wt Mb.
Collapse
Affiliation(s)
- Mary Grace I Galinato
- School of Science-Chemistry, Penn State Erie, The Behrend College, Erie, PA 16563, United States.
| | - Robert S Fogle
- School of Science-Chemistry, Penn State Erie, The Behrend College, Erie, PA 16563, United States
| | - Amanda Stetz
- School of Science-Chemistry, Penn State Erie, The Behrend College, Erie, PA 16563, United States
| | - Jhenny F Galan
- Dept. of Marine Sciences, Texas A&M at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, United States.
| |
Collapse
|
21
|
Orzeł Ł, Polaczek J, Procner M. Review: Recent advances in the investigations of NO activation on cobalt and manganese porphyrins: a brief review. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1068303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Łukasz Orzeł
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | | | |
Collapse
|
22
|
He C, Howes BD, Smulevich G, Rumpel S, Reijerse EJ, Lubitz W, Cox N, Knipp M. Nitrite Dismutase Reaction Mechanism: Kinetic and Spectroscopic Investigation of the Interaction between Nitrophorin and Nitrite. J Am Chem Soc 2015; 137:4141-50. [DOI: 10.1021/ja512938u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chunmao He
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Barry D. Howes
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino(Fi), Italy
| | - Giulietta Smulevich
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino(Fi), Italy
| | - Sigrun Rumpel
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Edward J. Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Markus Knipp
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
- Faculty
of Chemistry and Biochemistry, Ruhr University, Universitätsstrasse 150, D-44780 Bochum, Germany
| |
Collapse
|
23
|
Tejero J, Sparacino-Watkins CE, Ragireddy V, Frizzell S, Gladwin MT. Exploring the mechanisms of the reductase activity of neuroglobin by site-directed mutagenesis of the heme distal pocket. Biochemistry 2015; 54:722-33. [PMID: 25554946 PMCID: PMC4410703 DOI: 10.1021/bi501196k] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Neuroglobin
(Ngb) is a six-coordinate globin that can catalyze
the reduction of nitrite to nitric oxide. Although this reaction is
common to heme proteins, the molecular interactions in the heme pocket
that regulate this reaction are largely unknown. We have shown that
the H64L Ngb mutation increases the rate of nitrite reduction by 2000-fold
compared to that of wild-type Ngb [Tiso, M., et al. (2011) J. Biol. Chem. 286, 18277–18289]. Here we explore
the effect of distal heme pocket mutations on nitrite reduction. For
this purpose, we have generated mutations of Ngb residues Phe28(B10),
His64(E7), and Val68(E11). Our results indicate a dichotomy in the
reactivity of deoxy five- and six-coordinate globins toward nitrite.
In hemoglobin and myoglobin, there is a correlation between faster
rates and more negative potentials. However, in Ngb, reaction rates
are apparently related to the distal pocket volume, and redox potential
shows a poor relationship with the rate constants. This suggests a
relationship between the nitrite reduction rate and heme accessibility
in Ngb, particularly marked for His64(E7) mutants. In five-coordinate
globins, His(E7) facilitates nitrite reduction, likely through proton
donation. Conversely, in Ngb, the reduction mechanism does not rely
on the delivery of a proton from the histidine side chain, as His64
mutants show the fastest reduction rates. In fact, the rate observed
for H64A Ngb (1120 M–1 s–1) is
to the best of our knowledge the fastest reported for a heme nitrite
reductase. These differences may be related to a differential stabilization
of the iron–nitrite complexes in five- and six-coordinate globins.
Collapse
Affiliation(s)
- Jesús Tejero
- Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | | | | | | | | |
Collapse
|