1
|
El Cheikh J, Hamed F, Rifi H, Dakroub AH, Eid AH. Genetic polymorphisms influencing antihypertensive drug responses. Br J Pharmacol 2025; 182:929-950. [PMID: 39627167 DOI: 10.1111/bph.17414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 01/11/2025] Open
Abstract
Hypertension is a major contributor to cardiovascular disease and its associated morbidity and mortality. The low efficacy observed with some anti-hypertensive therapies has been attributed partly to inter-individual genetic variability. This paper reviews the major findings regarding these genetic variabilities that modulate responses to anti-hypertensive therapies such as angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), diuretics, calcium channel blockers (CCBs) and β-adrenoceptor blockers. The importance of studying these genetic polymorphisms stems from the goal to optimise anti-hypertensive therapy for each individual patient, aiming for the highest efficacy and lowest risk of adverse effects. It is important to recognise that environmental and epigenetic factors can contribute to the observed variations in drug responses. Owing to the multigenic and multifactorial nature of drug responses, further research is crucial for translating these findings into clinical practice and the establishment of reliable recommendations.
Collapse
Affiliation(s)
- Jana El Cheikh
- Faculty of Medicine, University of Balamand, Al Koura, Tripoli, Lebanon
| | - Fouad Hamed
- Faculty of Medicine, University of Balamand, Al Koura, Tripoli, Lebanon
| | - Hana Rifi
- Faculty of Medicine, University of Balamand, Al Koura, Tripoli, Lebanon
| | - Ali H Dakroub
- Blavatnik Family Research Institute, Departments of Cardiology and Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Agostini LDC, Silva NNT, Belo VDA, Luizon MR, Lima AA, da Silva GN. Pharmacogenetics of angiotensin-converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB) in cardiovascular diseases. Eur J Pharmacol 2024; 981:176907. [PMID: 39154825 DOI: 10.1016/j.ejphar.2024.176907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Cardiovascular diseases (CVDs) have a high mortality rate, and despite the several available therapeutic targets, non-response to antihypertensives remains a common problem. Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are important classes of drugs recommended as first-line therapy for several CVDs. However, response to ACEIs and ARBs varies among treated patients. Pharmacogenomics assesses how an individual's genetic characteristics affect their likely response to drug therapy. Currently, numerous studies suggest that genetic polymorphisms may contribute to variability in drug response. Moreover, further studies evaluating gene-gene interactions within signaling pathways in response to antihypertensives might help to unravel potential genetic predictors for antihypertensive response. This review summarizes the pharmacogenetic data for ACEIs and ARBs in patients with CVD, and discusses the potential pharmacogenetics of these classes of antihypertensives in clinical practice. However, replication studies in different populations are needed. In addition, studies that evaluate gene-gene interactions that share signaling pathways in the response to antihypertensive drugs might facilitate the discovery of genetic predictors for antihypertensive response.
Collapse
Affiliation(s)
- Lívia da Cunha Agostini
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Nayara Nascimento Toledo Silva
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Vanessa de Almeida Belo
- Departamento de Farmácia (DEFAR), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Marcelo Rizzatti Luizon
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Angelica Alves Lima
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Glenda Nicioli da Silva
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Laxmi, Golmei P, Srivastava S, Kumar S. Single nucleotide polymorphism-based biomarker in primary hypertension. Eur J Pharmacol 2024; 972:176584. [PMID: 38621507 DOI: 10.1016/j.ejphar.2024.176584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Primary hypertension is a multiplex and multifactorial disease influenced by various strong components including genetics. Extensive research such as Genome-wide association studies and candidate gene studies have revealed various single nucleotide polymorphisms (SNPs) related to hypertension, providing insights into the genetic basis of the condition. This review summarizes the current status of SNP research in primary hypertension, including examples of hypertension-related SNPs, their location, function, and frequency in different populations. The potential clinical implications of SNP research for primary hypertension management are also discussed, including disease risk prediction, personalized medicine, mechanistic understanding, and lifestyle modifications. Furthermore, this review highlights emerging technologies and methodologies that have the potential to revolutionize the vast understanding of the basis of genetics in primary hypertension. Gene editing holds the potential to target and correct any kind of genetic mutations that contribute to the development of hypertension or modify genes involved in blood pressure regulation to prevent or treat the condition. Advances in computational biology and machine learning enable researchers to analyze large datasets and identify complex genetic interactions contributing to hypertension risk. In conclusion, SNP research in primary hypertension is rapidly evolving with emerging technologies and methodologies that have the potential to transform the knowledge about genetic basis related to the condition. These advances hold promise for personalized prevention and treatment strategies tailored to an individual's genetic profile ultimately improving patient outcomes and reducing healthcare costs.
Collapse
Affiliation(s)
- Laxmi
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Pougang Golmei
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Shriyansh Srivastava
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India.
| |
Collapse
|
4
|
Mendes FS, Luizon MR, Lopes ACDS, Pereira DA, Evangelista FCG, Godoi LC, Dusse LM, Alpoim PN. Early and late-onset preeclampsia: effects of DDAH2 polymorphisms on ADMA levels and association with DDAH2 haplotypes. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2024; 46:e-rbgo19. [PMID: 38765527 PMCID: PMC11075394 DOI: 10.61622/rbgo/2024ao19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/07/2023] [Indexed: 05/22/2024] Open
Abstract
Objective To examine whether the DDAH2 promoter polymorphisms -1415G/A (rs2272592), -1151A/C (rs805304) and -449G/C (rs805305), and their haplotypes, are associated with PE compared with normotensive pregnant women, and whether they affect ADMA levels in these groups. Methods A total of 208 pregnant women were included in the study and classified as early-onset (N=57) or late-onset PE (N =49), and as normotensive pregnant women (N = 102). Results Pregnant with early-onset PE carrying the GC and GG genotypes for the DDAH2 -449G/C polymorphism had increased ADMA levels (P=0.01). No association of DDAH2 polymorphisms with PE in single-locus analysis was found. However, the G-C-G haplotype was associated with the risk for late-onset PE. Conclusion It is suggested that DDAH2 polymorphisms could affect ADMA levels in PE, and that DDAH2 haplotypes may affect the risk for PE.
Collapse
Affiliation(s)
- Fernanda Santos Mendes
- Universidade Federal de Minas GeraisBelo HorizonteMGBrazilUniversidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Marcelo Rizzatti Luizon
- Universidade Federal de Minas GeraisBelo HorizonteMGBrazilUniversidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Ana Cristina dos Santos Lopes
- Universidade Federal de Minas GeraisBelo HorizonteMGBrazilUniversidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Daniela Alves Pereira
- Universidade Federal de Minas GeraisBelo HorizonteMGBrazilUniversidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | - Lara Carvalho Godoi
- Universidade Federal de Minas GeraisBelo HorizonteMGBrazilUniversidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Luci Maria Dusse
- Universidade Federal de Minas GeraisBelo HorizonteMGBrazilUniversidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Patrícia Nessralla Alpoim
- Universidade Federal de Minas GeraisBelo HorizonteMGBrazilUniversidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Dhas MM, Gayathri B, Kuppusamy A, Mani K, Pattu H. Assessment of haemodynamic response to tracheal intubation and prone positioning following clonidine and enalaprilat in lumbar spine surgeries: A double blind randomised controlled trial. Indian J Anaesth 2023; 67:633-637. [PMID: 37601931 PMCID: PMC10436731 DOI: 10.4103/ija.ija_731_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 08/22/2023] Open
Abstract
Background and Aim This study evaluates the effectiveness of long-acting antihypertensive drugs (clonidine and enalaprilat) in blunting the intubation response. Also, the study seeks to determine how effectively clonidine and enalaprilat can maintain stable haemodynamics during a change in position. Methods After ethical committee approval and trial registration, a double-blinded, randomised controlled trial was conducted with 71 consenting patients scheduled for elective spine surgery in a prone position under general anaesthesia. Group C received clonidine 2 μg/kg, and Group E received enalaprilat 1.25 mg diluted in normal saline as an intravenous infusion given over 10 min before induction of anaesthesia. The changes in heart rate (HR) and blood pressure (BP) in response to the infusion of the study drugs, induction, tracheal intubation and change in position were recorded. P value <0.05 was considered significant. Statistical analysis was performed using Statistical Package for the Social Sciences (SPSS) version 25. Results Clonidine infusion caused a significant fall in heart rate post-infusion and post-induction with propofol (p value <0.05). Both clonidine and enalaprilat caused a significant fall in mean arterial pressure (MAP) post-infusion and post-induction (p value <0.05). Clonidine effectively blunted the intubation response with no increase in HR and MAP following intubation. Enalaprilat caused a significant rise in HR in response to intubation. On proning, there was a significant fall in MAP in both groups. Conclusion Clonidine is effective in blunting the intubation response. Preoperative infusion of clonidine and enalaprilat causes hypotension during a change of position.
Collapse
Affiliation(s)
- Meshach M. Dhas
- Department of Anaesthesiology, SRM MCH RC, Chengalpattu, Tamil Nadu, India
| | | | - Anand Kuppusamy
- Department of Anaesthesiology, SRM MCH RC, Chengalpattu, Tamil Nadu, India
| | - Karthik Mani
- Department of Anaesthesiology, SRM MCH RC, Chengalpattu, Tamil Nadu, India
| | - Harish Pattu
- Department of Anaesthesiology, SRM MCH RC, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
6
|
Babayeva M, Azzi B, Loewy ZG. Pharmacogenomics Informs Cardiovascular Pharmacotherapy. Methods Mol Biol 2022; 2547:201-240. [PMID: 36068466 DOI: 10.1007/978-1-0716-2573-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Precision medicine exemplifies the emergence of personalized treatment options which may benefit specific patient populations based upon their genetic makeup. Application of pharmacogenomics requires an understanding of how genetic variations impact pharmacokinetic and pharmacodynamic properties. This particular approach in pharmacotherapy is helpful because it can assist in and improve clinical decisions. Application of pharmacogenomics to cardiovascular pharmacotherapy provides for the ability of the medical provider to gain critical knowledge on a patient's response to various treatment options and risk of side effects.
Collapse
Affiliation(s)
| | | | - Zvi G Loewy
- Touro College of Pharmacy, New York, NY, USA.
- School of Medicine, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
7
|
Oliveira-Paula GH, Pereira DA, Pinheiro LC, Ferreira GC, Paula-Garcia WN, Garcia LV, Lacchini R, Luizon MR, Tanus-Santos JE. Gene-gene interactions in the protein kinase C/endothelial nitric oxide synthase axis impact the hypotensive effects of propofol. Basic Clin Pharmacol Toxicol 2021; 130:277-287. [PMID: 34825477 DOI: 10.1111/bcpt.13691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
Anaesthesia with propofol is frequently associated with hypotension, which is at least partially attributable to increased nitric oxide (NO) formation derived from the activation of protein kinase C (PKC)/endothelial NO synthase (NOS3) axis. In this cross-sectional study, we tested whether PRKCA (which encodes PKCα) polymorphisms, or haplotypes, and interactions among PRKCA and NOS3 polymorphisms affect the hypotensive responses to propofol. We collected venous blood samples from 164 patients before and 10 min after propofol administration. Genotypes were determined by PCR and haplotype frequencies were estimated. Nitrite and NOx (nitrites+nitrates) levels were measured by using an ozone-based chemiluminescence assay and the Griess reaction, respectively. We used multifactor dimensionality reduction to test interactions among PRKCA and NOS3 polymorphisms. Propofol promoted enhanced blood pressure-lowering effects and increased nitrite levels in subjects carrying GA + AA genotypes for the rs16960228 and TC + CC genotypes for the rs1010544 PRKCA polymorphisms, and the CCG haplotype. Moreover, genotypes for the rs1010544 PRKCA polymorphism were associated with higher or lower blood pressure decreases in response to propofol depending on the genotypes for the rs2070744 NOS3 polymorphism. Our findings suggest that PRKCA genotypes and haplotypes impact the hypotensive responses to propofol, possibly by modifying NO bioavailability, and that PRKCA-NOS3 interactions modify the blood pressure-lowering effects of propofol.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Wilf Family Cardiovascular Research Institute, Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, New York, New York, USA
| | - Daniela A Pereira
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Waynice N Paula-Garcia
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Luis V Garcia
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Marcelo R Luizon
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
8
|
Pereira DA, Sandrim VC, Palei AC, Amaral LM, Belo VA, Lacchini R, Cavalli RC, Tanus-Santos JE, Luizon MR. NAMPT single-nucleotide polymorphism rs1319501 and visfatin/NAMPT affect nitric oxide formation, sFlt-1 and antihypertensive therapy response in preeclampsia. Pharmacogenomics 2021; 22:451-464. [PMID: 33944612 DOI: 10.2217/pgs-2021-0006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: We examined the relationships between visfatin/NAMPT and nitrite concentrations (a marker of nitric oxide [NO] formation) or sFlt-1 levels in 205 patients with preeclampsia (PE) responsive or nonresponsive to antihypertensive therapy, and whether NAMPT SNPs rs1319501 and rs3801266 affect nitrite concentrations in PE and 206 healthy pregnant women. Patients & methods: Circulating visfatin/NAMPT and sFlt-1 levels were measured by ELISA, and nitrite concentrations by using an ozone-based chemiluminescence assay. Results: In nonresponsive PE patients, visfatin/NAMPT levels were inversely related to nitrite concentrations and positively related to sFlt-1 levels. NAMPT SNP rs1319501 affected nitrite concentrations in nonresponsive PE patients and was tightly linked with NAMPT functional SNPs in Europeans. Conclusion: NAMPT SNP rs1319501 and visfatin/NAMPT affect NO formation, sFlt-1 levels and antihypertensive therapy response in PE.
Collapse
Affiliation(s)
- Daniela A Pereira
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valeria C Sandrim
- Department of Biophysics & Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Ana C Palei
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS 392164, USA
| | - Lorena M Amaral
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS 392164, USA
| | - Vanessa A Belo
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing & Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Ricardo C Cavalli
- Department of Gynecology & Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Marcelo R Luizon
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Genetics, Ecology & Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
9
|
Arginase II polymorphisms modify the hypotensive responses to propofol by affecting nitric oxide bioavailability. Eur J Clin Pharmacol 2021; 77:869-877. [PMID: 33410970 DOI: 10.1007/s00228-020-03059-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Propofol anesthesia is usually accompanied by hypotensive responses, which are at least in part mediated by nitric oxide (NO). Arginase I (ARG1) and arginase II (ARG2) compete with NO synthases for their common substrate L-arginine, therefore influencing the NO formation. We examined here whether ARG1 and ARG2 genotypes and haplotypes affect the changes in blood pressure and NO bioavailability in response to propofol. METHODS Venous blood samples were collected from 167 patients at baseline and after 10 min of anesthesia with propofol. Genotypes were determined by polymerase chain reaction. Nitrite concentrations were measured by using an ozone-based chemiluminescence assay, while NOx (nitrites + nitrates) levels were determined by using the Griess reaction. RESULTS We found that patients carrying the AG + GG genotypes for the rs3742879 polymorphism in ARG2 gene and the ARG2 GC haplotype show lower increases in nitrite levels and lower decreases in blood pressure after propofol anesthesia. On the other hand, subjects carrying the variant genotypes for the rs10483801 polymorphism in ARG2 gene show more intense decreases in blood pressure (CA genotype) and/or higher increases in nitrite levels (CA and AA genotypes) in response to propofol. CONCLUSION Our results suggest that ARG2 variants affect the hypotensive responses to propofol, possibly by modifying NO bioavailability. TRIAL REGISTRATION NCT02442232.
Collapse
|
10
|
Ran C, Michalska JM, Fourier C, Sjöstrand C, Waldenlind E, Steinberg A, Belin AC. Analysis of NOS Gene Polymorphisms in Relation to Cluster Headache and Predisposing Factors in Sweden. Brain Sci 2020; 11:brainsci11010034. [PMID: 33396232 PMCID: PMC7824326 DOI: 10.3390/brainsci11010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022] Open
Abstract
Cluster headache is characterized by activation of the autonomic-trigeminal reflex. Nitric oxide can trigger headaches in patients, and nitric oxide signaling is known to be affected in cluster headache. Based on the hypothesis of nitric oxide being involved in cluster headache pathophysiology we investigated nitric oxide synthases as potential candidate genes for cluster headache. We analyzed eight variants in the three forms of nitric oxide synthase (NOS) genes, inducible NOS (iNOS), endothelial NOS (eNOS) and neuronal NOS (nNOS), and tested for association with cluster headache. Swedish cluster headache patients (n = 542) and controls (n = 581) were genotyped using TaqMan® assays on an Applied Biosystems 7500 qPCR cycler. This is the largest performed genetic study on NOS involvement in cluster headache so far. We found an association between cluster headache and one iNOS haplotype consisting of the minor alleles of rs2297518 and rs2779249 (p = 0.022). In addition, one of the analyzed nNOS variants, rs2682826, was associated with reported triptan use (p = 0.039). Our data suggest that genetic variants in NOS genes do not have a strong influence on cluster headache pathophysiology, but that certain combinations of genetic variants in NOS genes may influence the risk of developing the disorder or triptan use.
Collapse
Affiliation(s)
- Caroline Ran
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (J.M.M.); (C.F.); (A.C.B.)
- Correspondence: ; Tel.: +46-(0)8-5248-7051
| | - Julia M. Michalska
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (J.M.M.); (C.F.); (A.C.B.)
| | - Carmen Fourier
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (J.M.M.); (C.F.); (A.C.B.)
| | - Christina Sjöstrand
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (C.S.); (E.W.); (A.S.)
| | - Elisabet Waldenlind
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (C.S.); (E.W.); (A.S.)
- Department of Neurology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anna Steinberg
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (C.S.); (E.W.); (A.S.)
- Department of Neurology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Andrea C. Belin
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (J.M.M.); (C.F.); (A.C.B.)
| |
Collapse
|
11
|
Cotta Filho CK, Oliveira-Paula GH, Rondon Pereira VC, Lacchini R. Clinically relevant endothelial nitric oxide synthase polymorphisms and their impact on drug response. Expert Opin Drug Metab Toxicol 2020; 16:927-951. [DOI: 10.1080/17425255.2020.1804857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
12
|
Rysz J, Franczyk B, Rysz-Górzyńska M, Gluba-Brzózka A. Pharmacogenomics of Hypertension Treatment. Int J Mol Sci 2020; 21:ijms21134709. [PMID: 32630286 PMCID: PMC7369859 DOI: 10.3390/ijms21134709] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Hypertension is one of the strongest modifiable cardiovascular risk factors, affecting an increasing number of people worldwide. Apart from poor medication adherence, the low efficacy of some therapies could also be related to inter-individual genetic variability. Genetic studies of families revealed that heritability accounts for 30% to 50% of inter-individual variation in blood pressure (BP). Genetic factors not only affect blood pressure (BP) elevation but also contribute to inter-individual variability in response to antihypertensive treatment. This article reviews the recent pharmacogenomics literature concerning the key classes of antihypertensive drugs currently in use (i.e., diuretics, β-blockers, ACE inhibitors, ARB, and CCB). Due to the numerous studies on this topic and the sometimes-contradictory results within them, the presented data are limited to several selected SNPs that alter drug response. Genetic polymorphisms can influence drug responses through genes engaged in the pathogenesis of hypertension that are able to modify the effects of drugs, modifications in drug–gene mechanistic interactions, polymorphisms within drug-metabolizing enzymes, genes related to drug transporters, and genes participating in complex cascades and metabolic reactions. The results of numerous studies confirm that genotype-based antihypertension therapies are the most effective and may help to avoid the occurrence of major adverse events, as well as decrease the costs of treatment. However, the genetic heritability of drug response phenotypes seems to remain hidden in multigenic and multifactorial complex traits. Therefore, further studies are required to analyze all associations and formulate final genome-based treatment recommendations.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
- Correspondence:
| |
Collapse
|
13
|
Oliveira-Paula GH, Pereira SC, Tanus-Santos JE, Lacchini R. Pharmacogenomics And Hypertension: Current Insights. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:341-359. [PMID: 31819590 PMCID: PMC6878918 DOI: 10.2147/pgpm.s230201] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/05/2019] [Indexed: 11/23/2022]
Abstract
Hypertension is a multifactorial disease that affects approximately one billion subjects worldwide and is a major risk factor associated with cardiovascular events, including coronary heart disease and cerebrovascular accidents. Therefore, adequate blood pressure control is important to prevent these events, reducing premature mortality and disability. However, only one third of patients have the effective control of blood pressure, despite several classes of antihypertensive drugs available. These disappointing outcomes may be at least in part explained by interpatient variability in drug response due to genetic polymorphisms. To address the effects of genetic polymorphisms on blood pressure responses to the antihypertensive drug classes, studies have applied candidate genes and genome wide approaches. More recently, a third approach that considers gene-gene interactions has also been applied in hypertension pharmacogenomics. In this article, we carried out a comprehensive review of recent findings on the pharmacogenomics of antihypertensive drugs, including diuretics, β-blockers, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, and calcium channel blockers. We also discuss the limitations and inconsistences that have been found in hypertension pharmacogenomics and the challenges to implement this valuable approach in clinical practice.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA.,Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Sherliane C Pereira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
14
|
Braschi A. Potential Protective Role of Blood Pressure-Lowering Drugs on the Balance between Hemostasis and Fibrinolysis in Hypertensive Patients at Rest and During Exercise. Am J Cardiovasc Drugs 2019; 19:133-171. [PMID: 30714087 DOI: 10.1007/s40256-018-00316-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In patients with hypertension, the triad represented by endothelial dysfunction, platelet hyperactivity, and altered fibrinolytic function disturbs the equilibrium between hemostasis and fibrinolysis and translates into a hypercoagulable state, which underlies the risk of thrombotic complications. This article reviews the scientific evidence regarding some biological effects of antihypertensive drugs, which can protect patients from the adverse consequences of hypertensive disease, improving endothelial function, enhancing antioxidant activity, and restoring equilibrium between hemostatic and fibrinolytic factors. These protective effects appear not to be mediated through blood pressure reduction and are not shared by all molecules of the same pharmacological class.
Collapse
Affiliation(s)
- Annabella Braschi
- Ambulatory of Cardiovascular Diseases, Via col. Romey n.10, 91100, Trapani, Italy.
| |
Collapse
|
15
|
Oliveira-Paula GH, Pinheiro LC, Tanus-Santos JE. Mechanisms impairing blood pressure responses to nitrite and nitrate. Nitric Oxide 2019; 85:35-43. [PMID: 30716418 DOI: 10.1016/j.niox.2019.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
Hypertension is a multifactorial disease associated with impaired nitric oxide (NO) production and bioavailability. In this respect, restoring NO activity by using nitrite and nitrate has been considered a potential therapeutic strategy to treat hypertension. This possibility is justified by the understanding that both nitrite and nitrate may be recycled back to NO and also promote the generation of other bioactive species. This process involves a complex biological circuit known as the enterosalivary cycle of nitrate, where this anion is actively taken up by the salivary glands and converted to nitrite by nitrate-reducing bacteria in the oral cavity. Nitrite is then ingested and reduced to NO and other nitroso species under the acid conditions of the stomach, whereas reminiscent nitrite that escapes gastric reduction is absorbed systemically and can be converted into NO by nitrite-reductases in tissues. While there is no doubt that nitrite and nitrate exert antihypertensive effects, several agents can impair the blood pressure responses to these anions by disrupting the enterosalivary cycle of nitrate. These agents include dietary and smoking-derived thiocyanate, antiseptic mouthwash, proton pump inhibitors, ascorbate at high concentrations, and xanthine oxidoreductase inhibitors. In this article, we provide an overview of the physiological aspects of nitrite and nitrate bioactivation and the therapeutic potential of these anions in hypertension. We also discuss mechanisms by which agents counteracting the antihypertensive responses to nitrite and nitrate mediate their effects. These critical aspects should be taken into consideration when suggesting nitrate or nitrite-based therapies to patients.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
16
|
Hirata RDC, Cerda A, Genvigir FDV, Hirata MH. Pharmacogenetic implications in the management of metabolic diseases in Brazilian populations. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000001005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
17
|
Luizon MR, Pereira DA, Tanus-Santos JE. Pharmacogenetic relevance of endothelial nitric oxide synthase polymorphisms and gene interactions. Pharmacogenomics 2018; 19:1423-1435. [PMID: 30398085 DOI: 10.2217/pgs-2018-0098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endothelial nitric oxide synthase (NOS3) is a key enzyme responsible for nitric oxide (NO) generation in the vascular endothelium. Endothelial dysfunction is characterized by reduced NO production, and is a hallmark of cardiovascular diseases. Drugs with cardiovascular action may activate NOS3 and result in NO release and vasodilation. Moreover, genetic variations affect NOS3 expression and activity, and may partially explain the variability in the responses to cardiovascular drugs. We reviewed NO signaling and genetic effects on NO formation, and the effects of NOS3 polymorphisms, haplotypes and gene-gene interactions within NO signaling pathways on the responses to cardiovascular drugs. We discuss the role of rare NOS3 variants and further gene-gene interactions analysis for the development of novel therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Marcelo R Luizon
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31270-901, Brazil.,UFMG Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Daniela A Pereira
- UFMG Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| |
Collapse
|
18
|
Luizon MR, Pereira DA, Sandrim VC. Pharmacogenomics of Hypertension and Preeclampsia: Focus on Gene-Gene Interactions. Front Pharmacol 2018. [PMID: 29541029 PMCID: PMC5835759 DOI: 10.3389/fphar.2018.00168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypertension is a leading cause of cardiovascular mortality, but only about half of patients on antihypertensive therapy achieve blood pressure control. Preeclampsia is defined as pregnancy-induced hypertension and proteinuria, and is associated with increased maternal and perinatal mortality and morbidity. Similarly, a large number of patients with preeclampsia are non-responsive to antihypertensive therapy. Pharmacogenomics may help to guide the personalized treatment for non-responsive hypertensive patients. There is evidence for the association of genetic variants with variable response to the most commonly used antihypertensive drugs. However, further replication is needed to confirm these associations in different populations. The failure to replicate findings from single-locus association studies has prompted the search for novel statistical methods for data analysis, which are required to detect the complex effects from multiple genes to drug response phenotypes. Notably, gene–gene interaction analyses have been applied to pharmacogenetic studies, including antihypertensive drug response. In this perspective article, we present advances of considering the interactions among genetic polymorphisms of different candidate genes within pathways relevant to antihypertensive drug response, and we highlight recent findings related to gene–gene interactions on pharmacogenetics of hypertension and preeclampsia. Finally, we discuss the future directions that are needed to unravel additional genes and variants involved in the responsiveness to antihypertensive drugs.
Collapse
Affiliation(s)
- Marcelo R Luizon
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,UFMG Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daniela A Pereira
- UFMG Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Valeria C Sandrim
- Department of Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Botucatu, Brazil
| |
Collapse
|
19
|
Oliveira-Paula GH, Lacchini R, Pinheiro LC, Ferreira GC, Luizon MR, Garcia WNP, Garcia LV, Tanus-Santos JE. Endothelial nitric oxide synthase polymorphisms affect the changes in blood pressure and nitric oxide bioavailability induced by propofol. Nitric Oxide 2018; 75:77-84. [PMID: 29496565 DOI: 10.1016/j.niox.2018.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 11/26/2022]
Abstract
Propofol anesthesia is usually accompanied by hypotension, which is at least in part related to enhanced endothelial nitric oxide synthase (NOS3)-derived NO bioavailability. We examined here whether NOS3 polymorphisms (rs2070744, 4b/4a VNTR, rs3918226 and rs1799983) and haplotypes affect the changes in blood pressure and NO bioavailability induced by propofol. Venous blood samples were collected from 168 patients at baseline and after 10 min of anesthesia with propofol 2 mg/kg administered intravenously by bolus injection. Genotypes were determined by polymerase chain reaction and haplotype frequencies were estimated. Nitrite concentrations were measured by using an ozone-based chemiluminescence assay, while NOx (nitrites + nitrates) levels were determined by using the Griess reaction. We found that CT + TT genotypes for the rs3918226 polymorphism, the ba + aa genotypes for the 4b/4a VNTR and the CTbT haplotype were associated with lower decreases in blood pressure and lower increases in nitrite levels after propofol anesthesia. On the other hand, the TCbT and CCbT haplotypes were associated with more intense decreases in blood pressure and higher increases in nitrite levels in response to propofol. Our results suggest that NOS3 polymorphisms and haplotypes influence the hypotensive responses to propofol, possibly by affecting NO bioavailability.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Marcelo R Luizon
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Waynice N P Garcia
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Luis V Garcia
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
20
|
Liu LT, Liang L, Wang W, Yan CQ, Zhang J, Xiao YC, Ye L, Zhao MX, Huang QS, Bian JJ, Shi ZF, Ke X, Zhang ZR. Isolariciresinol-9'-O-α-L-arabinofuranoside protects against hydrogen peroxide‑induced apoptosis of human umbilical vein endothelial cells via a PI3K/Akt/Bad‑dependent pathway. Mol Med Rep 2017; 17:488-494. [PMID: 29115459 DOI: 10.3892/mmr.2017.7865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/18/2017] [Indexed: 11/06/2022] Open
Abstract
Isolariciresinol-9'-O-α-L-arabinofuranoside (MWS‑19) isolated from Pinus massoniana Lamb. Fresh pine needles is the major ingredient of the Songling Xuemaikang capsule therapy used for hypertension. The present study aimed to investigate the effects and underlying mechanisms of MWS‑19 on hydrogen peroxide (H2O2)‑induced apoptosis in human umbilical vein endothelial cells (HUVECs). To investigate the effect of MWS‑19 on apoptosis in HUVECs, an oxidative stress‑induced apoptosis model was established in HUVECs using H2O2, and the present study performed Hoechst 33258 staining and a Cell Counting Kit‑8 (CCK‑8) assay. Furthermore, western blot analysis was also performed to investigate the underlying mechanism of the effects of MWS‑19 on the model. The results demonstrated that MWS‑19 reversed the effects of H2O2 on cell apoptosis at a concentration range of 15.6‑250 µg/ml, with dose‑dependent increases in cell growth. Hoechst staining indicated that 500 µM H2O2 induced HUVEC apoptosis, and MWS‑19 markedly protected HUVECs against apoptosis at 31.3, 62.5 and 125 µg/ml. Furthermore, the protein expression of phosphatidylinositol 3‑kinase (PI3K), phosphorylated‑Akt and Bcl‑2‑associated agonist of cell death (Bad) were increased, and reduced caspase‑3 activation was observed, following treatment with MWS‑19 in H2O2‑treated HUVECs. Additionally, the PI3K inhibitor wortmannin attenuated PI3K/Akt/Bad signaling induced by MWS‑19 treatment and neutralized the effect of MWS‑19 on the growth of HUVECs. In conclusion, the results of the present study indicate that MWS‑19 may protect against H2O2‑induced HUVEC apoptosis via the PI3K/Akt/Bad signaling pathway. MWS‑19 may serve an important role in the prevention of oxidative damage in vascular endothelial cells in hypertension patients.
Collapse
Affiliation(s)
- Li-Tao Liu
- Post‑Doctoral Research Station, Chengdu Kanghong Pharmaceutical Co., Ltd., Chengdu, Sichuan 610217, P.R. China
| | - Lei Liang
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Wei Wang
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Cui-Qi Yan
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Jing Zhang
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Yun-Chuan Xiao
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Liang Ye
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Man-Xi Zhao
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Quan-Shu Huang
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Jun-Jie Bian
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Zhang-Fei Shi
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Xiao Ke
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Zhi-Rong Zhang
- Post‑Doctoral Mobile Station, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
21
|
Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Clinical and pharmacogenetic impact of endothelial nitric oxide synthase polymorphisms on cardiovascular diseases. Nitric Oxide 2017; 63:39-51. [DOI: 10.1016/j.niox.2016.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/10/2016] [Accepted: 08/24/2016] [Indexed: 12/30/2022]
|
22
|
Oliveira-Paula GH, Luizon MR, Lacchini R, Fontana V, Silva PS, Biagi C, Tanus-Santos JE. Gene-Gene Interactions Among PRKCA, NOS3 and BDKRB2 Polymorphisms Affect the Antihypertensive Effects of Enalapril. Basic Clin Pharmacol Toxicol 2016; 120:284-291. [PMID: 27696692 DOI: 10.1111/bcpt.12682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023]
Abstract
Protein kinase C (PKC) signalling is critically involved in the control of blood pressure. Angiotensin-converting enzyme inhibitors (ACEi) affect PKC expression and activity, which are partially associated with the responses to ACEi. We examined whether PRKCA (protein kinase C, alpha) polymorphisms (rs887797 C>T, rs1010544 T>C and rs16960228 G>A), or haplotypes, and gene-gene interactions within the ACEi pathway affect the antihypertensive responses in 104 hypertensive patients treated with enalapril as monotherapy. Patients were classified as poor responders (PR) or good responders (GR) to enalapril if their changes in mean arterial pressure were lower or higher than the median value, respectively. Multi-factor dimensionality reduction was used to characterize interactions among PRKCA, NOS3 (nitric oxide synthase 3) and BDKRB2 (bradykinin receptor B2) polymorphisms. The TC+CC genotypes for the rs1010544 polymorphism were more frequent in GR than in PR (p = 0.037). Conversely, the GA+AA genotypes for the rs16960228 polymorphism, and the CTA haplotype, were more frequent in PR than in GR (p = 0.040 and p = 0.008, respectively). Moreover, the GG genotype for the PRKCA rs16960228 polymorphism was associated with PR or GR depending on the genotypes for the rs2070744 (NOS3) and rs1799722 (BDKRB2) polymorphisms (p = 0.012). Our results suggest that PRKCA polymorphisms and gene-gene interactions within the ACEi pathway affect the antihypertensive responses to enalapril.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Marcelo R Luizon
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Riccardo Lacchini
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Vanessa Fontana
- Department of Pharmacology, State University of Campinas, Campinas, SP, Brazil
| | - Pamela S Silva
- Department of Pharmacology, State University of Campinas, Campinas, SP, Brazil
| | - Celso Biagi
- Santa Casa of Araçatuba, Araçatuba, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|