1
|
Widyananda MH, Dwijayanti DR, Fujii A, Minamisaka K, Nishidono Y, Nishizawa M, Widodo N. Anti-Obesity Properties of Boesenbergia rotunda Rhizome Extract: Regulation of Inflammation, Lipid Metabolism, and Insulin Signaling in ob/ob Mice. Molecules 2025; 30:501. [PMID: 39942605 PMCID: PMC11820812 DOI: 10.3390/molecules30030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Obesity, which is characterized by excessive body fat accumulation and energy imbalance, is a major risk factor for type 2 diabetes mellitus. Boesenbergia rotunda rhizomes (known as fingerroots) exhibit a variety of pharmacological activities and are used in traditional medicine. Pinostrobin was identified as a major constituent of Boesenbergia rotunda rhizome (BR) extract and suppressed nitric oxide production in interleukin 1β-treated hepatocytes. Next, we investigated the anti-obesity effects of BR extract in ob/ob mice, a type 2 diabetes mellitus model. The ob/ob mice were treated with or without 1% BR extract for 14 days and then analyzed for serum insulin and triglyceride levels, liver histology, and liver mRNA expression. The administration of BR extract significantly decreased blood glucose concentrations and increased serum insulin concentrations in ob/ob mice. In addition, this treatment reduced triglyceride levels in both the serum and liver and decreased lipid accumulation in hepatocytes. Microarray analysis revealed that hepatic mRNA affected the expression of genes involved in inflammation, lipid metabolism, lipid synthesis, and insulin signaling, leading to improvements in obesity. Because BR extract has hypoglycemic and antidiabetic effects on ob/ob mice, it might be a promising candidate for addressing obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Muhammad Hermawan Widyananda
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65113, East Java, Indonesia; (M.H.W.); (D.R.D.); (M.N.)
| | - Dinia Rizqi Dwijayanti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65113, East Java, Indonesia; (M.H.W.); (D.R.D.); (M.N.)
- Research Center of Complementary Medicine and Functional Food, Universitas Brawijaya, Malang 65113, East Java, Indonesia
- Asia-Japan Research Institute, Ritsumeikan Asia-Japan Research Organization, Ritsumeikan University, Ibaraki 567-8570, Osaka, Japan
| | - Airi Fujii
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (A.F.)
| | - Keita Minamisaka
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (A.F.)
| | - Yuto Nishidono
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan;
| | - Mikio Nishizawa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65113, East Java, Indonesia; (M.H.W.); (D.R.D.); (M.N.)
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (A.F.)
| | - Nashi Widodo
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65113, East Java, Indonesia; (M.H.W.); (D.R.D.); (M.N.)
| |
Collapse
|
2
|
Nakatake R, Okuyama T, Kotsuka M, Ishizaki M, Kitade H, Yoshizawa K, Tolba RH, Nishizawa M, Sekimoto M. COMBINATION THERAPY WITH A SENSE OLIGONUCLEOTIDE TO INDUCIBLE NITRIC OXIDE SYNTHASE MRNA AND HUMAN SOLUBLE THROMBOMODULIN IMPROVES SURVIVAL OF SEPSIS MODEL RATS AFTER PARTIAL HEPATECTOMY. Shock 2023; 60:84-91. [PMID: 37141168 DOI: 10.1097/shk.0000000000002135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ABSTRACT Sepsis after a major hepatectomy is a critical problem. In septic shock, the inflammatory mediator, nitric oxide (NO), is overproduced in hepatocytes and macrophages. The natural antisense (AS) transcripts, non-coding RNAs, are transcribed from a gene that encodes inducible nitric oxide synthase (iNOS). iNOS AS transcripts interact with and stabilize iNOS mRNAs. A single-stranded "sense oligonucleotide" (designated as SO1) corresponding to the iNOS mRNA sequence inhibits mRNA-AS transcript interactions and reduces iNOS mRNA levels in rat hepatocytes. In contrast, recombinant human soluble thrombomodulin (rTM) treats disseminated intravascular coagulopathy by suppressing coagulation, inflammation, and apoptosis. In this study, the combination therapy of SO1 and a low dose of rTM was evaluated for hepatoprotection in a rat septic shock model after partial hepatectomy. Rats underwent 70% hepatectomy, followed by intravenous (i.v.) injection of lipopolysaccharide (LPS) after 48 h. SO1 was injected (i.v.) simultaneously with LPS, whereas rTM was injected (i.v.) 1 h before LPS injection. Similarly to our previous report, SO1 increased survival after LPS injection. When rTM, which has different mechanisms of action, was combined with SO1, it did not interfere with the effect of SO1 and showed a significant increase in survival compared with LPS alone treatment. In serum, the combined treatment decreased NO levels. In the liver, the combined treatment inhibited iNOS mRNA and protein expression. A decreased iNOS AS transcript expression by the combined treatment was also observed. The combined treatment decreased mRNA expression of the inflammatory and pro-apoptotic genes while increasing that of the anti-apoptotic gene. Furthermore, the combined treatment reduced the number of myeloperoxidase-positive cells. These results suggested that the combination of SO1 and rTM has therapeutic potential for sepsis.
Collapse
Affiliation(s)
| | - Tetsuya Okuyama
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | - Masaya Kotsuka
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | | | - Hiroaki Kitade
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | - Katsuhiko Yoshizawa
- Laboratory of Environmental Sciences, Department of Food Sciences and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Rene H Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Aachen, Germany
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | | |
Collapse
|
3
|
Analgesic and Anti-Inflammatory Activities of Sophocarpine from Sophora viciifolia Hance. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8893563. [PMID: 34790825 PMCID: PMC8592712 DOI: 10.1155/2021/8893563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 07/12/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022]
Abstract
Sophora viciifolia Hance is an edible plant used in traditional Chinese medicine. Sophocarpine, a tetracyclic quinolizidine alkaloid, is one of the most abundant active ingredients in Sophora viciifolia Hance. Here, we study the analgesic and anti-inflammatory effects, as well as the acute toxicity of sophocarpine from Sophora viciifolia Hance in mice. Sophocarpine (20, 40, and 80 mg/kgbw) significantly prolonged the delay period before a hot plate reaction occurred (all P < 0.05), and the delay before a tail-flick response was induced by a warm bath (P < 0.05; P < 0.01). Sophocarpine (40, 80 mg/kg) resulted in dose-dependent inhibition of the writhing reaction induced by acetic acid in mice (P < 0.05; P < 0.001, respectively). Sophocarpine (80 mg/kg) reduced the total duration of a formalin-induced pain response (P < 0.05). Sophocarpine prolonged the foot-licking latency of mice after the hot plate reaction, and this effect was antagonized by calcium chloride and enhanced by verapamil. Sophocarpine (20, 40, and 80 mg/kg) significantly inhibited xylene-induced ear edema (P < 0.01; P < 0.001; P < 0.001, respectively) and the penetration of acetic acid-induced dye into the peritoneal cavity (P < 0.01; P < 0.01; P < 0.001, respectively). It also reduced the levels of proinflammatory cytokine interleukin (IL)-1β, IL-6, and prostaglandin E2 (P < 0.05, P < 0.01, P < 0.001) and those of serum nitric oxide (P < 0.05). The results of this study suggest that sophocarpine possesses certain analgesic and anti-inflammatory activities, which may be related to calcium and inhibition of the secretion of inflammatory factors.
Collapse
|
4
|
Li D, Song Y, Wang Y, Guo Y, Zhang Z, Yang G, Wang G, Xu C. Nos2 deficiency enhances carbon tetrachloride-induced liver injury in aged mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:600-605. [PMID: 32742597 PMCID: PMC7374991 DOI: 10.22038/ijbms.2020.39528.9380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective(s): As a multifunctional molecule, NO has different effects on liver injury. The present work aimed to investigate the effects of Nos2 knockout (KO) on acute liver injury in aged mice treated with carbon tetrachloride (CCl4). Materials and Methods: The acute liver injury model was produced by CCl4 at 10 ml/kg body weight in 24-month-old Nos2 KO mice and wild type (WT) mice groups. The histological changes, transaminase and glutathione (GSH) contents, and the expressions of liver function genes superoxide dismutase (SOD2) and butyrylcholinesterase (BCHE), as well as apoptosis- and inflammation-associated genes were detected at 0, 6, 16, 20, 28, and 48 hr, respectively. Results: Compared with WT aged mice, there are more fat droplets in liver tissues of Nos2 KO aged mice, and the serum levels of ALT and AST were elevated in the KO group; in addition, there was a decrease in the expression of SOD2 and BCHE and GSH content at multiple time-points. Furthermore, the expression of apoptosis protein CASPASE-3 was elevated from 20 to 48 hr, the same as CASPASE-9 at 28 and 48 hr and pro-apoptotic protein BAX at 6 and 28 hr, while the expression of apoptosis inhibitory protein BCL2 declined at 6 and 28 hr; at the same time the mRNA expressions of genes related to inflammation were increased at different extents in liver extracts of Nos2 KO aged mice. Conclusion: Nos2 KO exacerbated liver injury probably by elevated oxidative stress, apoptosis and inflammation response in CCl4-induced aged mice liver intoxication model.
Collapse
Affiliation(s)
- Deming Li
- State Key Laboratory Cell Differentiation and Regulation, Xinxiang, Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis.,Henan center for outstanding overseas scientists of pulmonary fibrosis, Xinxiang, Henan, China.,College of Life Science, Xinxiang, Henan, China.,Institute of Biomedical Science, Xinxiang, Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan, China
| | - Yaping Song
- State Key Laboratory Cell Differentiation and Regulation, Xinxiang, Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis.,Henan center for outstanding overseas scientists of pulmonary fibrosis, Xinxiang, Henan, China.,College of Life Science, Xinxiang, Henan, China.,Institute of Biomedical Science, Xinxiang, Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan, China
| | - Yahao Wang
- State Key Laboratory Cell Differentiation and Regulation, Xinxiang, Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis.,Henan center for outstanding overseas scientists of pulmonary fibrosis, Xinxiang, Henan, China.,College of Life Science, Xinxiang, Henan, China.,Institute of Biomedical Science, Xinxiang, Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan, China
| | - Yuedong Guo
- State Key Laboratory Cell Differentiation and Regulation, Xinxiang, Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis.,Henan center for outstanding overseas scientists of pulmonary fibrosis, Xinxiang, Henan, China.,College of Life Science, Xinxiang, Henan, China.,Institute of Biomedical Science, Xinxiang, Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan, China
| | - Zhaoke Zhang
- State Key Laboratory Cell Differentiation and Regulation, Xinxiang, Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis.,Henan center for outstanding overseas scientists of pulmonary fibrosis, Xinxiang, Henan, China.,College of Life Science, Xinxiang, Henan, China.,Institute of Biomedical Science, Xinxiang, Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan, China
| | - Ganggang Yang
- State Key Laboratory Cell Differentiation and Regulation, Xinxiang, Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis.,Henan center for outstanding overseas scientists of pulmonary fibrosis, Xinxiang, Henan, China.,College of Life Science, Xinxiang, Henan, China.,Institute of Biomedical Science, Xinxiang, Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan, China
| | - Gaiping Wang
- State Key Laboratory Cell Differentiation and Regulation, Xinxiang, Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis.,Henan center for outstanding overseas scientists of pulmonary fibrosis, Xinxiang, Henan, China.,College of Life Science, Xinxiang, Henan, China.,Institute of Biomedical Science, Xinxiang, Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan, China
| | - Cunshuan Xu
- State Key Laboratory Cell Differentiation and Regulation, Xinxiang, Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis.,Henan center for outstanding overseas scientists of pulmonary fibrosis, Xinxiang, Henan, China.,College of Life Science, Xinxiang, Henan, China.,Institute of Biomedical Science, Xinxiang, Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
6
|
Sakuranetin downregulates inducible nitric oxide synthase expression by affecting interleukin-1 receptor and CCAAT/enhancer-binding protein β. J Nat Med 2018; 73:353-368. [PMID: 30467676 DOI: 10.1007/s11418-018-1267-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022]
Abstract
Pruni Cortex is a herbal drug from the bark of the Japanese flowering cherries, Prunus jamasakura or Prunus verecunda, and is included in the traditional Japanese herbal (Kampo) formula Jumihaidokuto, which is administered orally to patients suffering from inflammatory skin diseases. The flavanones contained in Pruni Cortex (e.g., sakuranetin and naringenin) have potent anti-inflammatory, anti-allergic, and anti-microbial activities. Although the effects of Pruni Cortex on skin disease have been well studied, reports regarding its pharmacological effects on the liver are limited. In this study, we extracted the bark of Prunus jamasakura and purified it to isolate the pharmacologically active constituents by monitoring nitric oxide (NO) production in rat hepatocytes that were treated with the pro-inflammatory cytokine, interleukin (IL)-1β. Sakuranetin and (-)-naringenin, which were present in an ethyl acetate-soluble fraction of the bark extract, significantly inhibited NO induction and inducible nitric oxide synthase (iNOS) expression. These two flavanones decreased the expression of type 1 IL-1 receptor gene and phosphorylation of Akt, also known as protein kinase B, which is regulated by phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). Furthermore, sakuranetin decreased the phosphorylation of the activator isoforms of CCAAT/enhancer-binding protein β (C/EBPβ), which synergistically activates the transcription of the iNOS gene with nuclear factor κB (NF-κB). Therefore, sakuranetin inhibited the co-activating activity of C/EBPβ with NF-κB, leading to the suppression of iNOS gene expression in hepatocytes. Taken together, sakuranetin in Pruni Cortex downregulated the iNOS gene by inhibiting PI3K/Akt signal transduction and the phosphorylation of C/EBPβ. These results imply that sakuranetin may be primarily responsible for the anti-inflammatory effects of Pruni Cortex in the liver.
Collapse
|
7
|
Zhang C, Wang N, Xu Y, Tan HY, Li S, Feng Y. Molecular Mechanisms Involved in Oxidative Stress-Associated Liver Injury Induced by Chinese Herbal Medicine: An Experimental Evidence-Based Literature Review and Network Pharmacology Study. Int J Mol Sci 2018; 19:2745. [PMID: 30217028 PMCID: PMC6165031 DOI: 10.3390/ijms19092745] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress, defined as a disequilibrium between pro-oxidants and antioxidants, can result in histopathological lesions with a broad spectrum, ranging from asymptomatic hepatitis to hepatocellular carcinoma in an orchestrated manner. Although cells are equipped with sophisticated strategies to maintain the redox biology under normal conditions, the abundance of redox-sensitive xenobiotics, such as medicinal ingredients originated from herbs or animals, can dramatically invoke oxidative stress. Growing evidence has documented that the hepatotoxicity can be triggered by traditional Chinese medicine (TCM) during treating various diseases. Meanwhile, TCM-dependent hepatic disorder represents a strong correlation with oxidative stress, especially the persistent accumulation of intracellular reactive oxygen species. Of note, since TCM-derived compounds with their modulated targets are greatly diversified among themselves, it is complicated to elaborate the potential pathological mechanism. In this regard, data mining approaches, including network pharmacology and bioinformatics enrichment analysis have been utilized to scientifically disclose the underlying pathogenesis. Herein, top 10 principal TCM-modulated targets for oxidative hepatotoxicity including superoxide dismutases (SOD), malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS), glutathione peroxidase (GPx), Bax, caspase-3, Bcl-2, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and nitric oxide (NO) have been identified. Furthermore, hepatic metabolic dysregulation may be the predominant pathological mechanism involved in TCM-induced hepatotoxic impairment.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Yu Xu
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| |
Collapse
|