1
|
Wang P, Liu Y, Du Y, Gao Y, Shao T, Guo W, Wang Z, Cheng H. Integrative Proteomic and Phosphoproteomic Profiling Reveals Molecular Mechanisms of Hypoxic Adaptation in Brandt's Voles ( Lasiopodomys brandtii) Brain Tissue. Cells 2025; 14:527. [PMID: 40214481 PMCID: PMC11988865 DOI: 10.3390/cells14070527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Rapid ascent to high altitudes by unacclimatized individuals significantly increases the risk of brain damage, given the brain's heightened sensitivity to hypoxic conditions. Investigating hypoxia-tolerant animals can provide insights into adaptive mechanisms and guide prevention and treatment of hypoxic-ischemic brain injury. In this study, we exposed Brandt's voles to simulated altitudes (100 m, 3000 m, 5000 m, and 7000 m) for 24 h and performed quantitative proteomic and phosphoproteomic analyses of brain tissue. A total of 3990 proteins and 9125 phosphorylation sites (phospho-sites) were quantified. Differentially expressed (DE) analysis revealed that while protein abundance changes were relatively modest, phosphorylation levels exhibited substantial alterations, suggesting that Brandt's voles rapidly regulate protein structure and function through phosphorylation to maintain cellular homeostasis under acute hypoxia. Clustering analysis showed that most co-expressed proteins exhibited non-monotonic responses with increasing altitude, which were enriched in pathways related to cytokine secretion regulation and glutathione metabolism, contributing to reduced inflammation and oxidative stress. In contrast, most co-expressed phospho-sites showed monotonic changes, with phospho-proteins enriched in glycolysis and vascular smooth muscle contraction regulation. Kinase activity prediction identified nine hypoxia-responsive kinases, four of which belonging to the CAMK family. Immunoblot validated that the changes in CAMK2A activity were consistent with predictions, suggesting that CAMK may play a crucial role in hypoxic response. In conclusion, this work discovered that Brandt's voles may cope with hypoxia through three key strategies: (1) vascular regulation to enhance cerebral blood flow, (2) glycolytic activation to increase energy production, and (3) activation of neuroprotective mechanisms.
Collapse
Affiliation(s)
- Panqin Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongyan Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yimeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yiwen Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tian Shao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Weifeng Guo
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Zhang H, Zhang Y, Wang X, Liu J, Zhang W. Effects of different nitric oxide synthases on pulmonary and systemic hemodynamics in hypoxic stress rat model. Animal Model Exp Med 2025; 8:344-352. [PMID: 38888011 PMCID: PMC11871104 DOI: 10.1002/ame2.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/19/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Under hypoxia, exaggerated compensatory responses may lead to acute mountain sickness. The excessive vasodilatory effect of nitric oxide (NO) can lower the hypoxic pulmonary vasoconstriction (HPV) and peripheral blood pressure. While NO is catalyzed by various nitric oxide synthase (NOS) isoforms, the regulatory roles of these types in the hemodynamics of pulmonary and systemic circulation in living hypoxic animals remain unclear. Therefore, this study aims to investigate the regulatory effects of different NOS isoforms on pulmonary and systemic circulation in hypoxic rats by employing selective NOS inhibitors and continuously monitoring hemodynamic parameters of both pulmonary and systemic circulation. METHODS Forty healthy male Sprague-Dawley (SD) rats were randomly divided into four groups: Control group (NG-nitro-D-arginine methyl ester, D-NAME), L-NAME group (non-selective NOS inhibitor, NG-nitro-L-arginine methyl ester), AG group (inducible NOS inhibitor group, aminoguanidine), and 7-NI group (neurological NOS inhibitor, 7-nitroindazole). Hemodynamic parameters of rats were monitored for 10 min after inhibitor administration and 5 min after induction of hypoxia [15% O2, 2200 m a. sl., 582 mmHg (76.5 kPa), Xining, China] using the real-time dynamic monitoring model for pulmonary and systemic circulation hemodynamics in vivo. Serum NO concentrations and blood gas analysis were measured. RESULTS Under normoxia, mean arterial pressure and total peripheral vascular resistance were increased, and ascending aortic blood flow and serum NO concentration were decreased in the L-NAME and AG groups. During hypoxia, pulmonary arterial pressure and pulmonary vascular resistance were significantly increased in the L-NAME and AG groups. CONCLUSIONS This compensatory mechanism activated by inducible NOS and endothelial NOS effectively counteracts the pulmonary hemodynamic changes induced by hypoxic stress. It plays a crucial role in alleviating hypoxia-induced pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Huan Zhang
- Research Center for High Altitude MedicineQinghai UniversityXiningQinghaiChina
- Department of PathologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yu Zhang
- Department of Basic MedicineQinghai UniversityXiningQinghaiChina
| | - Xiaojun Wang
- Department of Basic MedicineQinghai UniversityXiningQinghaiChina
| | - Jie Liu
- Department of PathologyXi'an Chest HospitalXi'anShaanxiChina
| | - Wei Zhang
- Research Center for High Altitude MedicineQinghai UniversityXiningQinghaiChina
- Department of Basic MedicineQinghai UniversityXiningQinghaiChina
| |
Collapse
|
3
|
Kämpf S, Fenk S, Van Cromvoirt A, Bogdanov N, Hartnack S, Stirn M, Hofmann-Lehmann R, Reichler IM, Bogdanova A. Differences in selected blood parameters between brachycephalic and non-brachycephalic dogs. Front Vet Sci 2023; 10:1166032. [PMID: 37649563 PMCID: PMC10464621 DOI: 10.3389/fvets.2023.1166032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/11/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Cranial and upper-airway anatomy of short-nosed, flat-faced brachycephalic dogs predisposes them to brachycephalic obstructive airway syndrome (BOAS). Periodic apnoea increased inspiratory resistance, and an inability to thermoregulate effectively are characteristic of BOAS, but internationally accepted objective markers of BOAS severity are missing. The objective of this study was to compare the selected blood parameters between non-brachycephalic (NC) and brachycephalic (BC) dogs, exploring the possibility of developing a blood test for BOAS severity grading in the future. Methods We evaluated blood biochemistry, complete blood cell counts, red blood cell (RBC) indices, reticulocyte counts, a blood-born marker of intermittent hypoxia (glutathione, NO production), RBC hydration, deformability, and blood markers of metabolic changes and stress between BC (n = 18) and NC (meso- and dolichocephalic, n = 22) dogs. Results Reticulocyte counts and the abundance of middle-fluorescence immature reticulocytes were significantly (p < 0.05) higher in BC dogs compared to NC dogs. BC dogs had significantly more NO-derived NO2 - /NO3 - in plasma than NC dogs. RBCs of BC dogs were shedding significantly more membrane, as follows from the intensity of eosin maleimide staining, and had a significantly higher mean corpuscular hemoglobin concentration than NC dogs. Intracellular reduced glutathione content in RBCs of BC dogs was significantly lower, while plasma lactate was significantly higher in BC dogs compared to NC dogs. Plasma cholesterol and triglycerides were significantly lower, and cortisol was significantly higher in BC dogs compared to NC dogs. Eosinophil counts were significantly lower and the neutrophil-to-lymphocyte ratio was higher in BC dogs compared to NC dogs. Discussion Taken together, our findings suggest that the brachycephalic phenotype in dogs is associated with alterations at the level of blood cells and, systemically, with oxidation and metabolic changes. The parameters identified within this study should be further investigated for their potential as objective indicators for BOAS.
Collapse
Affiliation(s)
- Sandra Kämpf
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Faculty of Vetsuisse, University of Zurich, Zürich, Switzerland
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Simone Fenk
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Faculty of Vetsuisse, University of Zurich, Zürich, Switzerland
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Ankie Van Cromvoirt
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Faculty of Vetsuisse, University of Zurich, Zürich, Switzerland
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Nikolay Bogdanov
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Faculty of Vetsuisse, University of Zurich, Zürich, Switzerland
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Sonja Hartnack
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Martina Stirn
- Clinical Laboratory, Department for Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Regina Hofmann-Lehmann
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Clinical Laboratory, Department for Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Iris Margaret Reichler
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Faculty of Vetsuisse, University of Zurich, Zürich, Switzerland
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| |
Collapse
|
4
|
Babu LK, Ghosh D. Looking at Mountains: Role of Sustained Hypoxia in Regulating Bone Mineral Homeostasis in Relation to Wnt Pathway and Estrogen. Clin Rev Bone Miner Metab 2022. [DOI: 10.1007/s12018-022-09283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Song W, Yuan Y, Tan X, Gu Y, Zeng J, Song W, Xin Z, Fang D, Guan R. Icariside II induces rapid phosphorylation of endothelial nitric oxide synthase via multiple signaling pathways. PeerJ 2022; 10:e14192. [PMID: 36312762 PMCID: PMC9615964 DOI: 10.7717/peerj.14192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023] Open
Abstract
Icariside II, as a favonoid compound derived from epimedium, has been proved to involed in a variety of biological and pharmacological effects such as anti-inflammatory, anti-osteoporosis, anti-oxidation, anti-aging, and anti-cancer but its mechanism is unclear, especially in terms of its effect on post-transcriptional modification of endothelial nitric oxide synthase (eNOS). Phosphorylation of eNOS plays an important role in the synthesis of nitric oxide in endothelial cells, which is closely related to erectile dysfunction, atherosclerosis, Alzheimer's disease, and other diseases. Our study aims to investigate the effect and mechanism of Icariside II on the rapid phosphorylation of eNOS. In this study, human umbilical vein endothelial cells (HUVECs) were stimulated with Icariside II in the presence or absence of multiple inhibitors (1 µM), including LY294002 (PI3K-inhibitor), MK-2206 (AKT-inhibitor), Bisindolylmaleimide X (AMPK-inhibitor), H-89 (CaMKII-inhibitor), KN-62 (PKA-inhibitor), Dorsomorphin (PKC-inhibitor). The proliferation of HUVECs was assessed using cell counting kit-8 (CCK-8). The release of nitric oxide (NO) within HUVECs was detected via fluorescence probe (DAF-FM). Western blot was used to examine the effect of Icariside II on the expression of eNOS, phosphorylation of eNOS, and common signaling pathways proteins. In this study, Icariside II was found to promote the cell proliferation and rapid NO release in HUVECs. The phosphorylation of eNOS-Ser1177 was significantly increased after Icariside II stimulation and reached a peak at 10 min (p < 0.05). Meanwhile, the phosphorylation of eNOS-Thr495 was significantly decreased after 45 min of stimulation (p < 0.05). Following the intervention with multiple inhibitors, it was found that MK-2206 (AKT inhibitor), LY294002 (PI3K inhibitor), KN-62 (AMPK inhibitor), and Bisindolylmaleimide X (PKC inhibitor) could significantly inhibit the phosphorylation of eNOS-Ser1177 caused by Icariside II (p < 0.05), while MK-2206, LY294002, and Bisindolylmaleimide X reversed the alleviated phosphorylation of eNOS-Thr495. We concluded that Icariside can regulate rapid phosphorylation of eNOS- Ser1177 and eNOS-Thr495 via multiple signaling pathways, resulting in the up-regulation of eNOS and the increased release of NO.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiming Yuan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Xiaohui Tan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Yangyang Gu
- Department of Urology, Peking University First Hospital, Beijing, China
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianyu Zeng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Weidong Song
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Zhongcheng Xin
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Ruili Guan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| |
Collapse
|
6
|
Hou J, Wen X, Long P, Xiong S, Liu H, Cai L, Deng H, Zhang Z. The role of post-translational modifications in driving abnormal cardiovascular complications at high altitude. Front Cardiovasc Med 2022; 9:886300. [PMID: 36186970 PMCID: PMC9515308 DOI: 10.3389/fcvm.2022.886300] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The high-altitude environment is characterized by hypobaric hypoxia, low temperatures, low humidity, and high radiation, which is a natural challenge for lowland residents entering. Previous studies have confirmed the acute and chronic effects of high altitude on the cardiovascular systems of lowlanders. Abnormal cardiovascular complications, including pulmonary edema, cardiac hypertrophy and pulmonary arterial hypertension were commonly explored. Effective evaluation of cardiovascular adaptive response in high altitude can provide a basis for early warning, prevention, diagnosis, and treatment of altitude diseases. At present, post-translational modifications (PTMs) of proteins are a key step to regulate their biological functions and dynamic interactions with other molecules. This process is regulated by countless enzymes called “writer, reader, and eraser,” and the performance is precisely controlled. Mutations and abnormal expression of these enzymes or their substrates have been implicated in the pathogenesis of cardiovascular diseases associated with high altitude. Although PTMs play an important regulatory role in key processes such as oxidative stress, apoptosis, proliferation, and hypoxia response, little attention has been paid to abnormal cardiovascular response at high altitude. Here, we reviewed the roles of PTMs in driving abnormal cardiovascular complications at high altitude.
Collapse
Affiliation(s)
- Jun Hou
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People’s Hospital, Chengdu, China
| | - Pan Long
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shiqiang Xiong
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hanxiong Liu
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Lin Cai
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- *Correspondence: Lin Cai,
| | - Haoyu Deng
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Center for Heart and Lung Innovation, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Haoyu Deng,
| | - Zhen Zhang
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Zhen Zhang,
| |
Collapse
|
7
|
Williams AM, Levine BD, Stembridge M. A change of heart: Mechanisms of cardiac adaptation to acute and chronic hypoxia. J Physiol 2022; 600:4089-4104. [PMID: 35930370 PMCID: PMC9544656 DOI: 10.1113/jp281724] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Over the last 100 years, high-altitude researchers have amassed a comprehensive understanding of the global cardiac responses to acute, prolonged and lifelong hypoxia. When lowlanders are exposed to hypoxia, the drop in arterial oxygen content demands an increase in cardiac output, which is facilitated by an elevated heart rate at the same time as ventricular volumes are maintained. As exposure is prolonged, haemoconcentration restores arterial oxygen content, whereas left ventricular filling and stroke volume are lowered as a result of a combination of reduced blood volume and hypoxic pulmonary vasoconstriction. Populations native to high-altitude, such as the Sherpa in Asia, exhibit unique lifelong or generational adaptations to hypoxia. For example, they have smaller left ventricular volumes compared to lowlanders despite having larger total blood volume. More recent investigations have begun to explore the mechanisms underlying such adaptive responses by combining novel imaging techniques with interventions that manipulate cardiac preload, afterload, and/or contractility. This work has revealed the contributions and interactions of (i) plasma volume constriction; (ii) sympathoexcitation; and (iii) hypoxic pulmonary vasoconstriction with respect to altering cardiac loading, or otherwise preserving or enhancing biventricular systolic and diastolic function even amongst high altitude natives with excessive erythrocytosis. Despite these advances, various areas of investigation remain understudied, including potential sex-related differences in response to high altitude. Collectively, the available evidence supports the conclusion that the human heart successfully adapts to hypoxia over the short- and long-term, without signs of myocardial dysfunction in healthy humans, except in very rare cases of maladaptation.
Collapse
Affiliation(s)
- Alexandra M. Williams
- Department of Cellular and Physiological Sciences, Faculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
| | - Benjamin D. Levine
- Institute for Exercise and Environmental MedicineThe University of Texas Southwestern Medical CenterDallasTXUSA
| | - Mike Stembridge
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
| |
Collapse
|
8
|
Engin S, Yasar YK, Barut EN, Sezen SF. Improved Endothelium-Dependent Relaxation of Thoracic Aorta in Niclosamide-Treated Diabetic Rats. Cardiovasc Toxicol 2021; 21:563-571. [PMID: 33772737 DOI: 10.1007/s12012-021-09647-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/20/2021] [Indexed: 01/06/2023]
Abstract
Diabetes-induced endothelial dysfunction is critical for the development of diabetic cardiovascular complications. The aim of this study was to investigate the effect of niclosamide (Nic) on vascular endothelial dysfunction in streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats were injected with a single intraperitoneal injection of STZ (75 mg/kg) to induce type 1 diabetes, and Nic (10 mg/kg) was intraperitoneally administered per day for 4 weeks. Endothelial function was evaluated as carbachol (CCh, an endothelium-dependent vasodilator)-evoked relaxation in the experiments performed on isolated thoracic aortas. The changes in the protein expressions of phosphorylated eNOS at serine 1177 (p-eNOSSer1177) and phosphorylated VASP at serine 239 (p-VASPSer239) of the rat aortas were analyzed by western blotting to determine whether NO/cGMP signaling is involved in the mechanism of Nic. STZ-injected rats had higher fasting blood glucose and less body weight compared to control rats (p < 0.05). Nic treatment did not affect blood glucose levels or body weights of the rats. CCh-induced endothelium-dependent relaxation of the aortic rings was significantly decreased in diabetic rats compared to control (Emax = 66.79 ± 7.41% and 90.28 ± 5.55%, respectively; p < 0.05). CCh-induced relaxation response was greater in Nic-treated diabetic rats compared to diabetic rats (Emax = 91.56 ± 1.20% and 66.79 ± 7.41%, respectively; p < 0.05). Phosphorylation of eNOS and VASP in aortic tissues was significantly reduced in diabetic rats, which were markedly increased by Nic treatment (p < 0.05). We demonstrated that Nic improved endothelial dysfunction possibly through the activation of NO/cGMP signaling without affecting hyperglycemia in diabetic rats. Our results suggesting that Nic has potential of repurposing for diabetic cardiovascular complications.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Cell Adhesion Molecules/metabolism
- Cyclic GMP/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Diabetic Angiopathies/chemically induced
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/prevention & control
- Drug Repositioning
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Male
- Microfilament Proteins/metabolism
- Niclosamide/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Phosphoproteins/metabolism
- Phosphorylation
- Rats, Sprague-Dawley
- Streptozocin
- Vasodilation/drug effects
- Rats
Collapse
Affiliation(s)
- Seckin Engin
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, P.O:61080, Trabzon, Turkey.
| | - Yesim Kaya Yasar
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, P.O:61080, Trabzon, Turkey
- Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| | - Elif Nur Barut
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, P.O:61080, Trabzon, Turkey
| | - Sena F Sezen
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, P.O:61080, Trabzon, Turkey
- Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
9
|
Yang Y, Gao C, Yang T, Sha Y, Cai Y, Wang X, Yang Q, Liu C, Wang B, Zhao S. Characteristics of Tibetan pig lung tissue in response to a hypoxic environment on the Qinghai-Tibet Plateau. Arch Anim Breed 2021; 64:283-292. [PMID: 34235247 PMCID: PMC8253108 DOI: 10.5194/aab-64-283-2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/18/2021] [Indexed: 01/04/2023] Open
Abstract
To adapt to the plateau environment, Tibetan pigs' lungs have developed a
unique physiological mechanism during evolution. The vascular corrosion
casting technique and scanning electron microscopy were used to understand
arterial architecture. Blood physiological index and quantitative real-time PCR (qRT-PCR) were used
for
assessing whether the lung can regulate the body through anatomical, physiological
and molecular mechanisms to adapt to hypoxic environments. Our study showed
that the lungs of Tibetan pigs were heavier and wider and that the pulmonary
arteries were thicker and branched and had a denser vascular network than
those of Landrace pigs. The hemoglobin (HGB), mean corpuscular hemoglobin
concentration (MCHC) values of high-altitude pigs were significantly higher
than those of low-altitude pigs. The expression levels of HIF-
1α
,
EPAS1, EPO and VEGF, but not those of
eNOSand EGLN1, were significantly higher in the lungs of
high-altitude pigs than in those from pigs at a lower altitude (
P<0.05
). These findings and a comprehensive analysis help elucidate the
pulmonary mechanism of hypoxic adaptation in pigs.
Collapse
Affiliation(s)
- Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tianliang Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Sha
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuan Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xinrong Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Chengze Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Biao Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
10
|
Pooja, Sharma V, Sharma M, Varshney R, Kumar B, Sethy NK. Association Between 17β-Estradiol Receptors and Nitric Oxide Signaling Augments High-Altitude Adaptation of Ladakhi Highlanders. High Alt Med Biol 2021; 22:174-183. [PMID: 33602001 DOI: 10.1089/ham.2020.0187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pooja, Vandana Sharma, Manish Sharma, Rajeev Varshney, Bhuvnesh Kumar, and Niroj Kumar Sethy. Association between 17β-estradiol receptors and nitric oxide signaling augments high-altitude adaptation of Ladakhi highlanders. High Alt Med Biol. 22: 174-183, 2021. Background: Genomic studies have identified positive natural selection of plasma membrane estrogen receptor signaling pathway for Himalayan highlanders. We sought to investigate significance of this pathway for high-altitude adaptation by studying Ladakhi highlanders. Materials and Methods: We recruited 25 healthy Ladakhi males (age range: 19-37, height: 164 ± 6 cm, and weight 59 ± 4 kg) at Leh (altitude 3,520 m) and age matched sea level volunteers at Delhi (altitude 215 m), India. We evaluated circulatory levels of 17β-estradiol (E2) and testosterone (T) and levels of E2 biosynthesis pathway proteins. In addition, we analyzed mRNA levels of E2 pathway genes and their association with nitric oxide (NO) availability. Results: We observed higher circulatory E2 and lower testosterone (T) in Ladakhi highlanders compared to lowlanders. Studying E2 pathway genes, we identified higher transcript levels of E2 receptors ESR1 (2.02-fold) and ESR2 (3.87-fold) in Ladakhi highlanders. Higher NOS3 mRNA, plasma level of endothelial NO synthase (eNOS), p-eNOS Ser1177, NOx (nitrate and nitrite), and cGMP were observed for Ladakhi highlanders. In addition, we observed a positive correlation between E2 with plasma NOx (r = 0.52, p = 0.002) and cGMP (r = 0.72, p = 0.007) for Ladakhi highlanders. Conclusion: Our results demonstrate higher circulatory E2 and lower T levels in Ladakhi highlanders. Higher levels of E2 and its receptors (ESR1 and ESR2) are positively associated with observed higher levels of eNOS signaling pathway metabolites. These results highlight the functional importance of E2 and its receptors for Himalayan pattern of high-altitude adaptation.
Collapse
Affiliation(s)
- Pooja
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Delhi, India
| | - Vandana Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Delhi, India
| | - Manish Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Delhi, India
| | - Rajeev Varshney
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Delhi, India
| | - Bhuvnesh Kumar
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Delhi, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Delhi, India
| |
Collapse
|
11
|
Sharma M, Singh K, Himashree G, Bhaumik G, Kumar B, Sethy NK. Estrogen receptor (ESR1 and ESR2)-mediated activation of eNOS-NO-cGMP pathway facilitates high altitude acclimatization. Nitric Oxide 2020; 102:12-20. [PMID: 32544536 DOI: 10.1016/j.niox.2020.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 02/01/2023]
Abstract
Higher levels of circulatory nitric oxide (NO) and NO metabolites reportedly facilitate high altitude acclimatization. But the underlying factors and molecular pathways promoting NO production at high altitude has been poorly characterized. Studying healthy lowlanders at sea level (C, lowlander) and high altitude (3500 m, after day 1, 4 and 7 of ascent), we report higher protein levels of eNOS and eNOSSer1177, higher plasma levels of BH4, NOx (nitrate and nitrites), cGMP and lower levels of endogenous eNOS inhibitor ADMA during healthy high altitude acclimatization. Our qRT-PCR-based gene expression studies identified higher levels of eNOS/NOS3 mRNA along with several other eNOS pathway genes like CALM1, SLC7A1 and DNM2. In addition, we observed higher mRNA levels of estrogen (E2) receptors ERα/ESR1 and ERβ/ESR2 at high altitude that transcriptionally activates NOS3. We also observed higher mRNA level of membrane receptor ERBB2 that phosphorylates eNOS at Ser1177 and thus augments NO availability. Evaluating E2 biosynthesis at high altitude, we report higher plasma levels of CYP11A1, CYP19A1, E2, lower levels of testosterone (T) and T/E2 ratio as compared to sea level. Correlation studies revealed moderate positive correlation between E2 and NOx (R = 0.68, p = 0.02) after day 4 and cGMP (R = 0.69, p = 0.02) after day 7 at high altitude. These findings suggest a causative role of E2 and its receptors ESR1 and ESR2 in augmenting eNOS activity and NO availability during healthy high altitude ascent. These results will aid in better understanding of NO production during hypobaric hypoxia and help in designing better high altitude acclimatization protocols.
Collapse
Affiliation(s)
- Manish Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Krishan Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation, Lucknow Road, Timarpur, Delhi, 110054, India; High Altitude Medical Research Centre (HAMRC), C/o 56 APO, Leh-Ladakh, 901205, India
| | - Gidugu Himashree
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation, Lucknow Road, Timarpur, Delhi, 110054, India; Military Hospital, Nasirabad, Rajasthan, 305601, India
| | - Gopinath Bhaumik
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Niroj Kumar Sethy
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
12
|
Wang Z, Wu Y, Zhang S, Zhao Y, Yin X, Wang W, Ma X, Liu H. The role of NO-cGMP pathway inhibition in vascular endothelial-dependent smooth muscle relaxation disorder of AT1-AA positive rats: protective effects of adiponectin. Nitric Oxide 2019; 87:10-22. [PMID: 30831264 DOI: 10.1016/j.niox.2019.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/16/2019] [Accepted: 02/19/2019] [Indexed: 12/24/2022]
Abstract
Angiotensin II type 1 receptor autoantibodies (AT1-AA) cause endothelial-dependent smooth muscle relaxation disorder. It is well understood that impairment of the NO-cGMP signaling pathway is one of the mechanisms of endothelial-dependent smooth muscle relaxation disorder. However, it is still unclear whether AT1-AA induces endothelial-dependent smooth muscle relaxation disorder via the impairment of the NO-cGMP signaling pathway. In addition, adiponectin exerts vascular endothelial protection through the NO-cGMP signaling pathway. Therefore, the purpose of this investigation was to assess the mechanism of vascular endothelial-dependent smooth muscle relaxation disorder induced by AT1-AA and the role of adiponectin in attenuating this dysregulation. Serum endothelin-1 (ET-1), adiponectin and AT1-AA were detected by enzyme-linked immunosorbent assay. In preeclamptic patients, there was an increased level of AT1-AA, which was positively correlated with ET-1 and negatively correlated with adiponectin, as elevated levels of ET-1 suggested endothelial injury. AT1-AA-positive animal models were actively immunized with the second extracellular loop of the angiotensin II type 1 receptor (AT1R-ECII) for eight weeks. In thoracic aortas of AT1-AA positive rats, ET-1 was elevated, endothelium-dependent vasodilation was decreased. Paradoxically, as the upstream element of the NO-cGMP signaling pathway, NO production was not decreased but increased, and the ratio of p-VASP/VASP, an established biochemical endpoint of NO-cGMP signaling pathway, was reduced. Moreover, the levels of nitrotyrosine and gp91phox which indicate the presence of peroxynitrite (ONOO-) and superoxide anion (O2·-) were increased. Pretreatment with the ONOO- scavenger FeTMPyP or O2·-scavenger Tempol normalized vasorelaxation. Key enzymes responsible for NO synthesis were also assessed. iNOS protein expression was increased, but p-eNOS(Ser1177)/eNOS was reduced. Preincubation with the iNOS inhibitor 1400 W or eNOS agonist nebivolol restored vasorelaxation. Further experiments showed levels of p-AMPKα (Thr172)/AMPKα, which controls iNOS expression and eNOS activity, to have been reduced. Furthermore, levels of the upstream component of AMPK, adiponectin, was reduced in sera of AT1-AA positive rats and supplementation of adiponectin significantly decreased ET-1 contents, improved endothelial-dependent vasodilation, reduced NO production, elevated p-VASP/VASP, inhibited protein expression of nitrotyrosine and gp91phox, reduced iNOS overexpression, and increased eNOS phosphorylation at Ser1177 in the thoracic aorta of AT1-AA positive rats. These results established that impairment NO-cGMP pathway may aggravate the endothelial-dependent smooth muscle relaxation disorder in AT1-AA positive rats and adiponectin improved endothelial-dependent smooth muscle relaxation disorder by enhancing NO-cGMP pathway. This discovery may shed a novel light on clinical treatment of vascular diseases associated with AT1-AA.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Ye Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Suli Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Yuhui Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Xiaochen Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Xinliang Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China; Department of Emergency Medicine, Thomas Jefferson University, Philadephia, Pennsylvania, USA.
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|