1
|
Ghaffari-Bohlouli P, Jafari H, Okoro OV, Alimoradi H, Nie L, Jiang G, Kakkar A, Shavandi A. Gas Therapy: Generating, Delivery, and Biomedical Applications. SMALL METHODS 2024; 8:e2301349. [PMID: 38193272 DOI: 10.1002/smtd.202301349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Oxygen (O2), nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and hydrogen (H2) with direct effects, and carbon dioxide (CO2) with complementary effects on the condition of various diseases are known as therapeutic gases. The targeted delivery and in situ generation of these therapeutic gases with controllable release at the site of disease has attracted attention to avoid the risk of gas poisoning and improve their performance in treating various diseases such as cancer therapy, cardiovascular therapy, bone tissue engineering, and wound healing. Stimuli-responsive gas-generating sources and delivery systems based on biomaterials that enable on-demand and controllable release are promising approaches for precise gas therapy. This work highlights current advances in the design and development of new approaches and systems to generate and deliver therapeutic gases at the site of disease with on-demand release behavior. The performance of the delivered gases in various biomedical applications is then discussed.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Hafez Jafari
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Houman Alimoradi
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Lei Nie
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| |
Collapse
|
2
|
Damba T, Zhang M, Serna Salas SA, Wu Z, van Goor H, Arenas AF, Muñoz-Ortega MH, Ventura-Juárez J, Buist-Homan M, Moshage H. Inhibition of endogenous hydrogen sulfide production reduces activation of hepatic stellate cells via the induction of cellular senescence. Cell Cycle 2024; 23:629-644. [PMID: 38836592 PMCID: PMC11229775 DOI: 10.1080/15384101.2024.2345477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/04/2024] [Indexed: 06/06/2024] Open
Abstract
In chronic liver injury, quiescent hepatic stellate cells (HSCs) transdifferentiate into activated myofibroblast-like cells and produce large amounts of extracellular matrix components, e.g. collagen type 1. Cellular senescence is characterized by irreversible cell-cycle arrest, arrested cell proliferation and the acquisition of the senescence-associated secretory phenotype (SASP) and reversal of HSCs activation. Previous studies reported that H2S prevents induction of senescence via its antioxidant activity. We hypothesized that inhibition of endogenous H2S production induces cellular senescence and reduces activation of HSCs. Rat HSCs were isolated and culture-activated for 7 days. After activation, HSCs treated with H2S slow-releasing donor GYY4137 and/or DL-propargylglycine (DL-PAG), an inhibitor of the H2S-producing enzyme cystathionine γ-lyase (CTH), as well as the PI3K inhibitor LY294002. In our result, CTH expression was significantly increased in fully activated HSCs compared to quiescent HSCs and was also observed in activated stellate cells in a in vivo model of cirrhosis. Inhibition of CTH reduced proliferation and expression of fibrotic markers Col1a1 and Acta2 in HSCs. Concomitantly, DL-PAG increased the cell-cycle arrest markers Cdkn1a (p21), p53 and the SASP marker Il6. Additionally, the number of β-galactosidase positive senescent HSCs was increased. GYY4137 partially restored the proliferation of senescent HSCs and attenuated the DL-PAG-induced senescent phenotype. Inhibition of PI3K partially reversed the senescence phenotype of HSCs induced by DL-PAG. Inhibition of endogenous H2S production reduces HSCs activation via induction of cellular senescence in a PI3K-Akt dependent manner. Our results show that cell-specific inhibition of H2S could be a novel target for anti-fibrotic therapy via induced cell senescence.
Collapse
Affiliation(s)
- Turtushikh Damba
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Mengfan Zhang
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Sandra A Serna Salas
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zongmei Wu
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aaron Fierro Arenas
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Javier Ventura-Juárez
- Chemistry Department, Basic Sciences Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Niu H, Li H, Guan Y, Zhou X, Li Z, Zhao SL, Chen P, Tan T, Zhu H, Bergdall V, Xu X, Ma J, Guan J. Sustained delivery of rhMG53 promotes diabetic wound healing and hair follicle development. Bioact Mater 2022; 18:104-115. [PMID: 35387169 PMCID: PMC8961467 DOI: 10.1016/j.bioactmat.2022.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
MG53 is an essential component of the cell membrane repair machinery, participating in the healing of dermal wounds. Here we develop a novel delivery system using recombinant human MG53 (rhMG53) protein and a reactive oxygen species (ROS)-scavenging gel to treat diabetic wounds. Mice with ablation of MG53 display defective hair follicle structure, and topical application of rhMG53 can promote hair growth in the mg53 -/- mice. Cell lineage tracing studies reveal a physiological function of MG53 in modulating the proliferation of hair follicle stem cells (HFSCs). We find that rhMG53 protects HFSCs from oxidative stress-induced apoptosis and stimulates differentiation of HSFCs into keratinocytes. The cytoprotective function of MG53 is mediated by STATs and MAPK signaling in HFSCs. The thermosensitive ROS-scavenging gel encapsulated with rhMG53 allows for sustained release of rhMG53 and promotes healing of chronic cutaneous wounds and hair follicle development in the db/db mice. These findings support the potential therapeutic value of using rhMG53 in combination with ROS-scavenging gel to treat diabetic wounds.
Collapse
Affiliation(s)
- Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Haichang Li
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Xin Zhou
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.,Laboratory of Cell Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Zhongguang Li
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Serana Li Zhao
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Peng Chen
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Valerie Bergdall
- Department of Veterinary Preventive Medicine, University Laboratory Animals Resources, The Ohio State University, Columbus, OH, 43210, USA
| | - Xuehong Xu
- Laboratory of Cell Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
4
|
On-demand therapeutic delivery of hydrogen sulfide aided by biomolecules. J Control Release 2022; 352:586-599. [PMID: 36328076 DOI: 10.1016/j.jconrel.2022.10.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Hydrogen sulfide (H2S), known as the third gasotransmitter, exerts various physiological functions including cardiac protection, angiogenesis, anti-inflammatory, and anti-cancer capability. Given its promising therapeutic potential as well as severe perniciousness if improper use, the sustained and tunable H2S delivery systems are highly required for H2S-based gas therapy with enhanced bioactivity and reduced side effects. To this end, a series of stimuli-responsive compounds capable of releasing H2S (termed H2S donors) have been designed over the past two decades to mimic the endogenous generation of H2S and elucidate the biological functions. Further to improve the stability of H2S donors and achieve the targeted delivery, various delivery systems have been constructed. In this review, we focus on the recent advances of an emerging subset, biomolecular-based H2S delivery systems, which combine H2S donors with biomolecular vectors including polysaccharide, peptide, and protein. We demonstrated their basic structures, building strategies, and therapeutic applications respectively to unfold their inherent merits endued by biomolecules including biocompatibility, biodegradability as well as expansibility. The varied development potentials of biomolecular-based H2S delivery systems based on their specific properties are also discussed. At the end, brief future outlooks and upcoming challenges are presented as well.
Collapse
|
5
|
Zhao D, Xiao J, Qiang L, Deng X, An J, Zhang Q, Zhao F, Ma J, Fang C, Guan G, Wu Y, Xie Y. Walnut ointment promotes full-thickness burning wound healing: role of linoleic acid. Acta Cir Bras 2022; 37:e370902. [PMID: 36449813 PMCID: PMC9710187 DOI: 10.1590/acb370902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To investigate the active ingredients of walnut ointment (WO) and its mechanism in repairing wounds. METHODS The ingredients of WO were detected by gas chromatography-mass spectrometry. The effect of linoleic acid (LA) was tested by in vitro Alamar Blue (AB) reagent. Image J software, histological and immunohistochemical analysis were used to confirm the healing effect of LA in the porcine skin model. The animals were euthanized after the experiment by injection of pentobarbital sodium. RESULTS LA, 24% in WO, promotes keratinocytes and fibroblasts proliferation, which were 50.09% and 15.07% respectively higher than control (p < 0.05). The healing rate of the LA group (96.02% ± 2%, 98.58% ± 0.78%) was higher than the saline group (82.11% ± 3.37%, 88.72% ± 1.73%) at week 3 and week 4 (p < 0.05). The epidermal thickness of the LA was 0.16 ± 0.04 mm greater and the expression of the P63 and CK10 proteins was stronger in the LA group than the control (p < 0.05). CONCLUSIONS LA, which is the main components in WO can promote full-thickness burning wounds (FBWs) by stimulating cell proliferation and differentiation.
Collapse
Affiliation(s)
- Dan Zhao
- Research Assistant. Ningxia Medical University General Hospital –Tissue and Organ Bank – Ningxia, China
| | - Jinli Xiao
- Graduate student. Ningxia Medical University – School of Clinical Medicine – Ningxia, China
| | - Lijuan Qiang
- Surgeon-in-charge. People’s Hospital of Ningxia Hui Autonomous Region – Department of Burns and Plastic Surgery – Ningxia, China
| | - Xingwang Deng
- Associate Professor of Surgery. The First People’s Hospital of Shizuishan – Department of Burns and Plastic Surgery – Ningxia, China
| | - Jingjing An
- Technologist-in-charge. Ningxia Center for Diseases Prevention and Control – Department of Physical and Chemical Examination – Ningxia, China
| | - Qing Zhang
- Research Assistant. Ningxia Medical University General Hospital –Tissue and Organ Bank – Ningxia, China
| | - Fang Zhao
- Research Assistant. Ningxia Medical University General Hospital –Tissue and Organ Bank – Ningxia, China
| | - Jiaxiang Ma
- Technologist. Ningxia Medical University General Hospital – Tissue and Organ Bank – Ningxia, China
| | - Chao Fang
- Surgeon-in-charge. Ningxia Medical University General Hospital – Department of Burns and Plastic Surgery – Ningxia, China
| | - Guangyu Guan
- Senior Technologist. Ningxia Center for Diseases Prevention and Control – Department of Physical and Chemical Examination – Ningxia, China
| | - Yinsheng Wu
- Professor of Surgery. Ningxia Medical University General Hospital – Department of Burns and Plastic Surgery – Ningxia, China
| | - Yan Xie
- Professor. Ningxia Center for Diseases Prevention and Control –Tissue and Organ Bank – Ningxia, China.,PhD. Queensland University of Technology – Faculty of Health – Brisbane, Australia.,Corresponding author:
- (86) 0951-6746240
| |
Collapse
|
6
|
Krizanova O, Penesova A, Sokol J, Hokynkova A, Samadian A, Babula P. Signaling pathways in cutaneous wound healing. Front Physiol 2022; 13:1030851. [PMID: 36505088 PMCID: PMC9732733 DOI: 10.3389/fphys.2022.1030851] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Wound healing is a very complex process, where variety of different pathways is activated, depending on the phase of healing. Improper or interrupted healing might result in development of chronic wounds. Therefore, novel approaches based on detailed knowledge of signalling pathways that are activated during acute or chronic cutaneous wound healing enables quicker and more effective healing. This review outlined new possibilities of cutaneous wound healing by modulation of some signalling molecules, e.g., gasotransmitters, or calcium. Special focus is given to gasotransmitters, since these bioactive signalling molecules that can freely diffuse into the cell and exert antioxidative effects. Calcium is an important booster of immune system and it can significantly contribute to healing process. Special interest is given to chronic wounds caused by diabetes mellitus and overcoming problems with the inflammation.
Collapse
Affiliation(s)
- Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center SAS, Bratislava, Slovakia,Department of Chemistry, Faculty of Natural Sciences, University of St. Cyril and Methodius, Trnava, Slovakia,Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Adela Penesova
- Institute of Clinical and Translational Research, Biomedical Research Center SAS, Bratislava, Slovakia
| | - Jozef Sokol
- Department of Chemistry, Faculty of Natural Sciences, University of St. Cyril and Methodius, Trnava, Slovakia
| | - Alica Hokynkova
- Department of Burns and Plastic Surgery, Faculty of Medicine, Masaryk University and University Hospital, Brno, Czechia
| | - Amir Samadian
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia,*Correspondence: Petr Babula,
| |
Collapse
|
7
|
Polaka S, Katare P, Pawar B, Vasdev N, Gupta T, Rajpoot K, Sengupta P, Tekade RK. Emerging ROS-Modulating Technologies for Augmentation of the Wound Healing Process. ACS OMEGA 2022; 7:30657-30672. [PMID: 36092613 PMCID: PMC9453976 DOI: 10.1021/acsomega.2c02675] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) is considered a double-edged sword. The slightly elevated level of ROS helps in wound healing by inhibiting microbial infection. In contrast, excessive ROS levels in the wound site show deleterious effects on wound healing by extending the inflammation phase. Understanding the ROS-mediated molecular and biomolecular mechanisms and their effect on cellular homeostasis and inflammation thus substantially improves the possibility of exogenously augmenting and manipulating wound healing with the emerging antioxidant therapeutics. This review comprehensively delves into the relationship between ROS and critical phases of wound healing and the processes underpinning antioxidant therapies. The manuscript also discusses cutting-edge antioxidant therapeutics that act via ROS scavenging to enhance chronic wound healing.
Collapse
|
8
|
Lohakul J, Jeayeng S, Chaiprasongsuk A, Torregrossa R, Wood ME, Saelim M, Thangboonjit W, Whiteman M, Panich U. Mitochondria-Targeted Hydrogen Sulfide Delivery Molecules Protect Against UVA-Induced Photoaging in Human Dermal Fibroblasts, and in Mouse Skin In Vivo. Antioxid Redox Signal 2022; 36:1268-1288. [PMID: 34235951 DOI: 10.1089/ars.2020.8255] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Oxidative stress and mitochondrial dysfunction play a role in the process of skin photoaging via activation of matrix metalloproteases (MMPs) and the subsequent degradation of collagen. The activation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor controlling antioxidant and cytoprotective defense systems, might offer a pharmacological approach to prevent skin photoaging. We therefore investigated a pharmacological approach to prevent skin photoaging, and also investigated a protective effect of the novel mitochondria-targeted hydrogen sulfide (H2S) delivery molecules AP39 and AP123, and nontargeted control molecules, on ultraviolet A light (UVA)-induced photoaging in normal human dermal fibroblasts (NHDFs) in vitro and the skin of BALB/c mice in vivo. Results: In NHDFs, AP39 and AP123 (50-200 nM) but not nontargeted controls suppressed UVA (8 J/cm2)-mediated cytotoxicity and induction of MMP-1 activity, preserved cellular bioenergetics, and increased the expression of collagen and nuclear levels of Nrf2. In in vivo experiments, topical application of AP39 or AP123 (0.3-1 μM/cm2; but not nontargeted control molecules) to mouse skin before UVA (60 J/cm2) irradiation prevented skin thickening, MMP induction, collagen loss of oxidative stress markers 8-hydroxy-2'-deoxyguanosine (8-OHdG), increased Nrf2-dependent signaling, as well as increased manganese superoxide dismutase levels and levels of the mitochondrial biogenesis marker peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α). Innovation and Conclusion: Targeting H2S delivery to mitochondria may represent a novel approach for the prevention and treatment of skin photoaging, as well as being useful tools for determining the role of mitochondrial H2S in skin disorders and aging. Antioxid. Redox Signal. 36, 1268-1288.
Collapse
Affiliation(s)
- Jinapath Lohakul
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Saowanee Jeayeng
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anyamanee Chaiprasongsuk
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | - Mark E Wood
- University of Exeter Medical School, Exeter, United Kingdom
| | - Malinee Saelim
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Weerawon Thangboonjit
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Sui C, Wu Y, Zhang R, Zhang T, Zhang Y, Xi J, Ding Y, Wen J, Hu Y. Rutin Inhibits the Progression of Osteoarthritis Through CBS-Mediated RhoA/ROCK Signaling. DNA Cell Biol 2022; 41:617-630. [PMID: 35588172 DOI: 10.1089/dna.2021.1182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by the deterioration of cartilage and subchondral bone in the joints. Currently, there is no complete cure for OA, only treatments designed to temporarily relieve pain and improve function. Compared with the high cost of surgical treatment, medical treatment of OA is more acceptable and cost-effective. Rutin, as a flavonoid, has been shown to have anti-OA properties. We evaluated the effects of rutin on chondrocytes in lipopolysaccharide (LPS)-induced OA and on OA in rats induced by anterior cruciate ligament transection. We found that rutin effectively reduced the expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and matrix metalloproteinase 13 (MMP-13) and increased the expression of Col II and aggrecan (p < 0.001). In addition, we also found that rutin increased the expression of cystathionine-β-synthase (CBS) and inhibited the expression of Rho-related coiled-coil protein kinase (ROCK) in chondrocytes (p < 0.05), thereby effectively inhibiting the inflammatory progression of OA. We concluded that rutin inhibits the inflammatory progression of OA through the CBS-mediated RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Cong Sui
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yichao Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ran Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tiantian Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiaojiao Xi
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yanyu Ding
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yong Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Orthopedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Zafonte RD, Wang L, Arbelaez CA, Dennison R, Teng YD. Medical Gas Therapy for Tissue, Organ, and CNS Protection: A Systematic Review of Effects, Mechanisms, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104136. [PMID: 35243825 PMCID: PMC9069381 DOI: 10.1002/advs.202104136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Indexed: 05/13/2023]
Abstract
Gaseous molecules have been increasingly explored for therapeutic development. Here, following an analytical background introduction, a systematic review of medical gas research is presented, focusing on tissue protections, mechanisms, data tangibility, and translational challenges. The pharmacological efficacies of carbon monoxide (CO) and xenon (Xe) are further examined with emphasis on intracellular messengers associated with cytoprotection and functional improvement for the CNS, heart, retina, liver, kidneys, lungs, etc. Overall, the outcome supports the hypothesis that readily deliverable "biological gas" (CO, H2 , H2 S, NO, O2 , O3 , and N2 O) or "noble gas" (He, Ar, and Xe) treatment may preserve cells against common pathologies by regulating oxidative, inflammatory, apoptotic, survival, and/or repair processes. Specifically, CO, in safe dosages, elicits neurorestoration via igniting sGC/cGMP/MAPK signaling and crosstalk between HO-CO, HIF-1α/VEGF, and NOS pathways. Xe rescues neurons through NMDA antagonism and PI3K/Akt/HIF-1α/ERK activation. Primary findings also reveal that the need to utilize cutting-edge molecular and genetic tactics to validate mechanistic targets and optimize outcome consistency remains urgent; the number of neurotherapeutic investigations is limited, without published results from large in vivo models. Lastly, the broad-spectrum, concurrent multimodal homeostatic actions of medical gases may represent a novel pharmaceutical approach to treating critical organ failure and neurotrauma.
Collapse
Affiliation(s)
- Ross D. Zafonte
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
| | - Lei Wang
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Rachel Dennison
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Yang D. Teng
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
11
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 237] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
12
|
Ni Q, Zhang P, Li Q, Han Z. Oxidative Stress and Gut Microbiome in Inflammatory Skin Diseases. Front Cell Dev Biol 2022; 10:849985. [PMID: 35321240 PMCID: PMC8937033 DOI: 10.3389/fcell.2022.849985] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress plays a dominant role in inflammatory skin diseases. Emerging evidence has shown that the close interaction occurred between oxidative stress and the gut microbiome. Overall, in this review, we have summarized the impact of oxidative stress and gut microbiome during the progression and treatment for inflammatory skin diseases, the interactions between gut dysbiosis and redox imbalance, and discussed the potential possible role of oxidative stress in the gut-skin axis. In addition, we have also elucidated the promising gut microbiome/redox-targeted therapeutic strategies for inflammatory skin diseases.
Collapse
Affiliation(s)
- Qingrong Ni
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Ping Zhang
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Qiang Li
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Zheyi Han
- Department of Gastroenterology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
- *Correspondence: Zheyi Han,
| |
Collapse
|
13
|
Hydrogen Sulfide and the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:99-128. [PMID: 34302690 DOI: 10.1007/978-981-16-0991-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is the "third gasotransmitter" recognized alongside nitric oxide (NO) and carbon monoxide (CO). H2S exhibits an array of biological effects in mammalian cells as revealed by studies showing important roles in the cardiovascular system, in cell signalling processes, post-translational modifications and in the immune system. Regarding the latter, using pharmacological and genetic approaches scientists have shown this molecule to have both pro- and anti-inflammatory effects in mammalian systems. The anti-inflammatory effects of H2S appeared to be due to its inhibitory action on the nuclear factor kappa beta signalling pathway; NF-kB representing a transcription factor involved in the regulation pro-inflammatory mediators like nitric oxide, prostaglandins, and cytokines. In contrast, results from several animal model describe a more complicated picture and report on pro-inflammatory effects linked to exposure to this molecule; linked to dosage used and point of administration of this molecule. Overall, roles for H2S in several inflammatory diseases spanning arthritis, atherosclerosis, sepsis, and asthma have been described by researchers. In light this work fascinating research, this chapter will cover H2S biology and its many roles in the immune system.
Collapse
|
14
|
Süntar I, Çetinkaya S, Panieri E, Saha S, Buttari B, Profumo E, Saso L. Regulatory Role of Nrf2 Signaling Pathway in Wound Healing Process. Molecules 2021; 26:molecules26092424. [PMID: 33919399 PMCID: PMC8122529 DOI: 10.3390/molecules26092424] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/30/2022] Open
Abstract
Wound healing involves a series of cellular events in damaged cells and tissues initiated with hemostasis and finally culminating with the formation of a fibrin clot. However, delay in the normal wound healing process during pathological conditions due to reactive oxygen species, inflammation and immune suppression at the wound site represents a medical challenge. So far, many therapeutic strategies have been developed to improve cellular homeostasis and chronic wounds in order to accelerate wound repair. In this context, the role of Nuclear factor erythroid 2-related factor 2 (Nrf2) during the wound healing process has been a stimulating research topic for therapeutic perspectives. Nrf2 is the main regulator of intracellular redox homeostasis. It increases cytoprotective gene expression and the antioxidant capacity of mammalian cells. It has been reported that some bioactive compounds attenuate cellular stress and thus accelerate cell proliferation, neovascularization and repair of damaged tissues by promoting Nrf2 activation. This review highlights the importance of the Nrf2 signaling pathway in wound healing strategies and the role of bioactive compounds that support wound repair through the modulation of this crucial transcription factor.
Collapse
Affiliation(s)
- Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey
- Correspondence: ; Tel.: +90-31-2202-3176
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, Yenimahalle, Ankara 06330, Turkey;
| | - Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Sarmistha Saha
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (S.S.); (B.B.); (E.P.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (S.S.); (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (S.S.); (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy; (E.P.); (L.S.)
| |
Collapse
|
15
|
Xu M, Zhang L, Song S, Pan L, Muhammad Arslan I, Chen Y, Yang S. Hydrogen sulfide: Recent progress and perspectives for the treatment of dermatological diseases. J Adv Res 2020; 27:11-17. [PMID: 33318862 PMCID: PMC7728602 DOI: 10.1016/j.jare.2020.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 01/03/2023] Open
Abstract
Three hydrogen sulfide (H2S) production enzymes including CSE, CBS and 3-MST exist in the skin. H2S regulates burn, diabetic skin wound, psoriasis, systemic sclerosis, melanoma, and pruritus. H2S regulates oxidative stress, inflammation, angiogenesis and apoptosis in skin diseases. Some ideal characteristics of H2S-based therapeutics for topical delivery are preferred. Therapeutic potential of H2S for skin disorders will be further proposed in clinical trials.
Background Hydrogen sulfide (H2S) is now recognized as a vital endogenous gasotransmitter with a variety of biological functions in different systems. Recently, studies have increasingly focused on the role of H2S in the skin. Aim of Review This review summarizes recent progress and provides perspectives on H2S in the treatment of dermatological diseases. Key Scientific Concepts of Review Three H2S production enzymes, cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS) and 3-mercaptopyruvate sulfur transferase (3-MST), are all present in the skin, and it is likely that different cell types in the skin express them differently. Previous studies have demonstrated that H2S protects against several dermatological diseases, such as burns, diabetic skin wounds, psoriasis, skin flap transplantation, systemic sclerosis, melanoma, and pruritus. The mechanism might be related to the regulation of oxidative stress, inflammation, angiogenesis, apoptosis, and allergic reactions. H2S-based therapeutics require certain characteristics for topical delivery, for example, controlled release, appropriate physicochemical properties, good storage stability, acceptable odor, and advanced delivery systems. H2S-induced S-sulfhydration on proteins are potential novel targets for therapeutic intervention and drug design for the skin, which may lead to the development and application of H2S-related drugs for dermatological diseases.
Collapse
Affiliation(s)
- Mengting Xu
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China.,Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Lili Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Shu Song
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Lingling Pan
- Department of Science and Technology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | | | - Yong Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
16
|
Hydrogen Sulfide in Bone Tissue Regeneration and Repair: State of the Art and New Perspectives. Int J Mol Sci 2019; 20:ijms20205231. [PMID: 31652532 PMCID: PMC6834365 DOI: 10.3390/ijms20205231] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
The importance of hydrogen sulfide (H2S) in the regulation of multiple physiological functions has been clearly recognized in the over 20 years since it was first identified as a novel gasotransmitter. In bone tissue H2S exerts a cytoprotective effect and promotes bone formation. Just recently, the scientific community has begun to appreciate its role as a therapeutic agent in bone pathologies. Pharmacological administration of H2S achieved encouraging results in preclinical studies in the treatment of systemic bone diseases, such as osteoporosis; however, a local delivery of H2S at sites of bone damage may provide additional opportunities of treatment. Here, we highlight how H2S stimulates multiple signaling pathways involved in various stages of the processes of bone repair. Moreover, we discuss how material science and chemistry have recently developed biomaterials and H2S-donors with improved features, laying the ground for the development of H2S-releasing devices for bone regenerative medicine. This review is intended to give a state-of-the-art description of the pro-regenerative properties of H2S, with a focus on bone tissue, and to discuss the potential of H2S-releasing scaffolds as a support for bone repair.
Collapse
|