1
|
Wei L, Zhao J, Zhong Y, Wu X, Wei S, Liu Y. The roles of protein S-nitrosylation in regulating the growth and development of plants: A review. Int J Biol Macromol 2025; 307:142204. [PMID: 40107544 DOI: 10.1016/j.ijbiomac.2025.142204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/26/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
The free radical nitric oxide (NO) is an important redox-related signaling molecule modulating wide range of biological processes in all living plants. The transfer of NO bioactivity could be executed chiefly through a prototypic, redox-based post-translational modification, S-nitrosylation that covalently adds NO moiety to a reactive cysteine thiol of a target protein to form an S-nitrosothiol. Protein S-nitrosylation is recently emerged as an evolutionarily conserved and important mechanism regulating multiple aspects of plant growth and development. Here, we review the recent progress of S-nitrosylated proteins in the modulation of various plant development processes, including seed germination and aging, root development, seedling growth, flowering and fruit ripening and postharvest fruit quality. More importantly, the detailed function mechanism of proteins S-nitrosylation and key challenges in this field are also highlighted.
Collapse
Affiliation(s)
- Lijuan Wei
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Junyi Zhao
- School of Marxism, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yue Zhong
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiuqiao Wu
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shouhui Wei
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Yiqing Liu
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
2
|
Wang K, Zhang X, Zhao Y, Li L, Zhao R. Safflower Yellow Pigment Alleviates Cerebral Ischemia-Reperfusion Injury via Protein Nitration and Oxidative Modulation. Brain Behav 2025; 15:e70530. [PMID: 40343428 PMCID: PMC12060220 DOI: 10.1002/brb3.70530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/12/2025] [Accepted: 04/20/2025] [Indexed: 05/11/2025] Open
Abstract
OBJECTIVE We seek to investigate the efficacy of safflower yellow pigment in mitigating cerebral ischemia-reperfusion injury by examining its effects on protein nitration and oxidative modification. METHODS A total of 160 patients with acute ischemic stroke admitted to the department of neurology of Xingtai people's hospital were included in this study. This study was a retrospective study. Patients were divided into the control group (n = 80) and the observation group (n = 80) according to whether safflower yellow pigment was used. The control group received conventional treatment, and the observation group received safflower yellow pigment. RESULTS Baseline characteristics did not significantly differ between the two groups (p > 0.05). Serum nitrosine levels were lower in the observation group compared to the control group after 24 h and one week of treatment (p < 0.05). Similarly, serum carbonylated protein levels were lower in the observation group after 24 h and one week of treatment (p < 0.05). The observation group exhibited lower NIHSS and modified rankin scale (mRS) scores, reduced cerebral ischemic area. Furthermore, levels of malondialdehyde (MDA), C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α) were lower, while superoxide dismutase (SOD) activity was higher in the observation group compared to the control group after one week of treatment (p < 0.05). CONCLUSION Safflower yellow pigment demonstrates significant neuroprotective effects in patients with cerebral ischemia-reperfusion injury by reducing protein oxidation and nitration, improving neurological function, reducing cerebral ischemic area, and attenuating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Kun Wang
- Department of NeurologyXingtai Central HospitalXingtaiHebei ProvinceChina
| | - Xi Zhang
- Department of NeurologyXingtai People's HospitalHebei Medical University Affiliated HospitalXingtaiHebei ProvinceChina
| | - Yang Zhao
- Department of NeurologyXingtai People's HospitalHebei Medical University Affiliated HospitalXingtaiHebei ProvinceChina
| | - Lifeng Li
- Department of NeurologyXingtai Central HospitalXingtaiHebei ProvinceChina
| | - Ruijie Zhao
- Department of NeurologyXingtai People's HospitalHebei Medical University Affiliated HospitalXingtaiHebei ProvinceChina
| |
Collapse
|
3
|
Wang H, Qiu M, Zhang B, Zhang L, Wang D, Sun Y. Exogenous nitric oxide treatment delays the senescence of postharvest mung bean sprouts by regulating ascorbic acid metabolism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:839-849. [PMID: 39271466 DOI: 10.1002/jsfa.13875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND This study evaluated the effects of nitric oxide (NO) treatment on ascorbic acid (AsA) metabolism and mung bean sprout quality. It examined changes in the AsA content, enzyme activity associated with AsA metabolism, antioxidant capacity, cell membrane composition, and cellular structure to clarify the effects of NO on mung bean sprouts. RESULTS Nitric oxide treatment preserved mung bean sprout quality by enhancing significantly the activity of enzymes involved in the l-galactose pathway (including guanosine diphosphate (GDP)glutathione (-d-mannose pyrophosphorylase, GDP-mannose-3',5'-epimerase, GDP-l-galactose phosphorylase, l-galactose-1-phosphate phosphatase, l-galactose dehydrogenase, and l-galactose-1,4-lactone dehydrogenase) and the AsA-glutathione (GSH)(Beijing Solarbio Science and Technology Co.,Ltd., Beijing, China) cycle (including ascorbate peroxidase, ascorbic acid oxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase) during the germination and storage stage. Increased enzyme activity led to an increase in AsA content and enhanced antioxidant capacity, and reduced the membrane lipid damage in mung bean sprouts. This was demonstrated by higher levels of DPPH radical scavenging capacity, unsaturated fatty acids and phospholipids, along with lower levels of hydrogen peroxide, superoxide anions, and malondiadehyde, in NO-treated mung bean sprouts. Scanning electron microscopy also revealed that NO treatment maintained the integrity of the cellular structure of the mung bean sprouts. CONCLUSION Nitric oxide accelerates AsA metabolism effectively by regulating the biosynthesis and regeneration of AsA in mung bean sprouts. These changes increased AsA levels, alleviated membrane lipid damage, delayed senescence, and maintained the quality of mung bean sprouts during storage. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hanbo Wang
- College of life science, Henan Normal University, Xinxiang, PR China
| | - Mengyu Qiu
- College of life science, Henan Normal University, Xinxiang, PR China
| | - Bingqi Zhang
- College of life science, Henan Normal University, Xinxiang, PR China
| | - Liang Zhang
- College of life science, Henan Normal University, Xinxiang, PR China
| | - Dan Wang
- College of life science, Henan Normal University, Xinxiang, PR China
| | - Yali Sun
- College of life science, Henan Normal University, Xinxiang, PR China
| |
Collapse
|
4
|
Saini S, Sharma P, Pooja P, Sharma A. An updated mechanistic overview of nitric oxide in drought tolerance of plants. Nitric Oxide 2024; 153:82-97. [PMID: 39395712 DOI: 10.1016/j.niox.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Drought stress, an inevitable global issue due to climate change, hinders plant growth and yield. Nitric oxide (NO), a tiny gaseous signaling compound is now gaining massive attention from the plant science community due to its unparalleled array of mechanisms for ameliorating various abiotic stresses, including drought. Supplementation of NO has shown its astounding effect in improving drought tolerance by prominently influencing its tendency to modulate stomatal movement and reduce oxidative stress; it can enormously affect the various other physio-biochemical processes such as root structure, photosynthesis, osmolyte cumulation, and seed establishment of plants due to its amalgamation with a wide range of molecules during drought conditions. The production and inhibition of root development majorly depend on NO concentration and/or experimental conditions. As a lipophilic free gasotransmitter, NO readily reacts with free metals and oxygen species and has been shown to enhance or reduce the redox homeostasis of plants, depending on whether acting in a chronic or acute mode. NO can easily alter the enzymes, protein activities, and genomic transcriptional and post-translational modifications that assist functional retrieval from water stress. Although progress is ongoing, much work remains to be done to describe the proper target site and mechanistic approach of this vibrant molecule in plant drought tolerance. This detailed review navigates through the comprehensive and clear picture of the mechanistic potential of NO in drought stress following molecular approaches and suggests effective physiological and biochemical strategies to overcome the negative impacts of drought. We explore its potential to increase crop production, thereby ensuring global food security in drought-prone areas. In an era marked by unrelenting climatic conditions, the implications of NO show a promising approach to sustainable farming, providing a beacon of hope for future crop productivity.
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pooja Pooja
- Department of Botany and Physiology, Haryana Agricultural University, Hisar, 125004, Haryana, India.
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
5
|
Gao X, Ma J, Wang G, Huang S, Wu X, Hu L, Yu J. The S-nitrosylation of monodehydroascorbate reductase positively regulated the low temperature tolerance of mini Chinese cabbage. Int J Biol Macromol 2024; 281:136047. [PMID: 39357708 DOI: 10.1016/j.ijbiomac.2024.136047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
One of the main environmental stresses that considerably reduced vegetable yields are low temperature stress. Brassinosteroids (BRs) is essential for controlling a number of physiological functions. Protein S-nitrosylation is thought to be a crucial process in plants that use NO to carry out their biological functions. The exact process by which the mini Chinese cabbage responded to low temperature stress through BR-mediated S-nitrosylation modification of the monodehydroascorbate reductase (MDHAR) is still unknown. BR significantly increased the S-nitrosoylation level and antioxidant capacity at low temperature. One noteworthy development was the in vitroS-nitrosylation of the MDHAR protein. The overexpressed lines exhibited considerably high nitric oxide (NO) and S-nitrosothiol (SNO) contents at low temperature compared to the WT lines. Treatment of the WT and OE-BrMDHAR lines with BR at low temperature increased the antioxidant capacity. According to the biotin signaling, BR considerably enhanced the silenced lines total S-nitrosylation level in vivo at low temperature. Furthermore, BrMDHAR, BrAAO, and BrAPX gene transcript levels were dramatically up-regulated by BR, which in turn reduced the H2O2 content in the silenced lines. These findings demonstrated that the S-nitrosylation of MDHAR was essential to the improvement of BR on low-temperature tolerance in the mini Chinese cabbage.
Collapse
Affiliation(s)
- Xueqin Gao
- Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Jizhong Ma
- Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | | | - Shuchao Huang
- Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xuetong Wu
- Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Linli Hu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China; Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Jihua Yu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China; Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
6
|
Ren H, Shen S, Tan L, Wu J, Wang D, Liu W. Nitric oxide mitigates the phytotoxicity of imidazolium-based ionic liquids in Arabidopsis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116845. [PMID: 39116690 DOI: 10.1016/j.ecoenv.2024.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Ionic liquids (ILs) have many beneficial properties that are extensively used in various fields. Despite their utility, the phytotoxic aspects of ILs are poorly known. This is especially true at the transcriptomic level and the role of nitric oxide (NO) in this process. Herein, we studied the mechanism by which endogenous NO reduces the toxicity of ILs in Arabidopsis. We examined the effects of two imidazolium-based ILs (IILs) on three Arabidopsis lines, each characterized by distinct endogenous NO levels, using a combination of physiological and transcriptomics methods. IILs impaired seed germination, seedling development, chlorophyll content, and redox homeostasis in Arabidopsis. Notably, 1,3-dibutyl imidazole bromide had greater toxicity than 1-butyl-3-methylimidazolium chloride. Nox1, a mutant with an elevated NO level, had enhanced resistance, while nia1nia2, a mutant with a diminished NO level, had increased susceptibility compared to the wild type. RNA sequencing results suggested that NO mitigates IILs-induced phytotoxicity by modulating the metabolism of chlorophyll and secondary metabolites, and by bolstering the antioxidant defense system. These findings illustrate the complex molecular networks that respond to IIL stress and reveal the potential of endogenous NO as a mitigating factor in plant stress physiology.
Collapse
Affiliation(s)
- Haike Ren
- Shanxi Normal University, Taiyuan, Shanxi 030006, China
| | - Shoujie Shen
- Shanxi Normal University, Taiyuan, Shanxi 030006, China
| | - Liru Tan
- Shanxi Normal University, Taiyuan, Shanxi 030006, China
| | - Jinwen Wu
- Shanxi Normal University, Taiyuan, Shanxi 030006, China
| | - Dongsheng Wang
- Shanxi Normal University, Taiyuan, Shanxi 030006, China.
| | - Weizhong Liu
- Shanxi Normal University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
7
|
Zhang X, Qi S, Liu S, Mu H, Jiang Y. Exogenous Sodium Nitroprusside Alleviates Drought Stress in Lagenaria siceraria. PLANTS (BASEL, SWITZERLAND) 2024; 13:1972. [PMID: 39065499 PMCID: PMC11280828 DOI: 10.3390/plants13141972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Drought is one of the non-biological stresses that affect the growth and development of plants globally, especially Lagenaria siceraria plants. As a common nitric oxide (NO) donor, sodium nitroprusside plays a significant role in enhancing the resistance of plants to non-biological stresses. In this study, 'Yayao' (L. siceraria) was selected as the material through which to investigate the mitigating effects of different concentrations of sodium nitroprusside on L. siceraria plants under moderate drought stress. The results showed that a concentration of 0.25 mmol·L-1 sodium nitroprusside had the best mitigation effect on drought stress in L. siceraria plants. Under this condition, the plant height and leaf dry weight and fresh weight increased by 12.21%, 21.84%, and 40.48%. The photosynthetic parameters were significantly improved, and the fluorescence parameters Fo and Fm were reduced by 17.04% and 7.80%, respectively. The contents of soluble sugar and proline increased by 35.12% and 44.49%, respectively. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) increased by 51.52%, 164.11%, and 461.49%, respectively. The content of malondialdehyde (MDA) decreased by 34.53%, which alleviated the damage caused by reactive oxygen species. Additionally, sodium nitroprusside promoted the expression of genes related to antioxidant enzymes (SOD, CAT, and POD). Overall, this analysis indicates that an appropriate concentration of sodium nitroprusside can enhance the drought tolerance of L. siceraria plants through multiple aspects and alleviate the harm caused by drought stress.
Collapse
Affiliation(s)
| | | | | | - Hongmei Mu
- College of Agriculture Science and Engineering, Liaocheng University, Liaocheng 252000, China; (X.Z.); (S.Q.); (S.L.); (Y.J.)
| | | |
Collapse
|
8
|
Saini S, Sharma P, Sharma J, Pooja P, Sharma A. Drought stress in Lens culinaris: effects, tolerance mechanism, and its smart reprogramming by using modern biotechnological approaches. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:227-247. [PMID: 38623164 PMCID: PMC11016033 DOI: 10.1007/s12298-024-01417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/20/2024] [Accepted: 02/12/2024] [Indexed: 04/17/2024]
Abstract
Among legumes, lentil serves as an imperative source of dietary proteins and are considered an important pillar of global food and nutritional security. The crop is majorly cultivated in arid and semi-arid regions and exposed to different abiotic stresses. Drought stress is a polygenic stress that poses a major threat to the crop productivity of lentils. It negatively influenced the seed emergence, water relations traits, photosynthetic machinery, metabolites, seed development, quality, and yield in lentil. Plants develop several complex physiological and molecular protective mechanisms for tolerance against drought stress. These complicated networks are enabled to enhance the cellular potential to survive under extreme water-scarce conditions. As a result, proper drought stress-mitigating novel and modern approaches are required to improve lentil productivity. The currently existing biotechnological techniques such as transcriptomics, genomics, proteomics, metabolomics, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/cas9), and detection of QTLs (quantitative trait loci), proteins, and genes responsible for drought tolerance have gained appreciation among plant breeders for developing climate-resilient lentil varieties. In this review, we critically elaborate the impact of drought on lentil, mechanisms employed by plants to tolerate drought, and the contribution of omics approaches in lentils for dealing with drought, providing deep insights to enhance lentil productivity and improve resistance against abiotic stresses. We hope this updated review will directly help the lentil breeders to develop resistance against drought stress. Graphical Abstract
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Jyoti Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Pooja Pooja
- Department of Botany and Physiology, Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
9
|
Wang T, Hou X, Wei L, Deng Y, Zhao Z, Liang C, Liao W. Protein S-nitrosylation under abiotic stress: Role and mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108329. [PMID: 38184883 DOI: 10.1016/j.plaphy.2023.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Abiotic stress is one of the main threats affecting crop growth and production. Nitric oxide (NO), an important signaling molecule involved in wide range of plant growth and development as well as in response to abiotic stress. NO can exert its biological functions through protein S-nitrosylation, a redox-based posttranslational modification by covalently adding NO moiety to a reactive cysteine thiol of a target protein to form an S-nitrosothiol (SNO). Protein S-nitrosylation is an evolutionarily conserved mechanism regulating multiple aspects of cellular signaling in plant. Recently, emerging evidence have elucidated protein S-nitrosylation as a modulator of plant in responses to abiotic stress, including salt stress, extreme temperature stress, light stress, heavy metal and drought stress. In addition, significant mechanism has been made in functional characterization of protein S-nitrosylated candidates, such as changing protein conformation, and the subcellular localization of proteins, regulating protein activity and influencing protein interactions. In this study, we updated the data related to protein S-nitrosylation in plants in response to adversity and gained a deeper understanding of the functional changes of target proteins after protein S-nitrosylation.
Collapse
Affiliation(s)
- Tong Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Yuzheng Deng
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zongxi Zhao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Chen Liang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|