1
|
Zhang AQ, Ralph MR, Stinchcombe AR. A mathematical model for the role of dopamine-D2 self-regulation in the production of ultradian rhythms. PLoS Comput Biol 2024; 20:e1012082. [PMID: 38701077 PMCID: PMC11095719 DOI: 10.1371/journal.pcbi.1012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Many self-motivated and goal-directed behaviours display highly flexible, approximately 4 hour ultradian (shorter than a day) oscillations. Despite lacking direct correspondence to physical cycles in the environment, these ultradian rhythms may be involved in optimizing functional interactions with the environment and reflect intrinsic neural dynamics. Current evidence supports a role of mesostriatal dopamine (DA) in the expression and propagation of ultradian rhythmicity, however, the biochemical processes underpinning these oscillations remain to be identified. Here, we use a mathematical model to investigate D2 autoreceptor-dependent DA self-regulation as the source of ultradian behavioural rhythms. DA concentration at the midbrain-striatal synapses is governed through a dual-negative feedback-loop structure, which naturally gives rise to rhythmicity. This model shows the propensity of striatal DA to produce an ultradian oscillation characterized by a flexible period that is highly sensitive to parameter variations. Circadian (approximately 24 hour) regulation consolidates the ultradian oscillations and alters their response to the phase-dependent, rapid-resetting effect of a transient excitatory stimulus. Within a circadian framework, the ultradian rhythm orchestrates behavioural activity and enhances responsiveness to an external stimulus. This suggests a role for the circadian-ultradian timekeeping hierarchy in governing organized behaviour and shaping daily experience through coordinating the motivation to engage in recurring, albeit not highly predictable events, such as social interactions.
Collapse
Affiliation(s)
- An Qi Zhang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Martin R. Ralph
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
Yin JCP, Cui E, Hardin PE, Zhou H. Circadian disruption of memory consolidation in Drosophila. Front Syst Neurosci 2023; 17:1129152. [PMID: 37034015 PMCID: PMC10073699 DOI: 10.3389/fnsys.2023.1129152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
The role of the circadian system in memory formation is an important question in neurobiology. Despite this hypothesis being intuitively appealing, the existing data is confusing. Recent work in Drosophila has helped to clarify certain aspects of the problem, but the emerging sense is that the likely mechanisms are more complex than originally conceptualized. In this report, we identify a post-training window of time (during consolidation) when the circadian clock and its components are involved in memory formation. In the broader context, our data suggest that circadian biology might have multiple roles during memory formation. Testing for its roles at multiple timepoints, and in different cells, will be necessary to resolve some of the conflicting data.
Collapse
Affiliation(s)
- Jerry C. P. Yin
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Neurology Department, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- *Correspondence: Jerry C. P. Yin
| | - Ethan Cui
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Paul E. Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, College Station, TX, United States
| | - Hong Zhou
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
3
|
Deibel SH, Higdon S, Cassell TTS, House-Denine ML, Giberson E, Webb IC, Thorpe CM. Impaired Morris water task retention following T21 light dark cycle exposure is not due to reduced hippocampal c-FOS expression. Front Behav Neurosci 2022; 16:1025388. [PMID: 36311860 PMCID: PMC9596763 DOI: 10.3389/fnbeh.2022.1025388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Circadian rhythms influence virtually all aspects of physiology and behavior. This is problematic when circadian rhythms no longer reliably predict time. Circadian rhythm disruption can impair memory, yet we don’t know how this fully works at the systems and molecular level. When trying to determine the root of a memory impairment, assessing neuronal activation with c-FOS is useful. This has yet to be assessed in the hippocampi of circadian rhythm disrupted rats in a hippocampal gold standard task. Rats were trained on the Morris water task (MWT), then received 6 days of a 21-h day (T21), 13 days of a normal light dark cycle, probe trial, and tissue extraction an hour later. Despite having impaired memory in the probe trial, compared to controls there were no differences in c-FOS expression in hippocampal sub regions: CA1; CA3; Dentate gyrus. These data confirm others in hamsters demonstrating that arrhythmicity which produces an impairment in spontaneous alternation does not affect c-FOS in the dentate gyrus. The current study indicates that the memory impairment induced by a lighting manipulation is likely not due to attenuated neuronal activation. Determining how the master clock in the brain communicates with the hippocampus is needed to untangle the relationship between circadian rhythms and memory.
Collapse
Affiliation(s)
- Scott H. Deibel
- Department of Psychology, University of New Brunswick, Fredericton, NB, Canada
- *Correspondence: Scott H. Deibel,
| | - S. Higdon
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - T. T. S. Cassell
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - M. L. House-Denine
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - E. Giberson
- Department of Psychology, University of New Brunswick, Fredericton, NB, Canada
| | - I. C. Webb
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - C. M. Thorpe
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
4
|
Doho H, Nobukawa S, Nishimura H, Wagatsuma N, Takahashi T. Transition of Neural Activity From the Chaotic Bipolar-Disorder State to the Periodic Healthy State Using External Feedback Signals. Front Comput Neurosci 2020; 14:76. [PMID: 32982709 PMCID: PMC7484049 DOI: 10.3389/fncom.2020.00076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Chronotherapy is a treatment for mood disorders, including major depressive disorder, mania, and bipolar disorder (BD). Neurotransmitters associated with the pathology of mood disorders exhibit circadian rhythms. A functional deficit in the neural circuits related to mood disorders disturbs the circadian rhythm; chronotherapy is an intervention that helps resynchronize the patient's biological clock with the periodic daily cycle, leading to amelioration of symptoms. In previous reports, Hadaeghi et al. proposed a non-linear dynamic model composed of the frontal and sensory cortical neural networks and the hypothalamus to explain the relationship between deficits in neural function in the frontal cortex and the disturbed circadian rhythm/mood transitions in BD (hereinafter referred to as the Hadaeghi model). In this model, neural activity in the frontal and sensory lobes exhibits periodic behavior in the healthy state; while in BD, this neural activity is in a state of chaos-chaos intermittency; this temporal departure from the healthy periodic state disturbs the circadian pacemaker in the hypothalamus. In this study, we propose an intervention based on a feedback method called the "reduced region of orbit" (RRO) method to facilitate the transition of the disturbed frontal cortical neural activity underlying BD to healthy periodic activity. Our simulation was based on the Hadaeghi model. We used an RRO feedback signal based on the return-map structure of the simulated frontal and sensory lobes to induce synchronization with a relatively weak periodic signal corresponding to the healthy condition by applying feedback of appropriate strength. The RRO feedback signal induces chaotic resonance, which facilitates the transition to healthy, periodic frontal neural activity, although this synchronization is restricted to a relatively low frequency of the periodic input signal. Additionally, applying an appropriate strength of the RRO feedback signal lowered the amplitude of the periodic input signal required to induce a synchronous state compared with the periodic signal applied alone. In conclusion, through a chaotic-resonance effect induced by the RRO feedback method, the state of the disturbed frontal neural activity characteristic of BD was transformed into a state close to healthy periodic activity by relatively weak periodic perturbations. Thus, RRO feedback-modulated chronotherapy might be an innovative new type of minimally invasive chronotherapy.
Collapse
Affiliation(s)
- Hirotaka Doho
- Faculty of Education, Teacher Training Division, Kochi University, Kochi, Japan
- Graduate School of Applied Informatics, University of Hyogo, Kobe, Japan
| | - Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, Narashino, Japan
| | - Haruhiko Nishimura
- Graduate School of Applied Informatics, University of Hyogo, Kobe, Japan
| | - Nobuhiko Wagatsuma
- Department of Information Science, Faculty of Science, Toho University, Funabashi, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Neuropsychiatry, University of Fukui, Yoshida, Japan
| |
Collapse
|
5
|
Newman AW, Deibel SH, Lewis LM, Viguers KB, Thorpe CM. Brief circadian rhythm disruption does not impair hippocampal dependent memory when rats are over-trained and given more re-entrainment days. LEARNING AND MOTIVATION 2020. [DOI: 10.1016/j.lmot.2020.101613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Shrestha TC, Šuchmanová K, Houdek P, Sumová A, Ralph MR. Implicit time-place conditioning alters Per2 mRNA expression selectively in striatum without shifting its circadian clocks. Sci Rep 2018; 8:15547. [PMID: 30341352 PMCID: PMC6195625 DOI: 10.1038/s41598-018-33637-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/02/2018] [Indexed: 11/30/2022] Open
Abstract
Animals create implicit memories of the time of day that significant events occur then anticipate the recurrence of those conditions at the same time on subsequent days. We tested the hypothesis that implicit time memory for daily encounters relies on the setting of the canonical circadian clockwork in brain areas involved in the formation or expression of context memories. We conditioned mice to avoid locations paired with a mild foot shock at one of two Zeitgeber times set 8 hours apart. Place avoidance was exhibited only when testing time matched the prior training time. The suprachiasmatic nucleus, dorsal striatum, nucleus accumbens, cingulate cortex, hippocampal complex, and amygdala were assessed for clock gene expression. Baseline phase dependent differences in clock gene expression were found in most tissues. Evidence for conditioned resetting of a molecular circadian oscillation was found only in the striatum (dorsal striatum and nucleus accumbens shell), and specifically for Per2 expression. There was no evidence of glucocorticoid stress response in any tissue. The results are consistent with a model where temporal conditioning promotes a selective Per2 response in dopamine-targeted brain regions responsible for sensorimotor integration, without resetting the entire circadian clockwork.
Collapse
Affiliation(s)
- Tenjin C Shrestha
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Karolína Šuchmanová
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Houdek
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Sumová
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin R Ralph
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|