1
|
Dargam S, de Olmos S, Marcos Pautassi R, Lorenzo A. Footshock drives remodeling of perineuronal nets in retrosplenial cortex during contextual fear memory formation. Neurobiol Learn Mem 2024; 215:107990. [PMID: 39401564 DOI: 10.1016/j.nlm.2024.107990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
The retrosplenial cortex (RSC) plays a critical role in complex cognitive functions such as contextual fear memory formation and consolidation. Perineuronal nets (PNNs) are specialized structures of the extracellular matrix that modulate synaptic plasticity by enwrapping the soma, proximal neurites and synapsis mainly on fast spiking inhibitory GABAergic interneurons that express parvalbumin (PV). PNNs change after contextual fear conditioning (CFC) in amygdala or hippocampus, yet it is unknown if similar remodeling takes place at RSC. Here, we used Wisteria floribunda agglutinin (WFA), a ubiquitous marker of PNNs, to study the remodeling of PNNs in RSC during the acquisition or retrieval of contextual fear conditioning (CFC). Adult male mice were exposed to paired presentations of a context and footshock, or to either of these stimuli alone (control groups). The mere exposure of animals to the footshock, either alone or paired with the context, evoked a significant expansion of PNNs, both in the number of WFA positive neurons and in the area occupied by WFA staining, across the entire RSC. This was not associated with c-Fos expression in RSC nor correlated with c-Fos expression in individual PNNs-expressing neurons in RSC, suggesting that PNNs remodeling is triggered by inputs external to the RSC. We also found that PNNs remodeling was independent of the level of PV expression. Notably, PNNs in RSC remained expanded long-after CFC. These results suggest that, in male mice, the threatening experience is the main cause of PNNs remodeling in the RSC.
Collapse
Affiliation(s)
- Salome Dargam
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina
| | - Soledad de Olmos
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina
| | - Alfredo Lorenzo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina.
| |
Collapse
|
2
|
Cheng HY, Fournier DI, Todd TP. Retrosplenial cortex and aversive conditioning. Front Behav Neurosci 2024; 18:1341705. [PMID: 38983870 PMCID: PMC11232490 DOI: 10.3389/fnbeh.2024.1341705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/26/2024] [Indexed: 07/11/2024] Open
Abstract
The retrosplenial cortex (RSC) is well-known for its contribution to episodic memory, as well as contextual and spatial learning and memory. However, two literatures have also emerged examining the role of the RSC in aversive conditioning. The purpose of this manuscript is to review, and attempt to integrate, these two literatures. We focus on studies in which discrete cues, such as tones, predict the occurrence of aversive outcomes, such as mild shocks. Using both electrophysiological recordings and lesion methods, the first literature has examined RSC contributions to discriminative avoidance conditioning. The second, and more recent literature, has focused on the role of the RSC in Pavlovian fear conditioning. We discuss both literatures in terms of the type of information processed by the RSC, the role of the RSC in memory storage, and how the aversive conditioning literature might be consistent with a role for the RSC in contextual learning and memory.
Collapse
Affiliation(s)
| | | | - Travis P. Todd
- Department of Psychological Science, University of Vermont, Burlington, VT, United States
| |
Collapse
|
3
|
de Lima MAX, Baldo MVC, Oliveira FA, Canteras NS. The anterior cingulate cortex and its role in controlling contextual fear memory to predatory threats. eLife 2022; 11:67007. [PMID: 34984975 PMCID: PMC8730726 DOI: 10.7554/elife.67007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 12/13/2021] [Indexed: 12/03/2022] Open
Abstract
Predator exposure is a life-threatening experience and elicits learned fear responses to the context in which the predator was encountered. The anterior cingulate area (ACA) occupies a pivotal position in a cortical network responsive to predatory threats, and it exerts a critical role in processing fear memory. The experiments were made in mice and revealed that the ACA is involved in both the acquisition and expression of contextual fear to predatory threat. Overall, the ACA can provide predictive relationships between the context and the predator threat and influences fear memory acquisition through projections to the basolateral amygdala and perirhinal region and the expression of contextual fear through projections to the dorsolateral periaqueductal gray. Our results expand previous studies based on classical fear conditioning and open interesting perspectives for understanding how the ACA is involved in processing contextual fear memory to ethologic threatening conditions that entrain specific medial hypothalamic fear circuits.
Collapse
Affiliation(s)
| | - Marcus Vinicius C Baldo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernando A Oliveira
- Cellular and Molecular Neurobiology Laboratory (LaNeC) - Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC, São Bernardo do Campo, Brazil
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Smith DM, Yang YY, Subramanian DL, Miller AMP, Bulkin DA, Law LM. The limbic memory circuit and the neural basis of contextual memory. Neurobiol Learn Mem 2022; 187:107557. [PMID: 34808337 PMCID: PMC8755583 DOI: 10.1016/j.nlm.2021.107557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023]
Abstract
The hippocampus, retrosplenial cortex and anterior thalamus are key components of a neural circuit known to be involved in a variety of memory functions, including spatial, contextual and episodic memory. In this review, we focus on the role of this circuit in contextual memory processes. The background environment, or context, is a powerful cue for memory retrieval, and neural representations of the context provide a mechanism for efficiently retrieving relevant memories while avoiding interference from memories that belong to other contexts. Data from experimental lesions and neural manipulation techniques indicate that each of these regions is critical for contextual memory. Neurophysiological evidence from the hippocampus and retrosplenial cortex suggest that contextual information is represented within this circuit by population-level neural firing patterns that reliably differentiate each context a subject encounters. These findings indicate that encoding contextual information to support context-dependent memory retrieval is a key function of this circuit.
Collapse
Affiliation(s)
- David M Smith
- Department of Psychology, Cornell University, Ithaca, NY, United States.
| | - Yan Yu Yang
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | | | - Adam M P Miller
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - David A Bulkin
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - L Matthew Law
- Department of Psychology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
5
|
Retrosplenial cortex inactivation during retrieval, but not encoding, impairs remotely acquired auditory fear conditioning in male rats. Neurobiol Learn Mem 2021; 185:107517. [PMID: 34500052 DOI: 10.1016/j.nlm.2021.107517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022]
Abstract
Prior studies with permanent lesion methods have demonstrated a role for the retrosplenial cortex (RSC) in the retrieval of remotely, but not recently, acquired delay fear conditioning. To extend the generalizability of these prior findings, the present experiments used chemogenetics to temporarily inactivate the RSC during either retrieval or encoding of delay auditory fear conditioning. Inactivation of the RSC at the time of test impaired retrieval of a remotely conditioned auditory cue, but not a recently conditioned one. In addition, inactivation of the RSC during encoding had no impact on freezing during later retrieval testing for both a remotely and recently conditioned auditory cue. These findings indicate that the RSC contributes to the retrieval, but not encoding, of remotely acquired auditory fear conditioning, and suggest it has less of a role in both retrieval and encoding of recently acquired auditory fear conditioning.
Collapse
|
6
|
Trask S, Pullins SE, Ferrara NC, Helmstetter FJ. The anterior retrosplenial cortex encodes event-related information and the posterior retrosplenial cortex encodes context-related information during memory formation. Neuropsychopharmacology 2021; 46:1386-1392. [PMID: 33580135 PMCID: PMC8134488 DOI: 10.1038/s41386-021-00959-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022]
Abstract
The retrosplenial cortex (RSC) is extensively interconnected with the dorsal hippocampus and has several important roles in learning and memory. Recent work has demonstrated that certain types of context-dependent learning are selectively impaired when the posterior, but not the anterior, region of the RSC is damaged, suggesting that the role of the RSC in memory formation may not be uniform along its rostro-caudal axis. The current experiments tested the idea that the anterior and posterior portions of the rat RSC contribute to different aspects of memory formation. We first confirmed that brief optogenetic inhibition of either the anterior or posterior RSC resulted in decreased local cellular activity as indexed by immediate early gene zif268 expression and that this decrease was restricted to the target region within RSC. We then found that silencing the anterior or posterior RSC during trace fear training trials had different effects on memory: While inhibiting neural activity in the anterior RSC had a selective impact on behavior evoked by the auditory CS, inhibition of the posterior RSC selectively impaired memory for the context in which training was conducted. These results contribute to a growing literature that supports functionally distinct roles in learning and memory for subregions of the RSC.
Collapse
Affiliation(s)
- Sydney Trask
- grid.267468.90000 0001 0695 7223Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 USA
| | - Shane E. Pullins
- grid.267468.90000 0001 0695 7223Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 USA
| | - Nicole C. Ferrara
- grid.267468.90000 0001 0695 7223Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 USA
| | - Fred J. Helmstetter
- grid.267468.90000 0001 0695 7223Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 USA
| |
Collapse
|
7
|
Fournier DI, Cheng HY, Robinson S, Todd TP. Cortical Contributions to Higher-Order Conditioning: A Review of Retrosplenial Cortex Function. Front Behav Neurosci 2021; 15:682426. [PMID: 34093148 PMCID: PMC8170078 DOI: 10.3389/fnbeh.2021.682426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
In higher-order conditioning paradigms, such as sensory preconditioning or second-order conditioning, discrete (e.g., phasic) or contextual (e.g., static) stimuli can gain the ability to elicit learned responses despite never being directly paired with reinforcement. The purpose of this mini-review is to examine the neuroanatomical basis of high-order conditioning, by selectively reviewing research that has examined the role of the retrosplenial cortex (RSC) in sensory preconditioning and second-order conditioning. For both forms of higher-order conditioning, we first discuss the types of associations that may occur and then review findings from RSC lesion/inactivation experiments. These experiments demonstrate a role for the RSC in sensory preconditioning, suggesting that this cortical region might contribute to higher-order conditioning via the encoding of neutral stimulus-stimulus associations. In addition, we address knowledge gaps, avenues for future research, and consider the contribution of the RSC to higher-order conditioning in relation to related brain structures.
Collapse
Affiliation(s)
- Danielle I. Fournier
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Han Yin Cheng
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Siobhan Robinson
- Program in Neuroscience, Psychology Department, Hamilton College, Clinton, NY, United States
| | - Travis P. Todd
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
8
|
Taylor-Yeremeeva EM, Wisser SC, Chakoma TL, Aldrich SJ, Denney AE, Donahue EK, Adelman JS, Ihle PCJ, Robinson S. Appetitive and aversive sensory preconditioning in rats is impaired by disruption of the postrhinal cortex. Neurobiol Learn Mem 2021; 183:107461. [PMID: 34015445 DOI: 10.1016/j.nlm.2021.107461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022]
Abstract
Episodic memory involves binding stimuli and/or events together in time and place. Furthermore, memories become more complex when new experiences influence the meaning of stimuli within the original memory. Thus collectively, complex episodic memory formation and maintenance involves processes such as encoding, storage, retrieval, updating and reconsolidation, which can be studied using animal models of higher-order conditioning. In the present study aversive and appetitive sensory preconditioning paradigms were used to test the hypothesis that the postrhinal cortex (POR), which is a component of the hippocampal memory system, is involved in higher-order conditioning. Drawing on the known role of the POR in contextual learning, Experiment 1 employed a four-phase sensory preconditioning task that involved fear learning and context discrimination in rats with or without permanent lesions of the POR. In parallel, to examine POR function during higher-order conditioning in the absence of a particular spatial arrangement, Experiments 2 and 3 used a three-phase sensory preconditioning paradigm involving phasic stimuli. In Experiment 2, bilateral lesions of the POR were made and in Experiment 3, a chemogenetic approach was used to temporarily inactivate POR neurons during each phase of the paradigm. Evidence of successful sensory preconditioning was observed in sham rats which, during the critical context discrimination test, demonstrated higher levels of freezing behavior when re-exposed to the paired versus the unpaired context, whereas POR-lesioned rats did not. Data from the appetitive sensory preconditioning paradigm also confirmed the hypothesis in that during the critical auditory discrimination test, sham rats showed greater food cup responding following presentations of the paired compared to the unpaired auditory stimulus, whereas POR-lesioned rats did not. Lastly, in Experiment 3, when the POR was inactivated only during preconditioning or only during conditioning, discrimination during the critical auditory test was impaired. Thus, regardless of whether stimulus-stimulus associations were formed between static or phasic stimuli or whether revaluation of the paired stimulus occurred through association with an aversive or an appetitive unconditioned stimulus, the effects were the same; POR lesions disrupted the ability to use higher-order conditioned stimuli to guide prospective behavior.
Collapse
Affiliation(s)
| | - Stephen C Wisser
- Program in Neuroscience, Hamilton College, Clinton, NY 13323, USA
| | | | - Sara J Aldrich
- Program in Neuroscience, Hamilton College, Clinton, NY 13323, USA
| | - Amelia E Denney
- Program in Neuroscience, Hamilton College, Clinton, NY 13323, USA
| | - Erin K Donahue
- Program in Neuroscience, Hamilton College, Clinton, NY 13323, USA
| | - Julia S Adelman
- Department of Neuroscience, Oberlin College, Oberlin, OH 44074, USA
| | - Peter C J Ihle
- Department of Neuroscience, Oberlin College, Oberlin, OH 44074, USA
| | - Siobhan Robinson
- Program in Neuroscience, Hamilton College, Clinton, NY 13323, USA; Department of Psychology, Hamilton College, Clinton, NY 13323, USA.
| |
Collapse
|
9
|
Miller AMP, Serrichio AC, Smith DM. Dual-Factor Representation of the Environmental Context in the Retrosplenial Cortex. Cereb Cortex 2020; 31:2720-2728. [PMID: 33386396 DOI: 10.1093/cercor/bhaa386] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The retrosplenial cortex (RSC) is thought to be involved in a variety of spatial and contextual memory processes. However, we do not know how contextual information might be encoded in the RSC or whether the RSC representations may be distinct from context representations seen in other brain regions such as the hippocampus. We recorded RSC neuronal responses while rats explored different environments and discovered 2 kinds of context representations: one involving a novel rate code in which neurons reliably fire at a higher rate in the preferred context regardless of spatial location, and a second involving context-dependent spatial firing patterns similar to those seen in the hippocampus. This suggests that the RSC employs a unique dual-factor representational mechanism to support contextual memory.
Collapse
Affiliation(s)
- Adam M P Miller
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Anna C Serrichio
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - David M Smith
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Opalka AN, Wang DV. Hippocampal efferents to retrosplenial cortex and lateral septum are required for memory acquisition. ACTA ACUST UNITED AC 2020; 27:310-318. [PMID: 32669386 PMCID: PMC7365017 DOI: 10.1101/lm.051797.120] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
Learning and memory involves a large neural network of many brain regions, including the notable hippocampus along with the retrosplenial cortex (RSC) and lateral septum (LS). Previous studies have established that the dorsal hippocampus (dHPC) plays a critical role during the acquisition and retrieval/expression of episodic memories. However, the role of downstream circuitry from the dHPC, including the dHPC-to-RSC and dHPC-to-LS pathways, has come under scrutiny only recently. Here, we used an optogenetic approach with contextual fear conditioning in mice to determine whether the above two pathways are involved in acquisition and expression of contextual fear memory. We found that a selective inhibition of the dHPC neuronal terminals in either the RSC or LS during acquisition impaired subsequent memory performance, suggesting that both the dHPC-to-RSC and dHPC-to-LS pathways play a critical role in memory acquisition. We also selectively inhibited the two dHPC efferent pathways during memory retrieval and found a differential effect on memory performance. These results indicate the intricacies of memory processing and that hippocampal efferents to cortical and subcortical regions may be differentially involved in aspects of physiological and cognitive memory processes.
Collapse
Affiliation(s)
- Ashley N Opalka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | - Dong V Wang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
11
|
Dysregulation of protein degradation in the hippocampus is associated with impaired spatial memory during the development of obesity. Behav Brain Res 2020; 393:112787. [PMID: 32603798 DOI: 10.1016/j.bbr.2020.112787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/26/2020] [Accepted: 06/21/2020] [Indexed: 01/09/2023]
Abstract
Studies have shown that long-term exposure to high fat and other obesogenic diets results in insulin resistance and altered blood brain barrier permeability, dysregulation of intracellular signaling mechanisms, changes in DNA methylation levels and gene expression, and increased oxidative stress and neuroinflammation in the hippocampus, all of which are associated with impaired spatial memory. The ubiquitin-proteasome system controls the majority of protein degradation in cells and is a critical regulator of synaptic plasticity and memory formation. Yet, whether protein degradation in the hippocampus becomes dysregulated following weight gain and is associated with obesity-induced memory impairments is unknown. Here, we used a high fat diet procedure in combination with behavioral and subcellular fractionation protocols and a variety of biochemical assays to determine if ubiquitin-proteasome activity becomes altered in the hippocampus during obesity development and whether this is associated with impaired spatial memory. We found that only 6 weeks of exposure to a high fat diet was sufficient to impair performance on an object location task in rats and resulted in dynamic dysregulation of ubiquitin-proteasome activity in the nucleus and cytoplasm of cells in the hippocampus. Furthermore, these changes in the protein degradation process extended into cortical regions also involved in spatial memory formation. Collectively, these results indicate that weight gain-induced memory impairments may be due to altered ubiquitin-proteasome signaling that occurs during the early stages of obesity development.
Collapse
|
12
|
Yousuf H, Nye AN, Moyer JR. Heterogeneity of neuronal firing type and morphology in retrosplenial cortex of male F344 rats. J Neurophysiol 2020; 123:1849-1863. [PMID: 32267193 DOI: 10.1152/jn.00577.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The rodent granular retrosplenial cortex (gRSC) has reciprocal connections to the hippocampus to support fear memories. Although activity-dependent plasticity occurs within the RSC during memory formation, the intrinsic and morphological properties of RSC neurons are poorly understood. The present study used whole-cell recordings to examine intrinsic neuronal firing and morphology of neurons in layer 2/3 (L2/3) and layer 5 (L5) of the gRSC in adult male rats. Five different classifications were observed: regular-spiking (RS), regular-spiking afterdepolarization (RSADP), late-spiking (LS), burst-spiking (BS), and fast-spiking (FS) neurons. RSADP neurons were the most commonly observed neuronal class, identified by their robust spike frequency adaptation and pronounced afterdepolarization (ADP) following an action potential (AP). They also had the most extensive dendritic branching compared with other cell types. LS neurons were predominantly found in L2/3 and exhibited a long delay before onset of their initial AP. They also had reduced dendritic branching compared with other cell types. BS neurons were limited to L5 and generated an initial burst of two or more APs. FS neurons demonstrated sustained firing and little frequency adaptation and were the only nonpyramidal firing type. Relative to adults, RS neurons from juvenile rats (PND 14-30) lacked an ADP and were less excitable. Bath application of group 1 mGluR blockers attenuated the ADP in adult neurons. In other fear-related brain structures, the ADP has been shown to enhance excitability and synaptic plasticity. Thus, understanding cellular mechanisms of the gRSC will provide insight regarding its precise role in memory-related processes across the lifespan.NEW & NOTEWORTHY This is the first study to demonstrate that granular retrosplenial cortical (gRSC) neurons exhibit five distinctive firing types: regular spiking (RS), regular spiking with an afterdepolarization (RSADP), late spiking (LS), burst spiking (BS), and fast spiking (FS). RSADP neurons were the most frequently observed cell type in adult gRSC neurons. Interestingly, RS neurons without an ADP were most common in gRSC neurons of juvenile rats (PND 14-30). Thus, the ADP property, which was previously shown to enhance neuronal excitability, emerges during development.
Collapse
Affiliation(s)
- Hanna Yousuf
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Andrew N Nye
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - James R Moyer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin.,Department of Biological Sciences University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| |
Collapse
|
13
|
Todd TP, Fournier DI, Bucci DJ. Retrosplenial cortex and its role in cue-specific learning and memory. Neurosci Biobehav Rev 2019; 107:713-728. [PMID: 31055014 PMCID: PMC6906080 DOI: 10.1016/j.neubiorev.2019.04.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
The retrosplenial cortex (RSC) contributes to spatial navigation, as well as contextual learning and memory. However, a growing body of research suggests that the RSC also contributes to learning and memory for discrete cues, such as auditory or visual stimuli. In this review, we summarize and assess the Pavlovian and instrumental conditioning experiments that have examined the role of the RSC in cue-specific learning and memory. We use the term cue-specific to refer to these putatively non-spatial conditioning paradigms that involve discrete cues. Although these paradigms emphasize behavior related to cue presentations, we note that cue-specific learning and memory always takes place against a background of contextual stimuli. We review multiple ways by which contexts can influence responding to discrete cues and suggest that RSC contributions to cue-specific learning and memory are intimately tied to contextual learning and memory. Indeed, although the RSC is involved in several forms of cue-specific learning and memory, we suggest that many of these can be linked to processing of contextual stimuli.
Collapse
Affiliation(s)
- Travis P Todd
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, NH, 03755, USA.
| | - Danielle I Fournier
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, NH, 03755, USA
| | - David J Bucci
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, NH, 03755, USA
| |
Collapse
|
14
|
Sigwald EL, Bignante EA, de Olmos S, Lorenzo A. Fear-context association during memory retrieval requires input from granular to dysgranular retrosplenial cortex. Neurobiol Learn Mem 2019; 163:107036. [PMID: 31201928 DOI: 10.1016/j.nlm.2019.107036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Accepted: 06/12/2019] [Indexed: 01/10/2023]
Abstract
The contribution of the granular (area 29, A29) and dysgranular (area 30, A30) subdivisions of the retrosplenial cortex (RSC) to contextual fear memory (CFM) retrieval remains elusive. Here, intact and orchiectomized (ORC) male rats received an intraperitoneal (I.P.) injection of saline (control) or 5 mg/Kg MK801 after training and memory formation. In ORC, but not in intact males, this MK801 treatment selectively induces overt loss of neurons in layers IV-Va of A29 (A29MK801 neurons) (Sigwald et al., 2016). Compared to ORC-saline, ORC-MK801 rats showed impaired CFM retrieval in an A-B-A design for contextual fear conditioning (CFC), however context recognition was not affected. In ORC-MK801 rats, neither novel object recognition nor object-in-context discrimination were impaired, further indicating that A29MK801 neurons are not required for contextual recognition. Elevated plus maze test showed that anxiety-like behavior was not affected in ORC-MK801 animals, suggesting that loss of A29MK801 neurons does not affect the emotional state that could impair freezing during test. Importantly, in a sensory preconditioning test, higher order CFM retrieval was abolished in ORC-MK801, but not in male-MK801. Collectively, these observations indicate that A29MK801 neurons are critically required for retrieving fear-context association. For dissecting the anatomofunctional contribution of A29MK801 neurons to CFM retrieval, expression of c-Fos and Egr-1 was used to map brain-wide neuronal activity. In control male rats CFC and CFM retrieval was associated with significant enhancement of both proteins in limbic structures and A30, but not in A29, suggesting that neurons in A30 and limbic structures encode and store the associative experience. Notably, in ORC but not in intact males, MK801 impairs CFM retrieval and expression of c-Fos and Egr-1 proteins in A30, without affecting their expression in limbic structures. Thus, the loss of A29MK801 neurons after CFM formation precludes activation of associative neurons in A30, impairing CFM recall. FluoroGold retrograde track-tracing confirmed that A29MK801 neurons project to A30. Silver staining provide evidence that MK801 in ORC rats induces axonal deafferentation of A29MK801 neuron in A30. Collectively, our experiments provide the first evidence that A30 neurons participate in encoding and storing CFM while A29 is required for their activation during recall.
Collapse
Affiliation(s)
- Eric L Sigwald
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016 Córdoba, Argentina
| | - Elena A Bignante
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016 Córdoba, Argentina; Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
| | - Soledad de Olmos
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016 Córdoba, Argentina
| | - Alfredo Lorenzo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, Córdoba, Argentina.
| |
Collapse
|
15
|
Smith DM, Miller AMP, Vedder LC. The retrosplenial cortical role in encoding behaviorally significant cues. Behav Neurosci 2018; 132:356-365. [PMID: 30070553 DOI: 10.1037/bne0000257] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The retrosplenial cortex (RSC) has recently begun to gain widespread interest because of its anatomical connectivity with other well-known memory structures, such as the hippocampus and anterior thalamus, and its role in spatial, contextual, and episodic memory. Although much of the current work on the RSC is focused on spatial cognition, there is also an extensive literature that shows that the RSC plays a critical role in a variety of conditioning tasks that have no obvious spatial component. Many of these studies suggest that the RSC is involved in identifying and encoding behaviorally significant cues, particularly those cues that predict reinforcement or the need for a behavioral response. Consistent with this idea, recent studies have shown that RSC neurons also encode cues in spatial navigation tasks. In this article, we review these findings and suggest that the encoding of cues is an important component of the RSC contribution to many forms of learning. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
|