1
|
Cioccarelli L, Lenihan JA, Erwin LG, Young PW. Differential neuronal functions of LNX1 and LNX2 revealed by behavioural analysis in single and double knockout mice. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:13. [PMID: 40269869 PMCID: PMC12020136 DOI: 10.1186/s12993-025-00276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Ligand of NUMB protein-X 1 (LNX1) and LNX2 proteins are closely related PDZ domain-containing E3 ubiquitin ligases that interact with and potentially modulate numerous synaptic and neurodevelopmentally important proteins. While both LNX1 and LNX2 are expressed in neurons, it is noteworthy that neuronal LNX1 isoforms lack the catalytic domain responsible for ubiquitination of substrates. Thus, the shared interaction partners of LNX1 and LNX2 might be differentially regulated by these proteins, with LNX1 acting as a stabilizing scaffold while LNX2 may promote their ubiquitination and degradation. Despite the identification of many LNX interacting proteins and substrates, our understanding of the distinct in vivo functions of LNX1 and LNX2 remains very incomplete. RESULTS We previously reported that mice lacking both LNX1 in the central nervous system and LNX2 globally exhibit decreased anxiety-related behaviour. Here we significantly extend this work by examining anxiety-related and risk-taking behaviours in Lnx1-/- and Lnx2-/- single knockout animals for the first time and by analysing previously unexplored aspects of behaviour in both single and double knockout animals. While the absence of both LNX1 and LNX2 contributes to the decreased anxiety-related behaviour of double knockout animals in the open field and elevated plus maze tests, the elimination of LNX2 plays a more prominent role in altered behaviour in the dark-light emergence test and wire beam bridge risk-taking paradigms. By contrast, Lnx knockout mice of all genotypes were indistinguishable from wildtype animals in the marble burying, stress-induced hyperthermia and novel object recognition tests. Analysis of the ultrasonic vocalizations of pups following maternal separation revealed significant differences in call properties and vocal repertoire for Lnx1-/- and Lnx1-/-;Lnx2-/- double knockout animals. Finally, decreased body weight previously noted in double knockout animals could be attributed largely to Lnx1 gene knockout. CONCLUSIONS These results identify specific roles of LNX1 and LNX2 proteins in modulating distinct aspects of anxiety and risk-taking behaviour and social communication in mice. They also reveal an unexpected role for neuronally expressed LNX1 isoforms in determining body weight. These novel insights into the differential neuronal functions of LNX1 and LNX2 proteins provide a foundation for mechanistic studies of these phenomena.
Collapse
Affiliation(s)
- Laura Cioccarelli
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Joan A Lenihan
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Leah G Erwin
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Paul W Young
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
2
|
Gener T, Hidalgo-Nieves S, López-Cabezón C, Puig MV. Neural Mechanism of 5-HT4R-Mediated Memory Enhancement in Hippocampal-Prefrontal Circuits in a Mouse Model of Schizophrenia. Int J Mol Sci 2025; 26:3659. [PMID: 40332153 PMCID: PMC12026806 DOI: 10.3390/ijms26083659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
We investigated the cellular and neurophysiological mechanisms underlying the pro-cognitive effects of 5-HT4R activation in hippocampal-prefrontal pathways. Our findings show that, in addition to pyramidal neurons, 30-60% of parvalbumin+ interneurons in the CA1, CA3, and dentate gyrus (DG) of the hippocampus and the anterior cingulate (ACC), prelimbic (PL), and infralimbic (IL) regions of the prefrontal cortex co-express 5-HT4Rs. Additionally, 15% of somatostatin+ interneurons in CA1 and CA3 express 5-HT4Rs. Partial 5-HT4R agonist RS-67333 (1 mg/kg, i.p.) exerted anxiolytic effects and ameliorated short-term (3-min) and long-term (24-h) memory deficits in a mouse model of schizophrenia-like cognitive impairment induced by sub-chronic phencyclidine (sPCP) but did not enhance memory in healthy mice. At the neurophysiological level, RS-67333 normalized sPCP-induced disruptions in hippocampal-prefrontal neural dynamics while having no effect in healthy animals. Specifically, sPCP increased delta oscillations in CA1 and PL, leading to aberrant delta-high-frequency coupling in CA1 and delta-high-gamma coupling in PL. RS-67333 administration attenuated this abnormal delta synchronization without altering phase coherence or signal directionality within the circuit. Collectively, these results highlight the therapeutic potential of 5-HT4R activation in pyramidal, parvalbumin+, and somatostatin+ neurons of hippocampal-prefrontal pathways for mitigation of cognitive and negative symptoms associated with schizophrenia.
Collapse
Affiliation(s)
- Thomas Gener
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona, CSIC, 08036 Barcelona, Spain; (T.G.); (S.H.-N.); (C.L.-C.)
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Spain
| | - Sara Hidalgo-Nieves
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona, CSIC, 08036 Barcelona, Spain; (T.G.); (S.H.-N.); (C.L.-C.)
| | - Cristina López-Cabezón
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona, CSIC, 08036 Barcelona, Spain; (T.G.); (S.H.-N.); (C.L.-C.)
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Spain
| | - Maria Victoria Puig
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona, CSIC, 08036 Barcelona, Spain; (T.G.); (S.H.-N.); (C.L.-C.)
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
3
|
Mundinger C, Schulz NKE, Singh P, Janz S, Schurig M, Seidemann J, Kurtz J, Müller C, Schielzeth H, von Kortzfleisch VT, Richter SH. Testing the reproducibility of ecological studies on insect behavior in a multi-laboratory setting identifies opportunities for improving experimental rigor. PLoS Biol 2025; 23:e3003019. [PMID: 40261831 PMCID: PMC12013911 DOI: 10.1371/journal.pbio.3003019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
The reproducibility of studies involving insect species is an underexplored area in the broader discussion about poor reproducibility in science. Our study addresses this gap by conducting a systematic multi-laboratory investigation into the reproducibility of ecological studies on insect behavior. We implemented a 3 × 3 experimental design, incorporating three study sites, and three independent experiments on three insect species from different orders: the turnip sawfly (Athalia rosae, Hymenoptera), the meadow grasshopper (Pseudochorthippus parallelus, Orthoptera), and the red flour beetle (Tribolium castaneum, Coleoptera). Using random-effect meta-analysis, we compared the consistency and accuracy of treatment effects on insect behavioral traits across replicate experiments. We successfully reproduced the overall statistical treatment effect in 83% of the replicate experiments, but overall effect size replication was achieved in only 66% of the replicates. Thus, though demonstrating sufficient reproducibility in some measures, this study also provides the first experimental evidence for cases of poor reproducibility in insect experiments. Our findings further show that reasons causing poor reproducibility established in rodent research also hold for other study organisms and research questions. We believe that a rethinking of current best practices is required to face reproducibility issues in insect studies but also across disciplines. Specifically, we advocate for adopting open research practices and the implementation of methodological strategies that reduce bias and problems arising from over-standardization. With respect to the latter, the introduction of systematic variation through multi-laboratory or heterogenized designs may contribute to improved reproducibility in studies involving any living organisms.
Collapse
Affiliation(s)
- Carolin Mundinger
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Nora K. E. Schulz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Pragya Singh
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Steven Janz
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Maximilian Schurig
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jacob Seidemann
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and Bielefeld, Germany
| | - Holger Schielzeth
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and Bielefeld, Germany
| | | | - S. Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and Bielefeld, Germany
| |
Collapse
|
4
|
Swiercz AP, Tsuda MC, Cameron HA. The curious interpretation of novel object recognition tests. Trends Neurosci 2025; 48:250-256. [PMID: 40087109 DOI: 10.1016/j.tins.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/21/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
Novel object recognition tasks are commonly used to assess memory in rodents. These tests rely on an innate preference for exploring objects that are new or have been moved or changed. However, this preference, while normally seen in control conditions, is not immutable. Stressful experiences as well as lesions and genetic mutations can lead mice and rats to show clear preferences for exploring familiar objects and familiar locations. This opinion article discusses the evidence for changes in novelty preference, implications of this lability for assessing memory, and the significance of shifts in novelty preference as a readout of changes in curiosity with implications in approach-avoidance behavior and explore-exploit decision-making. Finally, we provide some recommendations for reporting and interpreting novelty preference task findings moving forward.
Collapse
Affiliation(s)
- Adam P Swiercz
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mumeko C Tsuda
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Haller OJ, Semendric I, Collins-Praino LE, Whittaker AL, George RP. Changes in cognition and astrocytic reactivity in a female rodent model of chemotherapy-induced cognitive impairment are variable both acutely and chronically. Behav Brain Res 2025; 480:115391. [PMID: 39667647 DOI: 10.1016/j.bbr.2024.115391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Chemotherapy-induced cognitive impairment (CICI) affects female cancer survivors, with impairment recognised in populations such as breast cancer survivors, where 1 in 3 are affected. Impairments include issues with memory, learning, concentration, and processing speed, negatively impacting quality of life. Several mechanisms are proposed to drive these, with evidence implicating neuroinflammation as a key contributor. However, the time course over which impairments occur is less well-established, with fewer longer-term time-points investigated. This study aimed to understand the evolution of cognitive changes following methotrexate (MTX) or 5- fluorouracil (5-FU) chemotherapy, assessing three time-points: acute (96-hour), sub-acute (31-days) and chronic (93-days). Further, we investigated whether alterations in cognition were associated with concomitant changes in astrocytic reactivity. Female Sprague Dawley rats received two intraperitoneal injections of MTX, 5-FU or saline and were assessed on the novel object recognition, 5-choice serial reaction time task and Barnes maze. Hippocampal and prefrontal cortex tissue was examined for GFAP expression. Both MTX and 5-FU exposure were associated with spatial memory, task acquisition, and processing speed impairments at 31-days, with impairment ameliorated by 93-days. While both MTX and 5-FU induced changes in GFAP expression across various time-points and regions, with most notable changes at 96-hours, 5-FU exhibited expression changes in the hippocampus consistently across all time-points. These results provide valuable insight into the complexity of a mediator of neuroinflammation in CICI. While neuroinflammation may be a promising therapeutic target, further markers should be assessed to elucidate the full neuroimmune response, and thus which aspects to target and when, to ensure optimal outcomes for cancer patients treated with chemotherapy.
Collapse
Affiliation(s)
- Olivia J Haller
- School of Biomedicine, The University of Adelaide, South Australia, Australia.
| | - Ines Semendric
- School of Biomedicine, The University of Adelaide, South Australia, Australia
| | | | - Alexandra L Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, South Australia, Australia
| | - Rebecca P George
- School of Biomedicine, The University of Adelaide, South Australia, Australia; School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, South Australia, Australia
| |
Collapse
|
6
|
Song X, Xia Z, Martinez D, Xu B, Spritzer Z, Zhang Y, Nugent E, Ho Y, Terzic B, Zhou Z. Independent genetic strategies define the scope and limits of CDKL5 deficiency disorder reversal. Cell Rep Med 2025; 6:101926. [PMID: 39855191 PMCID: PMC11866500 DOI: 10.1016/j.xcrm.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/18/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a neurodevelopmental syndrome caused by mutations in the X-linked CDKL5 gene. The early onset of CDD suggests that CDKL5 is essential during development, but post-developmental re-expression rescues multiple CDD-related phenotypes in hemizygous male mice. Since most patients are heterozygous females, studies in clinically relevant female models are essential. Here, we systematically compare phenotype reversal across age and sex using two independent mouse models of CDD. We find that early re-activation of endogenous Cdkl5 in heterozygous females reverses most phenotypes, except working memory. Later re-expression improves several traits but has limited effects on cognitive function. Seizure prevention is more effective with early intervention in heterozygous females but becomes limited after seizure onset. These findings demonstrate the robust potential of CDKL5 re-expression to reverse CDD-related phenotypes in both sexes while underscoring the critical impact of age and disease stage in designing clinical trials.
Collapse
Affiliation(s)
- Xie Song
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Zijie Xia
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Dayne Martinez
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Bing Xu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong 250000, China
| | - Zachary Spritzer
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Yanjie Zhang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Erin Nugent
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Yugong Ho
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Barbara Terzic
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; The Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19102, USA.
| |
Collapse
|
7
|
Kougias DG, Atillasoy E, Southall MD, Scialli AR, Ejaz S, Chu C, Jeminiwa BO, Massarsky A, Unice KM, Schaeffer TH, Kovochich M. A quantitative weight-of-evidence review of preclinical studies examining the potential developmental neurotoxicity of acetaminophen. Crit Rev Toxicol 2025; 55:124-178. [PMID: 39982125 DOI: 10.1080/10408444.2024.2442344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 02/22/2025]
Abstract
Acetaminophen [paracetamol; N-acetyl-para-aminophenol (APAP)] is an antipyretic/analgesic commonly used in the treatment of fever and mild to moderate pain, headache, myalgia, and dysmenorrhea. Recent literature has questioned the safety of acetaminophen use during pregnancy, with an emphasis on whether exposure to the developing nervous system results in behavioral changes consistent with autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and/or other cognitive deficits in the offspring. No previous review has used a fully detailed, quantitative weight-of-evidence (QWoE) approach to critically examine the preclinical acetaminophen data with regards to potential developmental neurotoxicity (DNT). Following regulatory guidance, a QWoE framework using prespecified scoring criteria was developed consistent with previous approaches to characterize potential adverse DNT outcomes with considerations for biological relevance of the response to adverse outcomes (outcome score) and the strength of methods and study design (methods score). Considerations for the methods score included (1) experimental design, (2) details/reliability of measurement(s), (3) data transparency, and (4) translational/methodological relevance. Considerations for the outcome score included response-related (1) statistical significance, (2) dose-response, (3) relevance/reliability/magnitude, (4) plausibility, and (5) translational relevance, including consideration of systemic toxicity/hepatotoxicity and therapeutic and/or non-systemically toxic doses and durations of use. Application of this QWoE framework to the 34 in vivo studies identified that assess the potential DNT of acetaminophen resulted in 188 QWoE entries documented across 11 DNT endpoints: social behavior, stereotypic behavior, behavioral rigidity, attention/impulsivity, hyperactivity, anxiety-like behavior, sensorimotor function, spatial learning/memory, nonspatial learning/memory, neuroanatomy, and neurotransmission. For each endpoint, the mean outcome score and methods score were calculated for total entries and for entries segregated by sex to assist in determining data quality and potential adversity. Informed by all 188 entries, the QWoE analysis demonstrated data of moderate quality showing no consistent evidence of DNT in male and female rodents following exposure to acetaminophen at therapeutic and/or nonsystemically toxic doses. Although some of the DNT endpoints (behavioral rigidity, attention/impulsivity, spatial learning/memory, neuroanatomy, and neurotransmission) generally displayed a more limited dataset and/or relatively lower data quality, similar conclusions were drawn based on results indicating a lack of biological relevance and reliability of reported adverse effects. Overall, this QWoE analysis on the preclinical in vivo data demonstrates no consistent evidence of adverse effects following developmental exposure to acetaminophen at therapeutic and/or non-systemically toxic doses on the structure and function of the nervous system, including neuroanatomical, neurotransmission, and behavioral endpoints.
Collapse
Affiliation(s)
| | - Evren Atillasoy
- Kenvue Medical Clinical and Safety Sciences, Fort Washington, PA, USA
| | | | - Anthony R Scialli
- Reproductive Toxicology Center, A Non-Profit Foundation, Washington, DC, USA
| | - Sadaff Ejaz
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | - Christopher Chu
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | | | | | | | | | | |
Collapse
|
8
|
Schweinfurth MK, Frommen JG. Beyond the null: Recognizing and reporting true negative findings. iScience 2025; 28:111676. [PMID: 39872711 PMCID: PMC11771205 DOI: 10.1016/j.isci.2024.111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Science is based on ideas that might be true or false in describing reality. In order to discern between these two, scientists conduct studies that can reveal evidence for an idea, i.e., positive findings, or not, i.e., negative or null findings. The outcome of these studies can either be true, i.e., reflecting the real world, or false. Much has been said about disentangling true from false positive findings and the danger of a publication bias toward positive findings. Here, we argue that publishing negative findings is important to provide an accurate picture of the real world. At the same time, we highlight that a cautious approach should be taken to minimize the impact of publishing false negative findings, which has received limited attention so far. We discuss sources of false negative findings, using experimental and observational animal behavior and cognition studies as examples, which often differ from those of false positive findings. We conclude by recommending strategies for rigorous studies, such as conducting positive controls, selecting diverse samples, designing engaging protocols, and clearly labeling negative findings. These practices will lead to studies that contribute to our knowledge, regardless of whether they result in positive or negative findings.
Collapse
Affiliation(s)
- Manon K. Schweinfurth
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| | - Joachim G. Frommen
- Department of Natural Sciences, Manchester Metropolitan University, Manchester M15GD, UK
| |
Collapse
|
9
|
Bailoo JD, Bergeson SE, Ponomarev I, Willms JO, Kisby BR, Cornwall GA, MacDonald CC, Lawrence JJ, Ganapathy V, Sivaprakasam S, Panthagani P, Trasti S, Varholick JA, Findlater M, Deonarine A. A bespoke water T-maze apparatus and protocol: an optimized, reliable, and repeatable method for screening learning, memory, and executive functioning in laboratory mice. Front Behav Neurosci 2024; 18:1492327. [PMID: 39720305 PMCID: PMC11666379 DOI: 10.3389/fnbeh.2024.1492327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/16/2024] [Indexed: 12/26/2024] Open
Abstract
The Morris Water Maze (MWM) is the most commonly used assay for evaluating learning and memory in laboratory mice. Despite its widespread use, contemporary reviews have highlighted substantial methodological variation in experimental protocols and that the associated testing procedures are acutely (each trial) and chronically (testing across days) stressful; stress impairs attention, memory consolidation and the retrieval of learned information. Moreover, the interpretation of behavior within the MWM is often difficult because of wall hugging, non-spatial swim strategies, floating, and jumping off the escape platform. Together, these issues may compromise the reproducibility, generalizability, and predictability of experimental results, as well as animal welfare. To address these issues, and as an initial proof-of-principle, we first narrowed the spatial dimensions of the MWM by using a T-insert, which constrained and reduced the overall length of time/distance that the animal must swim in order to navigate to the escape platform, thus reducing stress and off-task behavior. Given the robust performance observed across spatial acquisition (learning and memory) as well as during reversal learning (executive function), we further reduced (by 43%) the overall distance and time that the animal must swim in order to find the escape platform in a bespoke standalone Water T-Maze (WTM). We show, across five experiments, procedural refinements to our protocol and demonstrate robust, reliable and reproducible indicators of learning, memory and executive functioning in a task that is also significantly more efficient (3 days of testing within the WTM vs. 11 days of testing within the MWM). Taken together, our WTM apparatus and protocol are a significant improvement over other water-based apparatuses and protocols for evaluating learning, memory, and executive functioning in laboratory mice.
Collapse
Affiliation(s)
- Jeremy Davidson Bailoo
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Susan E. Bergeson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Joshua O. Willms
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brent R. Kisby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Gail A. Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Clinton C. MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sathish Sivaprakasam
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Praneetha Panthagani
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Scott Trasti
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Justin A. Varholick
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Michael Findlater
- Department of Chemistry and Biochemistry, University of California Merced, Merced, CA, United States
| | - Amrika Deonarine
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
10
|
Power SC, Michalik MJ, Kent BA, Mistlberger RE. Photoperiod, food restriction and memory for objects and places in mice. Sci Rep 2024; 14:21566. [PMID: 39294223 PMCID: PMC11411102 DOI: 10.1038/s41598-024-72548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
The suprachiasmatic nucleus (SCN) contains a population of cell-autonomous circadian oscillators essential for entrainment to daily light-dark (LD) cycles. Synchrony among SCN oscillators is modified by photoperiod and determines functional properties of SCN clock cycling, including its amplitude, phase angle of entrainment, and free running periodicity (τ). For many species, encoding of daylength in SCN output is critical for seasonal regulation of metabolism and reproduction. C57BL/6 mice do not show seasonality in these functions, yet do show photoperiodic modulation of SCN clock output. The significance of this for brain systems and functions downstream from the SCN in these species is largely unexplored. C57BL/6 mice housed in a long-day photoperiod have been reported to perform better on tests of object, spatial and fear memory compared to mice in a standard 12 h photoperiod. We previously reported that encoding of photoperiod in SCN output, evident in τ in constant dark (DD), can be blocked by limiting food access to a 4 h mealtime in the light period. To determine whether this might also block the effect of long days on memory, mice entrained to 18 h:6 h (L18) or 6 h:18 h (L6) LD cycles were tested for 24 h object memory (novel object preference, NOP) and spatial working memory (Y-maze spontaneous alternation, SA), at 4 times of day, first with food available ad libitum and then during weeks 5-8 of daytime restricted feeding. Photoperiod modified τ as expected, but did not affect performance on the NOP and SA tests, either before or during restricted feeding. NOP performance did improve in the restricted feeding condition in both photoperiods, eliminating a weak time of day effect evident with food available ad-libitum. These results highlight benefits of restricted feeding on cognitive function, and suggest a dose-response relationship between photoperiod and memory, with no benefits at daylengths up to 18 h.
Collapse
Affiliation(s)
- Sarah C Power
- Department of Psychology, Simon Fraser University, Burnaby, BC, V5A1S6, Canada
| | - Mateusz J Michalik
- Department of Psychology, Simon Fraser University, Burnaby, BC, V5A1S6, Canada
| | - Brianne A Kent
- Department of Psychology, Simon Fraser University, Burnaby, BC, V5A1S6, Canada
| | - Ralph E Mistlberger
- Department of Psychology, Simon Fraser University, Burnaby, BC, V5A1S6, Canada.
| |
Collapse
|
11
|
França TFA. Exploring undiscovered public knowledge in neuroscience. Eur J Neurosci 2024; 60:4723-4737. [PMID: 38782707 DOI: 10.1111/ejn.16396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
In this essay, I argue that the combination of research synthesis and philosophical methods can fill an important methodological gap in neuroscience. While experimental research and formal modelling have seen their methods progressively increase in rigour and sophistication over the years, the task of analysing and synthesizing the vast literature reporting new results and models has lagged behind. The problem is aggravated because neuroscience has grown and expanded into a vast mosaic of related but partially independent subfields, each with their own literatures. This fragmentation not only makes it difficult to see the full picture emerging from neuroscience research but also limits progress in individual subfields. The current neuroscience literature has the perfect conditions to create what the information scientist Don Swanson called "undiscovered public knowledge"-knowledge that exists in the mutual implications of different published pieces of information but that is nonetheless undiscovered because those pieces have not been explicitly connected. Current methods for rigorous research synthesis, such as systematic reviews and meta-analyses, mostly focus on combining similar studies and are not suited for exploring undiscovered public knowledge. To that aim, they need to be adapted and supplemented. I argue that successful exploration of the hidden implications in the neuroscience literature will require the combination of these adapted research synthesis methods with philosophical methods for rigorous (and creative) analysis and synthesis.
Collapse
Affiliation(s)
- Thiago F A França
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Pádua MS, Guil-Guerrero JL, Lopes PA. Behaviour Hallmarks in Alzheimer's Disease 5xFAD Mouse Model. Int J Mol Sci 2024; 25:6766. [PMID: 38928472 PMCID: PMC11204382 DOI: 10.3390/ijms25126766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The 5xFAD transgenic mouse model widely used in Alzheimer's disease (AD) research recapitulates many AD-related phenotypes with a relatively early onset and aggressive age-dependent progression. Besides developing amyloid peptide deposits alongside neuroinflammation by the age of 2 months, as well as exhibiting neuronal decline by the age of 4 months that intensifies by the age of 9 months, these mice manifest a broad spectrum of behavioural impairments. In this review, we present the extensive repertoire of behavioural dysfunctions in 5xFAD mice, organised into four categories: motor skills, sensory function, learning and memory abilities, and neuropsychiatric-like symptoms. The motor problems, associated with agility and reflex movements, as well as balance and coordination, and skeletal muscle function, typically arise by the time mice reach 9 months of age. The sensory function (such as taste, smell, hearing, and vision) starts to deteriorate when amyloid peptide buildups and neuroinflammation spread into related anatomical structures. The cognitive functions, encompassing learning and memory abilities, such as visual recognition, associative, spatial working, reference learning, and memory show signs of decline from 4 to 6 months of age. Concerning neuropsychiatric-like symptoms, comprising apathy, anxiety and depression, and the willingness for exploratory behaviour, it is believed that motivational changes emerge by approximately 6 months of age. Unfortunately, numerous studies from different laboratories are often contradictory on the conclusions drawn and the identification of onset age, making preclinical studies in rodent models not easily translatable to humans. This variability is likely due to a range of factors associated with animals themselves, housing and husbandry conditions, and experimental settings. In the forthcoming studies, greater clarity in experimental details when conducting behavioural testing in 5xFAD transgenic mice could minimise the inconsistencies and could ensure the reliability and the reproducibility of the results.
Collapse
Affiliation(s)
- Mafalda Soares Pádua
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal;
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - José L. Guil-Guerrero
- Departamento de Tecnología de Alimentos, Universidad de Almería, 04120 Almería, Spain;
| | - Paula Alexandra Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal;
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| |
Collapse
|
13
|
Brown RE. Measuring the replicability of our own research. J Neurosci Methods 2024; 406:110111. [PMID: 38521128 DOI: 10.1016/j.jneumeth.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In the study of transgenic mouse models of neurodevelopmental and neurodegenerative disorders, we use batteries of tests to measure deficits in behaviour and from the results of these tests, we make inferences about the mental states of the mice that we interpret as deficits in "learning", "memory", "anxiety", "depression", etc. This paper discusses the problems of determining whether a particular transgenic mouse is a valid mouse model of disease X, the problem of background strains, and the question of whether our behavioural tests are measuring what we say they are. The problem of the reliability of results is then discussed: are they replicable between labs and can we replicate our results in our own lab? This involves the study of intra- and inter- experimenter reliability. The variables that influence replicability and the importance of conducting a complete behavioural phenotype: sensory, motor, cognitive and social emotional behaviour are discussed. Then the thorny question of failure to replicate is examined: Is it a curse or a blessing? Finally, the role of failure in research and what it tells us about our research paradigms is examined.
Collapse
Affiliation(s)
- Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
14
|
da Silva RPB, Pinheiro IL, da Silva RKB, Moretti EC, de Oliveira Neto OB, Ferraz-Pereira K, Galindo LCM. Social isolation and post-weaning environmental enrichment effects on rat emotional behavior and serotonergic system. Int J Dev Neurosci 2024; 84:265-280. [PMID: 38526313 DOI: 10.1002/jdn.10324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
Social isolation (SI) is related to adverse neurobehavioral effects and neurochemical changes when it occurs early in development. On the other hand, environmental enrichment (EE) is associated with a reduction in anxiety-like and depression-like behavior, as well as an increase in serotonin (5-HT) levels in the prefrontal cortex and hippocampus in rodents. This study systematically reviewed the effects of SI and EE on emotional behavior and serotonergic system components in rats after weaning. Primary experimental studies that used subgroups of rats subjected to SI, EE, and normal social conditions after weaning were considered eligible. Studies that used transgenic rodents, ex vivo studies, in vitro studies, human research, or in silico studies were ineligible. Two authors completed searches in Medline/PubMed, LILACS, Scopus, Web of Science, EMBASE, and Open Gray. The Kappa index was calculated to assess agreement between reviewers and assess study quality. The results showed that the animals exposed to EE showed better adaptation to a new environment. Furthermore, EE increased 5-HT levels in the hippocampus and prefrontal cortex of rodents. Thus, it appears that an EE during the critical period of development may reduce anxiety/depression-like behaviors, as well as increase long-term neurotransmitter response.
Collapse
Affiliation(s)
- Roxana Patrícia Bezerra da Silva
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Isabeli Lins Pinheiro
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
- Nutrition and Phenotypic Plasticity Study Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Regina Katiuska Bezerra da Silva
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | | | | - Kelli Ferraz-Pereira
- Nutrition and Phenotypic Plasticity Study Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
- Department Speech Therapy, Federal University of Pernambuco, Recife, Brazil
| | - Lígia Cristina Monteiro Galindo
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
- Nutrition and Phenotypic Plasticity Study Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
- Department of Anatomy, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
15
|
Zhang K, Chang Q, Li F, Li Y, Ding R, Yu Y. The locus coeruleus-dorsal hippocampal CA1 pathway is involved in depression-induced perioperative neurocognitive disorders in adult mice. CNS Neurosci Ther 2024; 30:e14406. [PMID: 37577850 PMCID: PMC10848051 DOI: 10.1111/cns.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Patients undergoing surgical anesthesia increasingly suffer from preoperative depression. Clinical studies have shown that depression is a risk factor for perioperative neurocognitive disorders (PNDs) in elder patients. However, the underlying mechanism, especially at the neural circuit level, remains poorly understood. METHODS Right carotid artery separation under sevoflurane and chronic social defeat stress (CSDS) in adult mice were used to establish surgical anesthesia and chronic depression models. Cognitive function was assessed by the Y maze and novel object recognition tests. A chemogenetic approach was used to modulate the locus coeruleus-dorsal hippocampal CA1 (LC-dCA1) circuit. Hippocampal synaptic alterations were evaluated by Golgi staining and whole-cell patch clamp recording. RESULTS We found that CSDS induced synaptic impairments in dorsal hippocampal CA1 pyramidal neurons and cognitive deficits in adult mice after surgery under sevoflurane. Chemogenetic activation of the LC-dCA1 pathway significantly alleviated the CSDS-induced synaptic impairments and cognitive dysfunction. On the contrary, inhibition of this pathway could mimic CSDS-induced deficits. Furthermore, we showed that dopamine played an important role in CSDS-induced PNDs in adult mice after surgery/sevoflurane. CONCLUSION Overall, our results have demonstrated a vital role for the LC-dCA1 pathway in CSDS-induced PNDs in adult mice undergoing surgery with sevoflurane anesthesia.
Collapse
Affiliation(s)
- Kai Zhang
- Department of AnesthesiologyTianjin Medical University General HospitalTianjinChina
- Tianjin Institute of AnesthesiologyTianjinChina
| | - Qianqian Chang
- School of PharmacyTianjin Medical UniversityTianjinChina
| | - Feixiang Li
- Department of AnesthesiologyTianjin Medical University General HospitalTianjinChina
- Tianjin Institute of AnesthesiologyTianjinChina
| | - Yun Li
- Department of AnesthesiologyTianjin Medical University General HospitalTianjinChina
- Tianjin Institute of AnesthesiologyTianjinChina
| | - Ran Ding
- Department of AnesthesiologyTianjin Medical University General HospitalTianjinChina
| | - Yonghao Yu
- Department of AnesthesiologyTianjin Medical University General HospitalTianjinChina
- Tianjin Institute of AnesthesiologyTianjinChina
| |
Collapse
|
16
|
Cho CH, Deyneko IV, Cordova-Martinez D, Vazquez J, Maguire AS, Diaz JR, Carbonell AU, Tindi JO, Cui MH, Fleysher R, Molholm S, Lipton ML, Branch CA, Hodgson L, Jordan BA. ANKS1B encoded AIDA-1 regulates social behaviors by controlling oligodendrocyte function. Nat Commun 2023; 14:8499. [PMID: 38129387 PMCID: PMC10739966 DOI: 10.1038/s41467-023-43438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Heterozygous deletions in the ANKS1B gene cause ANKS1B neurodevelopmental syndrome (ANDS), a rare genetic disease characterized by autism spectrum disorder (ASD), attention deficit/hyperactivity disorder, and speech and motor deficits. The ANKS1B gene encodes for AIDA-1, a protein that is enriched at neuronal synapses and regulates synaptic plasticity. Here we report an unexpected role for oligodendroglial deficits in ANDS pathophysiology. We show that Anks1b-deficient mouse models display deficits in oligodendrocyte maturation, myelination, and Rac1 function, and recapitulate white matter abnormalities observed in ANDS patients. Selective loss of Anks1b from the oligodendrocyte lineage, but not from neuronal populations, leads to deficits in social preference and sensory reactivity previously observed in a brain-wide Anks1b haploinsufficiency model. Furthermore, we find that clemastine, an antihistamine shown to increase oligodendrocyte precursor cell maturation and central nervous system myelination, rescues deficits in social preference in 7-month-old Anks1b-deficient mice. Our work shows that deficits in social behaviors present in ANDS may originate from abnormal Rac1 activity within oligodendrocytes.
Collapse
Affiliation(s)
- Chang Hoon Cho
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Human Pathobiology and OMNI Reverse Translation, Genentech, Inc., San Francisco, CA, USA
| | - Ilana Vasilisa Deyneko
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dylann Cordova-Martinez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juan Vazquez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anne S Maguire
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jenny R Diaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abigail U Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jaafar O Tindi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min-Hui Cui
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Roman Fleysher
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sophie Molholm
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael L Lipton
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Craig A Branch
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
17
|
Seyed-Razavi Y, Kenyon BM, Qiu F, Harris DL, Hamrah P. A novel animal model of neuropathic corneal pain-the ciliary nerve constriction model. Front Neurosci 2023; 17:1265708. [PMID: 38144209 PMCID: PMC10749205 DOI: 10.3389/fnins.2023.1265708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Neuropathic pain arises as a result of peripheral nerve injury or altered pain processing within the central nervous system. When this phenomenon affects the cornea, it is referred to as neuropathic corneal pain (NCP), resulting in pain, hyperalgesia, burning, and photoallodynia, severely affecting patients' quality of life. To date there is no suitable animal model for the study of NCP. Herein, we developed an NCP model by constriction of the long ciliary nerves innervating the eye. Methods Mice underwent ciliary nerve constriction (CNC) or sham procedures. Safety was determined by corneal fluorescein staining to assess ocular surface damage, whereas Cochet-Bonnet esthesiometry and confocal microscopy assessed the function and structure of corneal nerves, respectively. Efficacy was assessed by paw wipe responses within 30 seconds of applying hyperosmolar (5M) saline at Days 3, 7, 10, and 14 post-constriction. Additionally, behavior was assessed in an open field test (OFT) at Days 7, 14, and 21. Results CNC resulted in significantly increased response to hyperosmolar saline between groups (p < 0.0001), demonstrating hyperalgesia and induction of neuropathic pain. Further, animals that underwent CNC had increased anxiety-like behavior in an open field test compared to controls at the 14- and 21-Day time-points (p < 0.05). In contrast, CNC did not result in increased corneal fluorescein staining or decreased sensation as compared to sham controls (p > 0.05). Additionally, confocal microscopy of corneal whole-mounts revealed that constriction resulted in only a slight reduction in corneal nerve density (p < 0.05), compared to naïve and sham groups. Discussion The CNC model induces a pure NCP phenotype and may be a useful model for the study of NCP, recapitulating features of NCP, including hyperalgesia in the absence of ocular surface damage, and anxiety-like behavior.
Collapse
Affiliation(s)
- Yashar Seyed-Razavi
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Fangfang Qiu
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Deshea L. Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
- Departments of Neuroscience and Immunology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
18
|
Centanni SW, Smith AC. PiRATeMC: A highly flexible, scalable, and low-cost system for obtaining high quality video recordings for behavioral neuroscience. ADDICTION NEUROSCIENCE 2023; 8:100108. [PMID: 37691741 PMCID: PMC10487299 DOI: 10.1016/j.addicn.2023.100108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
With the rapidly accelerating adoption of machine-learning based rodent behavioral tracking tools, there is an unmet need for a method of acquiring high quality video data that is scalable, flexible, and relatively low-cost. Many experimenters use webcams, GoPros, or other commercially available cameras that can be expensive, offer minimal flexibility of recording parameters, and not optimized for recording rodent behavior, leading to suboptimal and inconsistent video quality. Furthermore, commercially available products are not conducive for synchronizing multiple cameras, or interfacing with third-party equipment to allow time-locking of video to other equipment such as microcontrollers for closed-loop experiments. We present a low-cost, customizable ecosystem of behavioral recording equipment, PiRATeMC (Pi-based Remote Acquisition Technology for Motion Capture) based on Raspberry Pi Camera Boards with the ability to acquire high quality recordings in bright/low light, or dark conditions under infrared light. PiRATeMC offers users control over nearly every recording parameter, and can be fine-tuned to produce optimal videos in any behavioral apparatus. This setup can be scaled up for synchronous control of any number of cameras via a self-contained network without burdening institutional network infrastructure. The Raspberry Pi is an excellent platform with a large online community designed for novice and inexperienced programmers interested in using an open-source recording system. Importantly, PiRATeMC supports TTL and serial communication, allowing for synchronization and interfacing of video recording with behavioral or other third-party equipment. In sum, PiRATeMC minimizes the cost-prohibitive nature of conducting and analyzing high quality behavioral neuroscience studies, thereby increasing accessibility to behavioral neuroscience.
Collapse
Affiliation(s)
- Samuel W. Centanni
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Alexander C.W. Smith
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29412, USA
| |
Collapse
|
19
|
Hopkins JL, Goldsmith ST, Wood SK, Nelson KH, Carter JS, Freels DL, Lewandowski SI, Siemsen BM, Denton AR, Scofield MD, Reichel CM. Perirhinal to prefrontal circuit in methamphetamine induced recognition memory deficits. Neuropharmacology 2023; 240:109711. [PMID: 37673333 PMCID: PMC10591958 DOI: 10.1016/j.neuropharm.2023.109711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Return to methamphetamine (meth) use is part of an overarching addictive disorder hallmarked by cognitive sequela and cortical dysfunction in individuals who use meth chronically. In rats, long access meth self-administration produces object recognition memory deficits due to drug-induced plasticity within the perirhinal cortex (PRH). PRH projections are numerous and include the medial prefrontal cortex (mPFC). To evaluate the role of the PRH-mPFC reciprocal circuit in novel object recognition memory, a rgAAV encoding GFP-tagged Cre recombinase was infused into the PRH or the mPFC and rats were tested for recognition memory. On test day, one group explored both familiar and novel objects. A second group explored only familiar objects. GFP and Fos expression were visualized in the mPFC or PRH. During exploration, PRH neurons receiving input from the mPFC were equally activated by exploration of novel and familiar objects. In contrast, PRH neurons that provide input to the mPFC were disproportionately activated by novel objects. Further, the percent of Fos + cells in the PRH positively correlated with recognition memory. As such, the flow of communication appears to be from the PRH to the mPFC. In agreement with this proposed directionality, chemogenetic inhibition of the PRH-mPFC circuit impaired object recognition memory, whereas chemogenetic activation in animals with a history of long access meth self-administration reversed the meth-induced recognition memory deficit. This finding informs future work aimed at understanding the role of the PRH, mPFC, and their connectivity in meth associated memory deficits. These data suggest a more complex circuitry governing recognition memory than previously indicated with anatomical or lesion studies.
Collapse
Affiliation(s)
- Jordan L Hopkins
- Reichel Laboratory, Medical University of South Carolina, Department of Neuroscience, Charleston, SC, 29425, USA
| | - Sarah T Goldsmith
- Reichel Laboratory, Medical University of South Carolina, Department of Neuroscience, Charleston, SC, 29425, USA
| | - Samuel K Wood
- Reichel Laboratory, Medical University of South Carolina, Department of Neuroscience, Charleston, SC, 29425, USA
| | - Katharine H Nelson
- Reichel Laboratory, Medical University of South Carolina, Department of Neuroscience, Charleston, SC, 29425, USA
| | - Jordan S Carter
- Reichel Laboratory, Medical University of South Carolina, Department of Neuroscience, Charleston, SC, 29425, USA
| | - Dylan L Freels
- Reichel Laboratory, Medical University of South Carolina, Department of Neuroscience, Charleston, SC, 29425, USA
| | - Stacia I Lewandowski
- Reichel Laboratory, Medical University of South Carolina, Department of Neuroscience, Charleston, SC, 29425, USA
| | - Benjamin M Siemsen
- Reichel Laboratory, Medical University of South Carolina, Department of Neuroscience, Charleston, SC, 29425, USA
| | - Adam R Denton
- Reichel Laboratory, Medical University of South Carolina, Department of Neuroscience, Charleston, SC, 29425, USA
| | - Michael D Scofield
- Reichel Laboratory, Medical University of South Carolina, Department of Neuroscience, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Reichel Laboratory, Medical University of South Carolina, Department of Neuroscience, Charleston, SC, 29425, USA.
| |
Collapse
|
20
|
Gundersen BB, O'Brien WT, Schaffler MD, Schultz MN, Tsukahara T, Lorenzo SM, Nalesso V, Luo Clayton AH, Abel T, Crawley JN, Datta SR, Herault Y. Towards Preclinical Validation of Arbaclofen (R-baclofen) Treatment for 16p11.2 Deletion Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538987. [PMID: 37745360 PMCID: PMC10515778 DOI: 10.1101/2023.05.01.538987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A microdeletion on human chromosome 16p11.2 is one of the most common copy number variants associated with autism spectrum disorder and other neurodevelopmental disabilities. Arbaclofen, a GABA(B) receptor agonist, is a component of racemic baclofen, which is FDA-approved for treating spasticity, and has been shown to alleviate behavioral phenotypes, including recognition memory deficits, in animal models of 16p11.2 deletion. Given the lack of reproducibility sometimes observed in mouse behavioral studies, we brought together a consortium of four laboratories to study the effects of arbaclofen on behavior in three different mouse lines with deletions in the mouse region syntenic to human 16p11.2 to test the robustness of these findings. Arbaclofen rescued cognitive deficits seen in two 16p11.2 deletion mouse lines in traditional recognition memory paradigms. Using an unsupervised machine-learning approach to analyze behavior, one lab found that arbaclofen also rescued differences in exploratory behavior in the open field in 16p11.2 deletion mice. Arbaclofen was not sedating and had modest off-target behavioral effects at the doses tested. Our studies show that arbaclofen consistently rescues behavioral phenotypes in 16p11.2 deletion mice, providing support for clinical trials of arbaclofen in humans with this deletion.
Collapse
Affiliation(s)
| | | | - Melanie D Schaffler
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA
| | - Maria N Schultz
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA
| | | | - Sandra Martin Lorenzo
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), Illkirch cedex, France
| | - Valerie Nalesso
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), Illkirch cedex, France
| | | | - Ted Abel
- University of Iowa, Iowa City, IA
| | - Jacqueline N Crawley
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA
| | | | - Yann Herault
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), Illkirch cedex, France
| |
Collapse
|
21
|
Pericleous K, McIntyre C, Fuller M. Neurocognitive testing in a murine model of mucopolysaccharidosis type IIIA. Mol Genet Metab Rep 2023; 36:100985. [PMID: 37332488 PMCID: PMC10276283 DOI: 10.1016/j.ymgmr.2023.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA) is an inherited metabolic disorder caused by a lysosomal enzyme deficiency resulting in heparan sulphate (HS) accumulation and manifests with a progressive neurodegenerative phenotype. A naturally occurring MPS IIIA mouse model is invaluable for preclinical evaluation of potential treatments but the ability to effectively assess neurological function has proved challenging. Here, the aim was to evaluate a set of behaviour tests for their reliability in assessing disease progression in the MPS IIIA mouse model. Compared to wild-type (WT) mice, MPS IIIA mice displayed memory and learning deficits in the water crossmaze from mid-stage disease and locomotor impairment in the hind-limb gait assessment at late-stage disease, supporting previous findings. Declined wellbeing was also observed in the MPS IIIA mice via burrowing and nest building evaluation at late-stage disease compared to WT mice, mirroring the progressive nature of neurological disease. Excessive HS accumulation observed in the MPS IIIA mouse brain from 1 month of age did not appear to manifest as abnormal behaviours until at least 6 months of age suggesting there may be a threshold of HS accumulation before measurable neurocognitive decline. Results obtained from the open field and three-chamber sociability test are inconsistent with previous studies and do not reflect MPS IIIA patient disease progression, suggesting these assessments are not reliable. In conclusion, water cross-maze, hind-limb gait, nest building and burrowing, are promising assessments in the MPS IIIA mouse model, which produce consistent results that mimic the human disease.
Collapse
Affiliation(s)
- Kleopatra Pericleous
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, 72 King William Road, North Adelaide 5006, Australia
- School of Biological Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Chantelle McIntyre
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, 72 King William Road, North Adelaide 5006, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, 72 King William Road, North Adelaide 5006, Australia
- School of Biological Sciences, University of Adelaide, Adelaide 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide 5000, Australia
| |
Collapse
|
22
|
Hylander BL, Qiao G, Cortes Gomez E, Singh P, Repasky EA. Housing temperature plays a critical role in determining gut microbiome composition in research mice: Implications for experimental reproducibility. Biochimie 2023; 210:71-81. [PMID: 36693616 PMCID: PMC10953156 DOI: 10.1016/j.biochi.2023.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Preclinical mouse models are widely used for studying mechanisms of disease and responses to therapeutics, however there is concern about the lack of experimental reproducibility and failure to predict translational success. The gut microbiome has emerged as a regulator of metabolism and immunological processes in health and disease. The gut microbiome of mice differs by supplier and this affects experimental outcomes. We have previously reported that the mandated, mildly cool housing temperature for research mice (22°-26 °C) induces chronic adrenergic stress which suppresses anti-tumor immunity and promotes tumor growth compared to thermoneutral housing (30 °C). Therefore, we wondered how housing temperature affects the microbiome. Here, we demonstrate that the gut microbiome of BALB/c mice is easily modulated by a few degrees difference in temperature. Our results reveal significant differences between the gut microbiome of mice housed at 22°-23 °C vs. 30 °C. Although the genera vary, we consistently observed an enrichment of members of the family Lachnospiraceae when mice are housed at 22°-23 °C. These findings demonstrate that adrenergic stress and need for increased energy harvest to support thermogenesis, in addition to other factors such as diet, modulates the gut microbiome and this could be one mechanism by which housing temperature affects experimental outcomes. Additionally, tumor growth in mice housed at 30 °C also increases the proportion of Lachnospiraceae. The idea that stress can alter the gut microbiome and cause differences in experimental outcomes is applicable to mouse studies in general and is a variable that has significant potential to affect experimental reproducibility.
Collapse
Affiliation(s)
- Bonnie L Hylander
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| | - Guanxi Qiao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| | - Eduardo Cortes Gomez
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| | - Prashant Singh
- Genomics Shared Resource, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
23
|
Puech C, Badran M, Barrow MB, Runion AR, Gozal D. Solriamfetol improves chronic sleep fragmentation-induced increases in sleep propensity and ameliorates explicit memory in male mice. Sleep 2023; 46:zsad057. [PMID: 36866452 PMCID: PMC10413435 DOI: 10.1093/sleep/zsad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent condition characterized by episodes of partial or complete breath cessation during sleep that induces sleep fragmentation (SF). One of the frequent manifestations of OSA is the presence of excessive daytime sleepiness (EDS) associated with cognitive deficits. Solriamfetol (SOL) and modafinil (MOD) are wake-promoting agents commonly prescribed to improve wakefulness in OSA patients with EDS. This study aimed to assess the effects of SOL and MOD in a murine model of OSA characterized by periodic SF. Male C57Bl/6J mice were exposed to either control sleep (SC) or SF (mimicking OSA) during the light period (06:00 h to 18:00 h) for 4 weeks, which consistently induces sustained excessive sleepiness during the dark phase. Both groups were then randomly assigned to receive once-daily intraperitoneal injections of SOL (200 mg/kg), MOD (200 mg/kg), or vehicle for 1 week while continuing exposures to SF or SC. Sleep/wake activity and sleep propensity were assessed during the dark phase. Novel Object Recognition test, Elevated-Plus Maze Test, and Forced Swim Test were performed before and after treatment. SOL or MOD decreased sleep propensity in SF, but only SOL induced improvements in explicit memory, while MOD exhibited increased anxiety behaviors. Chronic SF, a major hallmark of OSA, induces EDS in young adult mice that is mitigated by both SOL and MOD. SOL, but not MOD, significantly improves SF-induced cognitive deficits. Increased anxiety behaviors are apparent in MOD-treated mice. Further studies aiming to elucidate the beneficial cognitive effects of SOL are warranted.
Collapse
Affiliation(s)
- Clementine Puech
- Child Health Research Institute, Department of Child Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Mohammad Badran
- Child Health Research Institute, Department of Child Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Max B Barrow
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - Alexandra R Runion
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Child Health Research Institute, Department of Child Health, University of Missouri School of Medicine, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
24
|
Faisal M, Aid J, Nodirov B, Lee B, Hickey MA. Preclinical trials in Alzheimer's disease: Sample size and effect size for behavioural and neuropathological outcomes in 5xFAD mice. PLoS One 2023; 18:e0281003. [PMID: 37036878 PMCID: PMC10085059 DOI: 10.1371/journal.pone.0281003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/13/2023] [Indexed: 04/11/2023] Open
Abstract
5xFAD transgenic (TG) mice are used widely in AD preclinical trials; however, data on sample sizes are largely unaddressed. We therefore performed estimates of sample sizes and effect sizes for typical behavioural and neuropathological outcome measures in TG 5xFAD mice, based upon data from single-sex (female) groups. Group-size estimates to detect normalisation of TG body weight to WT littermate levels at 5.5m of age were N = 9-15 depending upon algorithm. However, by 1 year of age, group sizes were small (N = 1 -<6), likely reflecting the large difference between genotypes at this age. To detect normalisation of TG open-field hyperactivity to WT levels at 13-14m, group sizes were also small (N = 6-8). Cued learning in the Morris water maze (MWM) was normal in Young TG mice (5m of age). Mild deficits were noted during MWM spatial learning and memory. MWM reversal learning and memory revealed greater impairment, and groups of up to 22 TG mice were estimated to detect normalisation to WT performance. In contrast, Aged TG mice (tested between 13 and 14m) failed to complete the visual learning (non-spatial) phase of MWM learning, likely due to a failure to recognise the platform as an escape. Estimates of group size to detect normalisation of this severe impairment were small (N = 6-9, depending upon algorithm). Other cognitive tests including spontaneous and forced alternation and novel-object recognition either failed to reveal deficits in TG mice or deficits were negligible. For neuropathological outcomes, plaque load, astrocytosis and microgliosis in frontal cortex and hippocampus were quantified in TG mice aged 2m, 4m and 6m. Sample-size estimates were ≤9 to detect the equivalent of a reduction in plaque load to the level of 2m-old TG mice or the equivalent of normalisation of neuroinflammation outcomes. However, for a smaller effect size of 30%, larger groups of up to 21 mice were estimated. In light of published guidelines on preclinical trial design, these data may be used to provide provisional sample sizes and optimise preclinical trials in 5xFAD TG mice.
Collapse
Affiliation(s)
- Mahvish Faisal
- Department of Pharmacology, Institute of Biomedicine and
Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jana Aid
- Department of Pharmacology, Institute of Biomedicine and
Translational Medicine, University of Tartu, Tartu, Estonia
| | - Bekzod Nodirov
- Department of Pharmacology, Institute of Biomedicine and
Translational Medicine, University of Tartu, Tartu, Estonia
| | - Benjamin Lee
- Department of Pharmacology, Institute of Biomedicine and
Translational Medicine, University of Tartu, Tartu, Estonia
| | - Miriam A. Hickey
- Department of Pharmacology, Institute of Biomedicine and
Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
25
|
Delgado-Sallent C, Gener T, Nebot P, López-Cabezón C, Puig MV. Neural substrates of cognitive impairment in a NMDAR hypofunction mouse model of schizophrenia and partial rescue by risperidone. Front Cell Neurosci 2023; 17:1152248. [PMID: 37066076 PMCID: PMC10104169 DOI: 10.3389/fncel.2023.1152248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
N-methyl D-aspartate receptor (NMDAR) hypofunction is a pathophysiological mechanism relevant for schizophrenia. Acute administration of the NMDAR antagonist phencyclidine (PCP) induces psychosis in patients and animals while subchronic PCP (sPCP) produces cognitive dysfunction for weeks. We investigated the neural correlates of memory and auditory impairments in mice treated with sPCP and the rescuing abilities of the atypical antipsychotic drug risperidone administered daily for two weeks. We recorded neural activities in the medial prefrontal cortex (mPFC) and the dorsal hippocampus (dHPC) during memory acquisition, short-term, and long-term memory in the novel object recognition test and during auditory processing and mismatch negativity (MMN) and examined the effects of sPCP and sPCP followed by risperidone. We found that the information about the familiar object and its short-term storage were associated with mPFC→dHPC high gamma connectivity (phase slope index) whereas long-term memory retrieval depended on dHPC→mPFC theta connectivity. sPCP impaired short-term and long-term memories, which were associated with increased theta power in the mPFC, decreased gamma power and theta-gamma coupling in the dHPC, and disrupted mPFC-dHPC connectivity. Risperidone rescued the memory deficits and partly restored hippocampal desynchronization but did not ameliorate mPFC and circuit connectivity alterations. sPCP also impaired auditory processing and its neural correlates (evoked potentials and MMN) in the mPFC, which were also partly rescued by risperidone. Our study suggests that the mPFC and the dHPC disconnect during NMDAR hypofunction, possibly underlying cognitive impairment in schizophrenia, and that risperidone targets this circuit to ameliorate cognitive abilities in patients.
Collapse
Affiliation(s)
- Cristina Delgado-Sallent
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain
| | - Thomas Gener
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and BIST, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pau Nebot
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain
| | - Cristina López-Cabezón
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and BIST, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M. Victoria Puig
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and BIST, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- *Correspondence: M. Victoria Puig,
| |
Collapse
|
26
|
Aquino J, Moreira MA, Evangelista NCL, Maior RS, Barros M. Spontaneous object recognition in capuchin monkeys: assessing the effects of sex, familiarization phase and retention delay. Anim Cogn 2023; 26:551-561. [PMID: 36181571 DOI: 10.1007/s10071-022-01697-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/27/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022]
Abstract
The spontaneous object recognition (SOR) task is a versatile and widely used memory test that was only recently established in nonhuman primates (marmosets). Here, we extended these initial findings by assessing the performance of adult capuchin monkeys on the SOR task and three potentially intervening task parameters-object familiarization phase, retention delay and sex. In Experiment 1, after an initial 10-min familiarization period with two identical objects and a pre-established retention delay (0.5, 6 or 24 h), the capuchins preferentially explored a new rather than the familiar object during a 10-min test trial, regardless of delay length. In Experiment 2, the capuchins were again exposed to two identical objects (but now for 10 or 20 min), then a 30-min retention delay and a 10-min test trial. An exploratory preference for the new over the familiar item was not affected by the length of the familiarization interval, possibly because overall exploration remained the same. However, the amount of initial object exploration was not related to task performance, and both males and females performed similarly on the SOR task with a 10-min familiarization, 30-min delay and 10-min test trial. Therefore, male and female capuchins recognize objects on the SOR task after both short and long delays, whereas a twofold increase in the familiarization phase does not affect task performance. The results also provide further support for the use of incidental learning paradigms to assess recognition memory in nonhuman primates.
Collapse
Affiliation(s)
- Jéssica Aquino
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Matheus A Moreira
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Nathália C L Evangelista
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Rafael S Maior
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia, Brazil.,Primate Center, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Marilia Barros
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, 70910-900, Brazil. .,Primate Center, Institute of Biology, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
27
|
Vastegani SM, Khoshnam SE, Mansouri E, Hajipour S, Ghafouri S, Bakhtiari N, Sarkaki A, Farbood Y. Neuroprotective effect of anethole against rotenone induced non-motor deficits and oxidative stress in rat model of Parkinson's disease. Behav Brain Res 2023; 437:114100. [PMID: 36075399 DOI: 10.1016/j.bbr.2022.114100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 12/09/2022]
Abstract
INTRODUCTION Non-motor symptoms (NMS) have high prevalence in patients with Parkinson's disease (PD). These symptoms are mainly the result of increased oxidative stress and neuronal damage. In this study we investigated the possible neuroprotective effects of anethole as a potent antioxidant on rotenone-induced behavioral deficits, hippocampal neuronal death, and oxidative stress profile in rats. METHODS Male Wistar rats were administered with anethole (62.5, 125, and 250 mg/kg, i.g) concomitantly with rotenone (2 mg/kg, s.c) for 35 days. Shuttle box and novel object recognition tests were performed to determine cognitive functions, and tail flick test was used to measure pain sensitivity. The levels of BDNF, MDA, SOD, and GPx were assayed in the hippocampus. Hippocampal neuronal damage was evaluated using cresyl violet staining technique. RESULTS Chronic administration of rotenone induced cognitive deficit and reduced thermal pain threshold. Rotenone also decreased SOD and GPx activities, increased MDA level, and reduced the expression of BDNF in the hippocampus. In addition, hippocampal neuronal loss was increased in rotenone treated rats. Treatment with high dose of anethole (250 mg/kg) improved cognitive function and increased pain threshold in all three doses (62.5, 125, and 250 mg/kg). Despite the unchanged SOD and GPx activities, hippocampal levels of MDA was significantly decreased after high-dose anethole treatment. Moreover, High dose of anethole increased the number of surviving neurons in the hippocampus, but couldn't increase the BDNF expression. CONCLUSION Our findings indicated that anethole has antioxidant and neuroprotective effects against non-motor disorders induced by rotenone toxicity.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and molecular research center, Medical Basic Sciences Research Institute, Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samireh Ghafouri
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nima Bakhtiari
- Pain Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
28
|
Puech C, Badran M, Runion AR, Barrow MB, Qiao Z, Khalyfa A, Gozal D. Explicit memory, anxiety and depressive like behavior in mice exposed to chronic intermittent hypoxia, sleep fragmentation, or both during the daylight period. Neurobiol Sleep Circadian Rhythms 2022; 13:100084. [PMID: 36254342 PMCID: PMC9568859 DOI: 10.1016/j.nbscr.2022.100084] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/01/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic and highly prevalent condition characterized by chronic intermittent hypoxia (IH) and sleep fragmentation (SF), and can lead to a vast array of end-organ morbidities, particularly affecting cardiovascular, metabolic and neurobehavioral functioning. OSA can induce cognitive and behavioral and mood deficits. Male C57Bl/6J 8-week-old mice were housed in custom-designed cages with a silent motorized mechanical sweeper traversing the cage floor at 2-min intervals (SF) during daylight for four weeks. Sleep control (SC) consisted of keeping sweeper immobile. IH consisted of cycling FiO2 21% 90 seconds-6.3% 90s or room air (RA; FiO2 21%) for sixteen weeks and combined SF-IH was conducted for nine weeks. Open field novel object recognition (NOR) testing, elevated-plus maze test (EPMT), and forced swimming test (FST) were performed. SF induced cognitive NOR performance impairments in mice along with reduced anxiety behaviors while IH induced deficits in NOR performance, but increased anxiety behaviors. SF-IH induced impaired performance in NOR test of similar magnitude to IH or SF alone. Combined SF-IH exposures did not affect anxiety behaviors. Thus, both SF an IH altered cognitive function while imposing opposite effects on anxiety behaviors. SF-IH did not magnify the detrimental effects of isolated SF or IH and canceled out the effects on anxiety. Based on these findings, the underlying pathophysiologic processes underlying IH and SF adverse effects on cognitive function appear to differ, while those affecting anxiety counteract each other.
Collapse
Affiliation(s)
- Clementine Puech
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Mohammad Badran
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Alexandra R Runion
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - Max B Barrow
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - Zhuanhong Qiao
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Abdelnaby Khalyfa
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
29
|
Michetti C, Falace A, Benfenati F, Fassio A. Synaptic genes and neurodevelopmental disorders: From molecular mechanisms to developmental strategies of behavioral testing. Neurobiol Dis 2022; 173:105856. [PMID: 36070836 DOI: 10.1016/j.nbd.2022.105856] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
Synaptopathies are a class of neurodevelopmental disorders caused by modification in genes coding for synaptic proteins. These proteins oversee the process of neurotransmission, mainly controlling the fusion and recycling of synaptic vesicles at the presynaptic terminal, the expression and localization of receptors at the postsynapse and the coupling between the pre- and the postsynaptic compartments. Murine models, with homozygous or heterozygous deletion for several synaptic genes or knock-in for specific pathogenic mutations, have been developed. They have proved to be extremely informative for understanding synaptic physiology, as well as for clarifying the patho-mechanisms leading to developmental delay, epilepsy and motor, cognitive and social impairments that are the most common clinical manifestations of neurodevelopmental disorders. However, the onset of these disorders emerges during infancy and adolescence while the behavioral phenotyping is often conducted in adult mice, missing important information about the impact of synaptic development and maturation on the manifestation of the behavioral phenotype. Here, we review the main achievements obtained by behavioral testing in murine models of synaptopathies and propose a battery of behavioral tests to improve classification, diagnosis and efficacy of potential therapeutic treatments. Our aim is to underlie the importance of studying behavioral development and better focusing on disease onset and phenotypes.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Antonio Falace
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
30
|
Tanas JK, Kerr DD, Wang L, Rai A, Wallaard I, Elgersma Y, Sidorov MS. Multidimensional analysis of behavior predicts genotype with high accuracy in a mouse model of Angelman syndrome. Transl Psychiatry 2022; 12:426. [PMID: 36192373 PMCID: PMC9529912 DOI: 10.1038/s41398-022-02206-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of expression of the maternal copy of the UBE3A gene. Individuals with AS have a multifaceted behavioral phenotype consisting of deficits in motor function, epilepsy, cognitive impairment, sleep abnormalities, as well as other comorbidities. Effectively modeling this behavioral profile and measuring behavioral improvement will be crucial for the success of ongoing and future clinical trials. Foundational studies have defined an array of behavioral phenotypes in the AS mouse model. However, no single behavioral test is able to fully capture the complex nature of AS-in mice, or in children. We performed multidimensional analysis (principal component analysis + k-means clustering) to quantify the performance of AS model mice (n = 148) and wild-type littermates (n = 138) across eight behavioral domains. This approach correctly predicted the genotype of mice based on their behavioral profile with ~95% accuracy, and remained effective with reasonable sample sizes (n = ~12-15). Multidimensional analysis was effective using different combinations of behavioral inputs and was able to detect behavioral improvement as a function of treatment in AS model mice. Overall, multidimensional behavioral analysis provides a tool for evaluating the effectiveness of preclinical treatments for AS. Multidimensional analysis of behavior may also be applied to rodent models of related neurodevelopmental disorders, and may be particularly valuable for disorders where individual behavioral tests are less reliable than in AS.
Collapse
Affiliation(s)
- Joseph K Tanas
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Devante D Kerr
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
- Howard University, Washington, DC, USA
| | - Li Wang
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Anika Rai
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Ilse Wallaard
- Department of Clinical Genetics and the ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Ype Elgersma
- Department of Clinical Genetics and the ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Michael S Sidorov
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA.
- Departments of Pediatrics and Pharmacology & Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
31
|
Kohler J, Mei J, Banneke S, Winter Y, Endres M, Emmrich JV. Assessing spatial learning and memory in mice: Classic radial maze versus a new animal-friendly automated radial maze allowing free access and not requiring food deprivation. Front Behav Neurosci 2022; 16:1013624. [PMID: 36248032 PMCID: PMC9562048 DOI: 10.3389/fnbeh.2022.1013624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
The radial arm maze (RAM) is a common behavioral test to quantify spatial learning and memory in rodents. Prior attempts to refine the standard experimental setup have been insufficient. Previously, we demonstrated the feasibility of a fully automated, voluntary, and stress-free eight-arm RAM not requiring food or water deprivation. Here, we compared this newly developed refined RAM to a classic manual experimental setup using 24 female 10-12 weeks old C57BL/6J mice. We used a lipopolysaccharide (LPS)-induced model of systemic inflammation to examine long-term cognitive impairment for up to 13 weeks following LPS injection. Both mazes demonstrated robust spatial learning performance during the working memory paradigm. The refined RAM detected spatial learning and memory deficits among LPS-treated mice in the working memory paradigm, whereas the classic RAM detected spatial learning and memory deficits only in the combined working/reference memory paradigm. In addition, the refined RAM allowed for quantification of an animal's overall exploratory behavior and day/night activity pattern. While our study highlights important aspects of refinement of the new setup, our comparison of methods suggests that both RAMs have their respective merits depending on experimental requirements.
Collapse
Affiliation(s)
- Joel Kohler
- Department of Neurology and Experimental Neurology, Neurocure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jie Mei
- Department of Neurology and Experimental Neurology, Neurocure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- The Brain and Mind Institute, University of Western Ontario, London, ON, Canada
- Department of Computer Science, University of Western Ontario, London, ON, Canada
| | - Stefanie Banneke
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - York Winter
- Institute of Biology, Humboldt University, Berlin, Germany
| | - Matthias Endres
- Department of Neurology and Experimental Neurology, Neurocure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Julius Valentin Emmrich
- Department of Neurology and Experimental Neurology, Neurocure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Medical Faculty and University Hospital, Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
32
|
Gallo FT, Zanoni Saad MB, Silva A, Morici JF, Miranda M, Anderson MC, Weisstaub NV, Bekinschtein P. Dopamine Modulates Adaptive Forgetting in Medial Prefrontal Cortex. J Neurosci 2022; 42:6620-6636. [PMID: 35853718 PMCID: PMC9410750 DOI: 10.1523/jneurosci.0740-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Active forgetting occurs in many species, but how behavioral control mechanisms influence which memories are forgotten remains unknown. We previously found that when rats need to retrieve a memory to guide exploration, it reduces later retention of other competing memories encoded in that environment. As with humans, this retrieval-induced forgetting relies on prefrontal control processes. Dopaminergic input to the prefrontal cortex is important for executive functions and cognitive flexibility. We found that, in a similar way, retrieval-induced forgetting of competing memories in male rats requires prefrontal dopamine signaling through D1 receptors. Blockade of medial prefrontal cortex D1 receptors as animals encountered a familiar object impaired active forgetting of competing object memories as measured on a later long-term memory test. Inactivation of the ventral tegmental area produced the same pattern of behavior, a pattern that could be reversed by concomitant activation of prefrontal D1 receptors. We observed a bidirectional modulation of retrieval-induced forgetting by agonists and antagonists of D1 receptors in the medial prefrontal cortex. These findings establish the essential role of prefrontal dopamine in the active forgetting of competing memories, contributing to the shaping of retention in response to the behavioral goals of an organism.SIGNIFICANCE STATEMENT Forgetting is a ubiquitous phenomenon that is actively promoted in many species. The very act of remembering some experiences can cause forgetting of others, in both humans and rats. This retrieval-induced forgetting process is thought to be driven by inhibitory control signals from the prefrontal cortex that target areas where the memories are stored. Here we started disentangling the neurochemical signals in the prefrontal cortex that are essential to retrieval-induced forgetting. We found that, in rats, the release of dopamine in this area, acting through D1 receptors, was essential to causing active forgetting of competing memories. Inhibition of D1 receptors impaired forgetting, while activation increased forgetting. These findings are important, because the mechanisms of active forgetting and their linkage to goal-directed behavior are only beginning to be understood.
Collapse
Affiliation(s)
- Francisco Tomás Gallo
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET)-Fundación INECO-Universidad Favaloro, 1071 Ciudad Autónoma de Buenos Aires, Argentina
| | - María Belén Zanoni Saad
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET)-Fundación INECO-Universidad Favaloro, 1071 Ciudad Autónoma de Buenos Aires, Argentina
| | - Azul Silva
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica "Houssay" (IFIBIO "Houssay"), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1121ABG Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Facundo Morici
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET)-Fundación INECO-Universidad Favaloro, 1071 Ciudad Autónoma de Buenos Aires, Argentina
| | - Magdalena Miranda
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET)-Fundación INECO-Universidad Favaloro, 1071 Ciudad Autónoma de Buenos Aires, Argentina
| | - Michael C Anderson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Behavioural and Clinical Neurosciences Unit, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Noelia V Weisstaub
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET)-Fundación INECO-Universidad Favaloro, 1071 Ciudad Autónoma de Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET)-Fundación INECO-Universidad Favaloro, 1071 Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
33
|
Abstract
Until recently laboratory tasks for studying behavior were highly artificial, simplified, and designed without consideration for the environmental or social context. Although such an approach offers good control over behavior, it does not allow for researching either voluntary responses or individual differences. Importantly for neuroscience studies, the activity of the neural circuits involved in producing unnatural, artificial behavior is variable and hard to predict. In addition, different ensembles may be activated depending on the strategy the animal adopts to deal with the spurious problem. Thus, artificial and simplified tasks based on responses, which do not occur spontaneously entail problems with modeling behavioral impairments and underlying brain deficits. To develop valid models of human disorders we need to test spontaneous behaviors consistently engaging well-defined, evolutionarily conserved neuronal circuits. Such research focuses on behavioral patterns relevant for surviving and thriving under varying environmental conditions, which also enable high reproducibility across different testing settings.
Collapse
Affiliation(s)
- Alicja Puścian
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders – BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3 Street, 02-093 Warsaw, Poland
| | - Ewelina Knapska
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders – BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3 Street, 02-093 Warsaw, Poland
| |
Collapse
|
34
|
Castro-Alamancos MA. A System to Easily Manage Metadata in Biomedical Research Labs Based on Open-source Software. Bio Protoc 2022; 12:e4404. [PMID: 35800459 PMCID: PMC9090580 DOI: 10.21769/bioprotoc.4404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/14/2022] [Accepted: 03/19/2022] [Indexed: 12/29/2022] Open
Abstract
In most biomedical labs, researchers gather metadata (i.e., all details about the experimental data) in paper notebooks, spreadsheets, or, sometimes, electronic notebooks. When data analyses occur, the related details usually go into other notebooks or spreadsheets, and more metadata are available. The whole thing rapidly becomes very complex and disjointed, and keeping track of all these things can be daunting. Organizing all the relevant data and related metadata for analysis, publication, sharing, or deposit into archives can be time-consuming, difficult, and prone to errors. By having metadata in a centralized system that contains all details from the start, the process is greatly simplified. While lab management software is available, it can be costly and inflexible. The system described here is based on a popular, freely available, and open-source wiki platform. It provides a simple but powerful way for biomedical research labs to set up a metadata management system linking the whole research process. The system enhances efficiency, transparency, reliability, and rigor, which are key factors to improving reproducibility. The flexibility afforded by the system simplifies implementation of specialized lab requirements and future needs. The protocol presented here describes how to create the system from scratch, how to use it for gathering basic metadata, and provides a fully functional version for perusal by the reader. Graphical abstract: Lab Metadata Management System.
Collapse
Affiliation(s)
- Manuel A. Castro-Alamancos
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington CT 06001, USA,
*For correspondence:
| |
Collapse
|
35
|
Ratner MH, Farb DH. Probing the Neural Circuitry Targets of Neurotoxicants In Vivo Through High Density Silicon Probe Brain Implants. FRONTIERS IN TOXICOLOGY 2022; 4:836427. [PMID: 35548683 PMCID: PMC9081674 DOI: 10.3389/ftox.2022.836427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Adverse effects of drugs on the human nervous system are rarely possible to anticipate based on preclinical neurotoxicity data, thus propagating the centuries long single most important obstacle to drug discovery and development for disorders of the nervous system. An emerging body of evidence indicates that in vivo electrophysiology using chronically implanted high-density electrodes (ciHDE) in freely moving animals is a rigorous method with enhanced potential for use in translational research. In particular, the structure and function of the hippocampal trisynaptic circuit (HTC) is conserved from rodents to primates, including Homo sapiens, suggesting that the effects of therapeutic agents and other potential neurologically active agents, whether beneficial or adverse, are likely to translate across species when interrogated using a conserved neural circuitry platform. This review explores science advances in the rapidly moving field of in vivo ciHDE in animal models of learning and memory. For this reason we focus on the HTC, where substantial research has investigated neural circuitry level responses and specific behaviors that reflect memory permitting a test of the ground truth validity of the findings. Examples of changes in neural network activity induced by endogenous neurotoxicants associated with neurodegenerative diseases, as well as exogenous therapeutics, drugs, and neurotoxicants are presented. Several illustrative examples of relevant findings that involve longer range neural circuitry outside of the HTC are discussed. Lastly, the limitations of in vivo ciHDE as applied to preclinical neurotoxicology are discussed with a view toward leveraging circuitry level actions to enhance our ability to project the specificity of in vitro target engagement with the desired psychopharmacological or neurological outcome. At the same time, the goal of reducing or eliminating significant neurotoxic adverse events in human is the desired endpoint. We believe that this approach will lead to enhanced discovery of high value neuroactive therapeutics that target neural circuitry domains as their primary mechanism of action, thus enhancing their ultimate contribution toward discovery of precision therapeutics.
Collapse
Affiliation(s)
- Marcia H. Ratner
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Marcia H. Ratner,
| | - David H. Farb
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
36
|
Adhikari A, Buchanan FKB, Fenton TA, Cameron DL, Halmai JANM, Copping NA, Fink KD, Silverman JL. Touchscreen Cognitive Deficits, Hyperexcitability, and Hyperactivity in Males and Females Using Two Models of Cdkl5 Deficiency. Hum Mol Genet 2022; 31:3032-3050. [PMID: 35445702 PMCID: PMC9476626 DOI: 10.1093/hmg/ddac091] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Many neurodevelopmental disorders (NDDs) are the result of mutations on the X chromosome. One severe NDD resulting from mutations on the X chromosome is CDKL5 deficiency disorder (CDD). CDD is an epigenetic, X-linked NDD characterized by intellectual disability (ID), pervasive seizures and severe sleep disruption, including recurring hospitalizations. CDD occurs at a 4:1 ratio, with a female bias. CDD is driven by the loss of cyclin-dependent kinase-like 5 (CDKL5), a serine/threonine kinase that is essential for typical brain development, synapse formation and signal transmission. Previous studies focused on male subjects from animal models, likely to avoid the complexity of X mosaicism. For the first time, we report translationally relevant behavioral phenotypes in young adult (8–20 weeks) females and males with robust signal size, including impairments in learning and memory, substantial hyperactivity and increased susceptibility to seizures/reduced seizure thresholds, in both sexes, and in two models of CDD preclinical mice, one with a general loss-of-function mutation and one that is a patient-derived mutation.
Collapse
Affiliation(s)
- Anna Adhikari
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - Fiona K B Buchanan
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Timothy A Fenton
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - David L Cameron
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Julian A N M Halmai
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Nycole A Copping
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - Kyle D Fink
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Jill L Silverman
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| |
Collapse
|
37
|
Silverman JL, Thurm A, Ethridge SB, Soller MM, Petkova SP, Abel T, Bauman MD, Brodkin ES, Harony‐Nicolas H, Wöhr M, Halladay A. Reconsidering animal models used to study autism spectrum disorder: Current state and optimizing future. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12803. [PMID: 35285132 PMCID: PMC9189007 DOI: 10.1111/gbb.12803] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022]
Abstract
Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD) and intellectual disability (ID), are pervasive, often lifelong disorders, lacking evidence-based interventions for core symptoms. With no established biological markers, diagnoses are defined by behavioral criteria. Thus, preclinical in vivo animal models of NDDs must be optimally utilized. For this reason, experts in the field of behavioral neuroscience convened a workshop with the goals of reviewing current behavioral studies, reports, and assessments in rodent models. Goals included: (a) identifying the maximal utility and limitations of behavior in animal models with construct validity; (b) providing recommendations for phenotyping animal models; and (c) guidelines on how in vivo models should be used and reported reliably and rigorously while acknowledging their limitations. We concluded by recommending minimal criteria for reporting in manuscripts going forward. The workshop elucidated a consensus of potential solutions to several problems, including revisiting claims made about animal model links to ASD (and related conditions). Specific conclusions included: mice (or other rodent or preclinical models) are models of the neurodevelopmental insult, not specifically any disorder (e.g., ASD); a model that perfectly recapitulates a disorder such as ASD is untenable; and greater attention needs be given to validation of behavioral testing methods, data analysis, and critical interpretation.
Collapse
Affiliation(s)
- Jill L. Silverman
- MIND Institute, Department of Psychiatry and Behavioral SciencesUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping ServiceNational Institute of Mental HealthBethesdaMarylandUSA
| | - Sarah B. Ethridge
- Neurodevelopmental and Behavioral Phenotyping ServiceNational Institute of Mental HealthBethesdaMarylandUSA
| | - Makayla M. Soller
- MIND Institute, Department of Psychiatry and Behavioral SciencesUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Stela P. Petkova
- MIND Institute, Department of Psychiatry and Behavioral SciencesUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Ted Abel
- Department of Neuroscience and PharmacologyIowa Neuroscience Institute, University of IowaIowa CityIowaUSA
| | - Melissa D. Bauman
- MIND Institute, Department of Psychiatry and Behavioral SciencesUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Edward S. Brodkin
- Department of PsychiatryPerelman School of Medicine at the University of Pennsylvania, Translational Research LaboratoryPhiladelphiaPennsylvaniaUSA
| | - Hala Harony‐Nicolas
- Seaver Autism Center for Research and TreatmentIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Markus Wöhr
- Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological PsychologySocial and Affective Neuroscience Research Group, KU LeuvenLeuvenBelgium,Leuven Brain InstituteKU LeuvenLeuvenBelgium,Faculty of Psychology, Experimental and Biological Psychology, Behavioral NeurosciencePhilipps‐University of MarburgMarburgGermany,Center for Mind, Brain, and BehaviorPhilipps‐University of MarburgMarburgGermany
| | - Alycia Halladay
- Autism Science FoundationUSA,Department of Pharmacology and ToxicologyRutgers UniversityPiscatawayNew JerseyUSA
| |
Collapse
|
38
|
Regnier-Golanov AS, Gulinello M, Hernandez MS, Golanov EV, Britz GW. Subarachnoid Hemorrhage Induces Sub-acute and Early Chronic Impairment in Learning and Memory in Mice. Transl Stroke Res 2022; 13:625-640. [PMID: 35260988 DOI: 10.1007/s12975-022-00987-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/20/2022]
Abstract
Subarachnoid hemorrhage (SAH) leads to significant long-term cognitive deficits, so-called the post-SAH syndrome. Existing neurological scales used to assess outcomes of SAH are focused on sensory-motor functions. To better evaluate short-term and chronic consequences of SAH, we explored and validated a battery of neurobehavioral tests to gauge the functional outcomes in mice after the circle of Willis perforation-induced SAH. The 18-point Garcia scale, applied up to 4 days, detected impairment only at 24-h time point and showed no significant difference between the Sham and SAH group. A decrease in locomotion was detected at 4-days post-surgery in the open field test but recovered at 30 days in Sham and SAH groups. However, an anxiety-like behavior undetected at 4 days developed at 30 days in SAH mice. At 4-days post-surgery, Y-maze revealed an impairment in working spatial memory in SAH mice, and dyadic social interactions showed a decrease in the sociability in SAH mice, which spent less time interacting with the stimulus mouse. At 30 days after ictus, SAH mice displayed mild spatial learning and memory deficits in the Barnes maze as they committed significantly more errors and used more time to find the escape box but still were able to learn the task. We also observed cognitive dysfunction in the SAH mice in the novel object recognition test. Taken together, these data suggest dysfunction of the limbic system and hippocampus in particular. We suggest a battery of 5 basic behavioral tests allowing to detect neurocognitive deficits in a sub-acute and chronic phase following the SAH.
Collapse
Affiliation(s)
| | - M Gulinello
- Rodent Behavior Core, Department of Neuroscience, Albert Einstein University, Bronx, NY, 10461, USA
| | - M S Hernandez
- Department of Neurosurgery, Houston Methodist Hospital, Houston, USA
| | - E V Golanov
- Department of Neurosurgery, Houston Methodist Hospital, Houston, USA
| | - G W Britz
- Department of Neurosurgery, Houston Methodist Hospital, Houston, USA.
| |
Collapse
|
39
|
Harry GJ, McBride S, Witchey SK, Mhaouty-Kodja S, Trembleau A, Bridge M, Bencsik A. Roadbumps at the Crossroads of Integrating Behavioral and In Vitro Approaches for Neurotoxicity Assessment. FRONTIERS IN TOXICOLOGY 2022; 4:812863. [PMID: 35295216 PMCID: PMC8915899 DOI: 10.3389/ftox.2022.812863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
With the appreciation that behavior represents the integration and complexity of the nervous system, neurobehavioral phenotyping and assessment has seen a renaissance over the last couple of decades, resulting in a robust database on rodent performance within various testing paradigms, possible associations with human disorders, and therapeutic interventions. The interchange of data across behavior and other test modalities and multiple model systems has advanced our understanding of fundamental biology and mechanisms associated with normal functions and alterations in the nervous system. While there is a demonstrated value and power of neurobehavioral assessments for examining alterations due to genetic manipulations, maternal factors, early development environment, the applied use of behavior to assess environmental neurotoxicity continues to come under question as to whether behavior represents a sensitive endpoint for assessment. Why is rodent behavior a sensitive tool to the neuroscientist and yet, not when used in pre-clinical or chemical neurotoxicity studies? Applying new paradigms and evidence on the biological basis of behavior to neurobehavioral testing requires expertise and refinement of how such experiments are conducted to minimize variability and maximize information. This review presents relevant issues of methods used to conduct such test, sources of variability, experimental design, data analysis, interpretation, and reporting. It presents beneficial and critical limitations as they translate to the in vivo environment and considers the need to integrate across disciplines for the best value. It proposes that a refinement of behavioral assessments and understanding of subtle pronounced differences will facilitate the integration of data obtained across multiple approaches and to address issues of translation.
Collapse
Affiliation(s)
- G. Jean Harry
- Neurotoxicology Group, Molecular Toxicology Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sandra McBride
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Shannah K. Witchey
- Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine – Institut de Biologie Paris Seine, Paris, France
| | - Alain Trembleau
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Matthew Bridge
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Anna Bencsik
- Anses Laboratoire de Lyon, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université de Lyon 1, Lyon, France
| |
Collapse
|
40
|
Bozhko DV, Myrov VO, Kolchanova SM, Polovian AI, Galumov GK, Demin KA, Zabegalov KN, Strekalova T, de Abreu MS, Petersen EV, Kalueff AV. Artificial intelligence-driven phenotyping of zebrafish psychoactive drug responses. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110405. [PMID: 34320403 DOI: 10.1016/j.pnpbp.2021.110405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/26/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
Zebrafish (Danio rerio) are rapidly emerging in biomedicine as promising tools for disease modelling and drug discovery. The use of zebrafish for neuroscience research is also growing rapidly, necessitating novel reliable and unbiased methods of neurophenotypic data collection and analyses. Here, we applied the artificial intelligence (AI) neural network-based algorithms to a large dataset of adult zebrafish locomotor tracks collected previously in a series of in vivo experiments with multiple established psychotropic drugs. We first trained AI to recognize various drugs from a wide range of psychotropic agents tested, and then confirmed prediction accuracy of trained AI by comparing several agents with known similar behavioral and pharmacological profiles. Presenting a framework for innovative neurophenotyping, this proof-of-concept study aims to improve AI-driven movement pattern classification in zebrafish, thereby fostering drug discovery and development utilizing this key model organism.
Collapse
Affiliation(s)
| | | | | | | | | | - Konstantin A Demin
- Institite of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Almazov National Medical Research Center, St. Petersburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia
| | - Konstantin N Zabegalov
- Institite of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia; Group of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Tatiana Strekalova
- Maastricht University, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; ZENEREI, LLC, Slidell, LA, USA; Group of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia.
| |
Collapse
|
41
|
Zhang G, Deighan A, Raj A, Robinson L, Donato HJ, Garland G, Leland M, Martin-McNulty B, Kolumam GA, Riegler J, Freund A, Wright KM, Churchill GA. Intermittent fasting and caloric restriction interact with genetics to shape physiological health in mice. Genetics 2022; 220:iyab157. [PMID: 34791228 PMCID: PMC8733459 DOI: 10.1093/genetics/iyab157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022] Open
Abstract
Dietary interventions can dramatically affect physiological health and organismal lifespan. The degree to which organismal health is improved depends upon genotype and the severity of dietary intervention, but neither the effects of these factors, nor their interaction, have been quantified in an outbred population. Moreover, it is not well understood what physiological changes occur shortly after dietary change and how these may affect the health of an adult population. In this article, we investigated the effect of 6-month exposure of either caloric restriction (CR) or intermittent fasting (IF) on a broad range of physiological traits in 960 1-year old Diversity Outbred mice. We found CR and IF affected distinct aspects of physiology and neither the magnitude nor the direction (beneficial or detrimental) of effects were concordant with the severity of the intervention. In addition to the effects of diet, genetic variation significantly affected 31 of 36 traits (heritabilities ranged from 0.04 to 0.65). We observed significant covariation between many traits that was due to both diet and genetics and quantified these effects with phenotypic and genetic correlations. We genetically mapped 16 diet-independent and 2 diet-dependent significant quantitative trait loci, both of which were associated with cardiac physiology. Collectively, these results demonstrate the degree to which diet and genetics interact to shape the physiological health of adult mice following 6 months of dietary intervention.
Collapse
Affiliation(s)
- Guozhu Zhang
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | | | - Anil Raj
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | - Adam Freund
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Kevin M Wright
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | | |
Collapse
|
42
|
Tropea MR, Sanfilippo G, Giannino F, Davì V, Gulisano W, Puzzo D. Innate Preferences Affect Results of Object Recognition Task in Wild Type and Alzheimer's Disease Mouse Models. J Alzheimers Dis 2021; 85:1343-1356. [PMID: 34924388 PMCID: PMC8925114 DOI: 10.3233/jad-215209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Object recognition task (ORT) is a widely used behavioral paradigm to assess memory in rodent models, due to its easy technical execution, the lack of aversive stressful stimuli, and the possibility to repeat the test on the same animals. However, mouse exploration might be strongly influenced by a variety of variables. OBJECTIVE To study whether innate preferences influenced exploration in male and female wild type mice and the Alzheimer's disease (AD) model 3xTg. METHODS We first evaluated how object characteristics (material, size, and shape) influence exploration levels, latency, and exploration modality. Based on these findings, we evaluated whether these innate preferences biased the results of ORT performed in wild type mice and AD models. RESULTS Assessment of Exploration levels, i.e., the time spent in exploring a certain object in respect to the total exploration time, revealed an innate preference for objects made in shiny materials, such as metal and glass. A preference for bigger objects characterized by higher affordance was also evident, especially in male mice. When performing ORT, exploration was highly influenced by these innate preferences. Indeed, both wild type and AD mice spent more time in exploring the metal object, regardless of its novelty. Furthermore, the use of objects with higher affordance such as the cube was a confounding factor leading to "false" results that distorted ORT interpretation. CONCLUSION When designing exploration-based behavioral experiments aimed at assessing memory in healthy and AD mice, object characteristics should be carefully evaluated to improve scientific outcomes and minimize possible biases.
Collapse
Affiliation(s)
- Maria Rosaria Tropea
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Giulia Sanfilippo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Federico Giannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Valentina Davì
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
43
|
Knock E, Julian LM. Building on a Solid Foundation: Adding Relevance and Reproducibility to Neurological Modeling Using Human Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:767457. [PMID: 34867204 PMCID: PMC8637745 DOI: 10.3389/fncel.2021.767457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
The brain is our most complex and least understood organ. Animal models have long been the most versatile tools available to dissect brain form and function; however, the human brain is highly distinct from that of standard model organisms. In addition to existing models, access to human brain cells and tissues is essential to reach new frontiers in our understanding of the human brain and how to intervene therapeutically in the face of disease or injury. In this review, we discuss current and developing culture models of human neural tissue, outlining advantages over animal models and key challenges that remain to be overcome. Our principal focus is on advances in engineering neural cells and tissue constructs from human pluripotent stem cells (PSCs), though primary human cell and slice culture are also discussed. By highlighting studies that combine animal models and human neural cell culture techniques, we endeavor to demonstrate that clever use of these orthogonal model systems produces more reproducible, physiological, and clinically relevant data than either approach alone. We provide examples across a range of topics in neuroscience research including brain development, injury, and cancer, neurodegenerative diseases, and psychiatric conditions. Finally, as testing of PSC-derived neurons for cell replacement therapy progresses, we touch on the advancements that are needed to make this a clinical mainstay.
Collapse
Affiliation(s)
- Erin Knock
- Research and Development, STEMCELL Technologies Inc., Vancouver, BC, Canada.,Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M Julian
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
44
|
Kozlova EV, Carabelli B, Bishay AE, Denys ME, Chinthirla DB, Tran JD, Hsiao A, Nieden NZ, Curras-Collazo MC. Persistent exercise fatigue and associative learning deficits in combination with transient glucose dyshomeostasis in a GWI mouse model. Life Sci 2021; 289:120094. [PMID: 34710444 PMCID: PMC9053767 DOI: 10.1016/j.lfs.2021.120094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Aims: To characterize exercise fatigue, metabolic phenotype and cognitive and mood deficits correlated with brain neuroinflammatory and gut microbiome changes in a chronic Gulf War Illness (GWI) mouse model. The latter have been described in an accompanying paper [1]. Main methods: Adult male C57Bl/6N mice were exposed for 28 days (5 days/week) to pyridostigmine bromide: 6.5 mg/kg, b.i.d., P.O. (GW1) or 8.7 mg/kg, q.d., P.O. (GW2); topical permethrin (1.3 mg/kg in 100% DMSO) and N,N-diethyl-meta-toluamide (DEET 33% in 70% EtOH) and restraint stress (5 min). Exercise, metabolic and behavioral endpoints were compared to sham stress control (CON/S). Key findings: Relative to CON/S, GW2 presented persistent exercise intolerance (through post-treatment (PT) day 161), deficient associative learning/memory, and transient insulin insensitivity. In contrast to GW2, GW1 showed deficient long-term object recognition memory, milder associative learning/memory deficit, and behavioral despair. Significance: Our findings demonstrate that GW chemicals dose-dependently determine the presentation of exercise fatigue and severity/type of cognitive/mood-deficient phenotypes that show persistence. Our comprehensive mouse model of GWI recapitulates the major multiple symptom domains characterizing GWI, including fatigue and cognitive impairment that can be used to more efficiently develop diagnostic tests and curative treatments for ill Gulf War veterans.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California, Riverside, CA, USA
| | - Bruno Carabelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Anthony E Bishay
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Maximilian E Denys
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Devi B Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Jasmin D Tran
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Nicole Zur Nieden
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - M C Curras-Collazo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
45
|
Kodali M, Mishra V, Hattiangady B, Attaluri S, Gonzalez JJ, Shuai B, Shetty AK. Moderate, intermittent voluntary exercise in a model of Gulf War Illness improves cognitive and mood function with alleviation of activated microglia and astrocytes, and enhanced neurogenesis in the hippocampus. Brain Behav Immun 2021; 97:135-149. [PMID: 34245811 PMCID: PMC9885810 DOI: 10.1016/j.bbi.2021.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 02/01/2023] Open
Abstract
Persistent cognitive and mood impairments in Gulf War Illness (GWI) are associated with chronic neuroinflammation, typified by hypertrophied astrocytes, activated microglia, and increased proinflammatory mediators in the brain. Using a rat model, we investigated whether a simple lifestyle change such as moderate voluntary physical exercise would improve cognitive and mood function in GWI. Because veterans with GWI exhibit fatigue and post-exertional malaise, we employed an intermittent voluntary running exercise (RE) regimen, which prevented exercise-induced stress. The GWI rats were provided access to running wheels three days per week for 13 weeks, commencing ten weeks after the exposure to GWI-related chemicals and stress (GWI-RE group). Groups of age-matched sedentary GWI rats (GWI-SED group) and naïve rats were maintained parallelly. Interrogation of rats with behavioral tests after the 13-week RE regimen revealed improved hippocampus-dependent object location memory and pattern separation function and reduced anxiety-like behavior in the GWI-RE group compared to the GWI-SED group. Moreover, 13 weeks of RE in GWI rats significantly reversed activated microglia with short and less ramified processes into non-inflammatory/antiinflammatory microglia with highly ramified processes and reduced the hypertrophy of astrocytes. Moreover, the production of new neurons in the hippocampus was enhanced when examined eight weeks after the commencement of RE. Notably, increased neurogenesis continued even after the cessation of RE. Collectively, the results suggest that even a moderate, intermittent physical exercise has the promise to improve brain function in veterans with GWI in association with suppression of neuroinflammation and enhancement of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Vikas Mishra
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States
| | - Jenny Jaimes Gonzalez
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, TX, United States,Corresponding author at: Institute for Regenerative Medicine, Texas A&M Health Science Center, College of Medicine, 1114 TAMU, 206 Olsen Boulevard, College Station, TX 77843, United States. (A.K. Shetty)
| |
Collapse
|
46
|
Berg EL, Petkova SP, Born HA, Adhikari A, Anderson AE, Silverman JL. Insulin-like growth factor-2 does not improve behavioral deficits in mouse and rat models of Angelman Syndrome. Mol Autism 2021; 12:59. [PMID: 34526125 PMCID: PMC8444390 DOI: 10.1186/s13229-021-00467-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Angelman Syndrome (AS) is a rare neurodevelopmental disorder for which there is currently no cure or effective therapeutic. Since the genetic cause of AS is known to be dysfunctional expression of the maternal allele of ubiquitin protein ligase E3A (UBE3A), several genetic animal models of AS have been developed. Both the Ube3a maternal deletion mouse and rat models of AS reliably demonstrate behavioral phenotypes of relevance to AS and therefore offer suitable in vivo systems in which to test potential therapeutics. One promising candidate treatment is insulin-like growth factor-2 (IGF-2), which has recently been shown to ameliorate behavioral deficits in the mouse model of AS and improve cognitive abilities across model systems. METHODS We used both the Ube3a maternal deletion mouse and rat models of AS to evaluate the ability of IGF-2 to improve electrophysiological and behavioral outcomes. RESULTS Acute systemic administration of IGF-2 had an effect on electrophysiological activity in the brain and on a metric of motor ability; however the effects were not enduring or extensive. Additional metrics of motor behavior, learning, ambulation, and coordination were unaffected and IGF-2 did not improve social communication, seizure threshold, or cognition. LIMITATIONS The generalizability of these results to humans is difficult to predict and it remains possible that dosing schemes (i.e., chronic or subchronic dosing), routes, and/or post-treatment intervals other than that used herein may show more efficacy. CONCLUSIONS Despite a few observed effects of IGF-2, our results taken together indicate that IGF-2 treatment does not profoundly improve behavioral deficits in mouse or rat models of AS. These findings shed cautionary light on the potential utility of acute systemic IGF-2 administration in the treatment of AS.
Collapse
Affiliation(s)
- Elizabeth L. Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Stela P. Petkova
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Heather A. Born
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX USA
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Anna Adhikari
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Anne E. Anderson
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX USA
| | - Jill L. Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| |
Collapse
|
47
|
González EA, Calsbeek JJ, Tsai YH, Tang MY, Andrew P, Vu J, Berg EL, Saito NH, Harvey DJ, Supasai S, Gurkoff GG, Silverman JL, Lein PJ. Sex-specific acute and chronic neurotoxicity of acute diisopropylfluorophosphate (DFP)-intoxication in juvenile Sprague-Dawley rats. Curr Res Toxicol 2021; 2:341-356. [PMID: 34622217 PMCID: PMC8484742 DOI: 10.1016/j.crtox.2021.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Preclinical efforts to improve medical countermeasures against organophosphate (OP) chemical threat agents have largely focused on adult male models. However, age and sex have been shown to influence the neurotoxicity of repeated low-level OP exposure. Therefore, to determine the influence of sex and age on outcomes associated with acute OP intoxication, postnatal day 28 Sprague-Dawley male and female rats were exposed to the OP diisopropylfluorophosphate (DFP; 3.4 mg/kg, s.c.) or an equal volume of vehicle (∼80 µL saline, s.c.) followed by atropine sulfate (0.1 mg/kg, i.m.) and pralidoxime (2-PAM; 25 mg/kg, i.m.). Seizure activity was assessed during the first 4 h post-exposure using behavioral criteria and electroencephalographic (EEG) recordings. At 1 d post-exposure, acetylcholinesterase (AChE) activity was measured in cortical tissue, and at 1, 7, and 28 d post-exposure, brains were collected for neuropathologic analyses. At 1 month post-DFP, animals were analyzed for motor ability, learning and memory, and hippocampal neurogenesis. Acute DFP intoxication triggered more severe seizure behavior in males than females, which was supported by EEG recordings. DFP caused significant neurodegeneration and persistent microglial activation in numerous brain regions of both sexes, but astrogliosis occurred earlier and was more severe in males compared to females. DFP males and females exhibited pronounced memory deficits relative to sex-matched controls. In contrast, acute DFP intoxication altered hippocampal neurogenesis in males, but not females. These findings demonstrate that acute DFP intoxication triggers seizures in juvenile rats of both sexes, but the seizure severity varies by sex. Some, but not all, chronic neurotoxic outcomes also varied by sex. The spatiotemporal patterns of neurological damage suggest that microglial activation may be a more important factor than astrogliosis or altered neurogenesis in the pathogenesis of cognitive deficits in juvenile rats acutely intoxicated with OPs.
Collapse
Key Words
- 2-PAM, pralidoxime
- AChE, acetylcholinesterase
- AS, atropine-sulfate
- BChE, butyrylcholinesterase
- CT, computed tomography
- ChE, cholinesterase
- Cognitive deficits
- DFP, diisopropylfluorophosphate
- EEG, electroencephalogram
- FJC, Fluoro-Jade C
- Neurodegeneration
- Neurogenesis
- Neuroinflammation
- OP, organophosphate
- PBS, phosphate-buffered saline
- ROI, region of interest
- SE, status epilepticus
- Seizures
- Sex differences
- T2w, T2-weighted
- VEH, vehicle
- i.m., intramuscular
- i.p., intraperitoneal
- s.c., subcutaneous
Collapse
Affiliation(s)
- Eduardo A. González
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Jonas J. Calsbeek
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Yi-Hua Tsai
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Mei-Yun Tang
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Peter Andrew
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Joan Vu
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Elizabeth L. Berg
- Department of Psychiatry, University of California, Davis, School of Medicine, 2230, Stockton Boulevard, Sacramento, CA 95817, USA
| | - Naomi H. Saito
- Department of Public Health Sciences, University of California, Davis, One Shields Avenue, School of Medicine, Davis, CA 95616, USA
| | - Danielle J. Harvey
- Department of Public Health Sciences, University of California, Davis, One Shields Avenue, School of Medicine, Davis, CA 95616, USA
| | - Suangsuda Supasai
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Gene G. Gurkoff
- Department of Neurological Surgery, University of California, Davis, School of Medicine, 4860 Y Street, Sacramento, CA 95817, USA
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Jill L. Silverman
- Department of Psychiatry, University of California, Davis, School of Medicine, 2230, Stockton Boulevard, Sacramento, CA 95817, USA
- MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
- MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA
| |
Collapse
|
48
|
Matar M, Gokoglu SA, Prelich MT, Gallo CA, Iqbal AK, Britten RA, Prabhu RK, Myers JG. Machine Learning Models to Predict Cognitive Impairment of Rodents Subjected to Space Radiation. Front Syst Neurosci 2021; 15:713131. [PMID: 34588962 PMCID: PMC8473791 DOI: 10.3389/fnsys.2021.713131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
This research uses machine-learned computational analyses to predict the cognitive performance impairment of rats induced by irradiation. The experimental data in the analyses is from a rodent model exposed to ≤15 cGy of individual galactic cosmic radiation (GCR) ions: 4He, 16O, 28Si, 48Ti, or 56Fe, expected for a Lunar or Mars mission. This work investigates rats at a subject-based level and uses performance scores taken before irradiation to predict impairment in attentional set-shifting (ATSET) data post-irradiation. Here, the worst performing rats of the control group define the impairment thresholds based on population analyses via cumulative distribution functions, leading to the labeling of impairment for each subject. A significant finding is the exhibition of a dose-dependent increasing probability of impairment for 1 to 10 cGy of 28Si or 56Fe in the simple discrimination (SD) stage of the ATSET, and for 1 to 10 cGy of 56Fe in the compound discrimination (CD) stage. On a subject-based level, implementing machine learning (ML) classifiers such as the Gaussian naïve Bayes, support vector machine, and artificial neural networks identifies rats that have a higher tendency for impairment after GCR exposure. The algorithms employ the experimental prescreen performance scores as multidimensional input features to predict each rodent's susceptibility to cognitive impairment due to space radiation exposure. The receiver operating characteristic and the precision-recall curves of the ML models show a better prediction of impairment when 56Fe is the ion in question in both SD and CD stages. They, however, do not depict impairment due to 4He in SD and 28Si in CD, suggesting no dose-dependent impairment response in these cases. One key finding of our study is that prescreen performance scores can be used to predict the ATSET performance impairments. This result is significant to crewed space missions as it supports the potential of predicting an astronaut's impairment in a specific task before spaceflight through the implementation of appropriately trained ML tools. Future research can focus on constructing ML ensemble methods to integrate the findings from the methodologies implemented in this study for more robust predictions of cognitive decrements due to space radiation exposure.
Collapse
Affiliation(s)
- Mona Matar
- NASA Glenn Research Center, Cleveland, OH, United States
| | | | | | | | - Asad K. Iqbal
- ZIN Technologies, Inc., Cleveland, OH, United States
| | - Richard A. Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - R. K. Prabhu
- Universities Space Research Association, Cleveland, OH, United States
| | - Jerry G. Myers
- NASA Glenn Research Center, Cleveland, OH, United States
| |
Collapse
|
49
|
Wooden JI, Spinetta MJ, Nguyen T, O'Leary CI, Leasure JL. A Sensitive Homecage-Based Novel Object Recognition Task for Rodents. Front Behav Neurosci 2021; 15:680042. [PMID: 34177480 PMCID: PMC8232937 DOI: 10.3389/fnbeh.2021.680042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/14/2021] [Indexed: 11/25/2022] Open
Abstract
The recognition of novel objects is a common cognitive test for rodents, but current paradigms have limitations, such as low sensitivity, possible odor confounds and stress due to being performed outside of the homecage. We have developed a paradigm that takes place in the homecage and utilizes four stimuli per trial, to increase sensitivity. Odor confounds are eliminated because stimuli consist of inexpensive, machined wooden beads purchased in bulk, so each experimental animal has its own set of stimuli. This paradigm consists of three steps. In Step 1, the sampling phase, animals freely explore familiar objects (FO). Novel Objects (NO1 and NO2) are soiled with bedding from the homecage, to acquire odor cues identical to those of the FO. Steps 2 and 3 are test phases. Herein we report results of this paradigm from neurologically intact adult rats and mice of both sexes. Identical procedures were used for both species, except that the stimuli used for the mice were smaller. As expected in Step 2 (NO1 test phase), male and female rats and mice explored NO1 significantly more than FO. In Step 3 (NO2 test phase), rats of both sexes demonstrated a preference for NO2, while this was seen only in female mice. These results indicate robust novelty recognition during Steps 2 and 3 in rats. In mice, this was reliably seen only in Step 2, indicating that Step 3 was difficult for them under the given parameters. This paradigm provides flexibility in that length of the sampling phase, and the delay between test and sampling phases can be adjusted, to tailor task difficulty to the model being tested. In sum, this novel object recognition test is simple to perform, requires no expensive supplies or equipment, is conducted in the homecage (reducing stress), eliminates odor confounds, utilizes 4 stimuli to increase sensitivity, can be performed in both rats and mice, and is highly flexible, as sampling phase and the delay between steps can be adjusted to tailor task difficulty. Collectively, these results indicate that this paradigm can be used to quantify novel object recognition across sex and species.
Collapse
Affiliation(s)
- Jessica I Wooden
- Department of Psychology, University of Houston, Houston, TX, United States
| | - Michael J Spinetta
- Department of Psychology, Seattle University, Seattle, WA, United States
| | - Teresa Nguyen
- Department of Psychology, University of Houston, Houston, TX, United States
| | - Charles I O'Leary
- Department of Psychology, Seattle University, Seattle, WA, United States
| | - J Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX, United States.,Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
50
|
Iman IN, Yusof NAM, Talib UN, Ahmad NAZ, Norazit A, Kumar J, Mehat MZ, Jayabalan N, Muthuraju S, Stefaniuk M, Kaczmarek L, Muzaimi M. The IntelliCage System: A Review of Its Utility as a Novel Behavioral Platform for a Rodent Model of Substance Use Disorder. Front Behav Neurosci 2021; 15:683780. [PMID: 34149373 PMCID: PMC8211779 DOI: 10.3389/fnbeh.2021.683780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
The use of animal models for substance use disorder (SUD) has made an important contribution in the investigation of the behavioral and molecular mechanisms underlying substance abuse and addiction. Here, we review a novel and comprehensive behavioral platform to characterize addiction-like traits in rodents using a fully automated learning system, the IntelliCage. This system simultaneously captures the basic behavioral navigation, reward preference, and aversion, as well as the multi-dimensional complex behaviors and cognitive functions of group-housed rodents. It can reliably capture and track locomotor and cognitive pattern alterations associated with the development of substance addiction. Thus, the IntelliCage learning system offers a potentially efficient, flexible, and sensitive tool for the high-throughput screening of the rodent SUD model.
Collapse
Affiliation(s)
- Ismail Nurul Iman
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Nurul Aiman Mohd Yusof
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ummi Nasrah Talib
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Nur Aimi Zawami Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Anwar Norazit
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nanthini Jayabalan
- Translational Neuroscience Lab, UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Sangu Muthuraju
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Marzena Stefaniuk
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mustapha Muzaimi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|