1
|
Saito Y, Osako Y, Odagawa M, Oisi Y, Matsubara C, Kato S, Kobayashi K, Morita M, Johansen JP, Murayama M. Amygdalo-cortical dialogue underlies memory enhancement by emotional association. Neuron 2025; 113:931-948.e7. [PMID: 39884277 DOI: 10.1016/j.neuron.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/15/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Emotional arousal plays a critical role in determining what is remembered from experiences. It is hypothesized that activation of the amygdala by emotional stimuli enhances memory consolidation in its downstream brain regions. However, the physiological basis of the inter-regional interaction and its functions remain unclear. Here, by adding emotional information to a perceptual recognition task that relied on a frontal-sensory cortical circuit in mice, we demonstrated that the amygdala not only associates emotional information with perceptual information but also enhances perceptual memory retention via amygdalo-frontal cortical projections. Furthermore, emotional association increased reactivation of coordinated activity across the amygdalo-cortical circuit during non-rapid eye movement (NREM) sleep but not during rapid eye movement (REM) sleep. Notably, this increased reactivation was associated with amygdala high-frequency oscillations. Silencing of amygdalo-cortical inputs during NREM sleep selectively disrupted perceptual memory enhancement. Our findings indicate that inter-regional reactivation triggered by the amygdala during NREM sleep underlies emotion-induced perceptual memory enhancement.
Collapse
Affiliation(s)
- Yoshihito Saito
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; RIKEN CBS-Kao Collaboration Center (BKCC), Wako-shi 351-0198, Saitama, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe-shi 657-8501, Hyogo, Japan
| | - Yuma Osako
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maya Odagawa
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; RIKEN CBS-Kao Collaboration Center (BKCC), Wako-shi 351-0198, Saitama, Japan
| | - Yasuhiro Oisi
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; RIKEN CBS-Kao Collaboration Center (BKCC), Wako-shi 351-0198, Saitama, Japan
| | - Chie Matsubara
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; RIKEN CBS-Kao Collaboration Center (BKCC), Wako-shi 351-0198, Saitama, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima-shi 960-1295, Fukushima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima-shi 960-1295, Fukushima, Japan
| | - Mitsuhiro Morita
- Department of Biology, Graduate School of Science, Kobe University, Kobe-shi 657-8501, Hyogo, Japan
| | - Joshua P Johansen
- Laboratory for the Neural Circuitry of Learning and Memory, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan
| | - Masanori Murayama
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; RIKEN CBS-Kao Collaboration Center (BKCC), Wako-shi 351-0198, Saitama, Japan.
| |
Collapse
|
2
|
Yu F, Zhang Z, Zhang W. Therapeutic Metaphors Enhance Memory Systems in Mental Health Contexts. Brain Behav 2025; 15:e70270. [PMID: 39829135 PMCID: PMC11743976 DOI: 10.1002/brb3.70270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Psychotherapeutic memory plays an important role in maintaining therapeutic effects; however, the neural mechanisms of therapeutic metaphor promoting long-term memory were still unknown. OBJECTIVE This study used metaphorical micro-counseling dialog scenarios to investigate the memory effect of therapeutic metaphor and correlated neural mechanisms. METHODS At first, 31 participants read a mental distress problem, followed by a metaphorical or a literal solution, while undergoing functional magnetic resonance imaging scanning during the encoding phase. One week later, a recognition memory test was performed outside the scanner. RESULTS The results revealed that metaphorical solutions were associated with higher insight experiences and better memory performance than literal solutions. Greater activations were observed in the multiple memory systems, including episodic (parahippocampal gyrus, hippocampus, and thalamus), emotional (amygdala), and procedural/implicit (caudate, putamen, and cerebellum), in contrast to later remembered versus later forgotten based on the gap between metaphorical and literal solutions. Insightfulness and activities of the hippocampus, caudate, and cerebellum could predict memory performance. CONCLUSIONS These findings indicated that multiple memory systems are involved in successful memory encoding of therapeutic metaphors; this suggested that incorporating metaphors into psychotherapy practices could lead to better retention of therapeutic information and improve clinical outcomes compared to literal psychotherapy.
Collapse
Affiliation(s)
- Fei Yu
- Department of PsychologyHebei Normal UniversityShijiazhuangthe People's Republic of China
| | - Zhijie Zhang
- Department of PsychologyHebei Normal UniversityShijiazhuangthe People's Republic of China
| | - Wencai Zhang
- Key Laboratory of Mental HealthInstitute of PsychologyChinese Academy of Sciences (CAS)Beijingthe People's Republic of China
| |
Collapse
|
3
|
Andonovski N, Sutton J, McCarroll CJ. Eliminating episodic memory? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230413. [PMID: 39278256 PMCID: PMC11449155 DOI: 10.1098/rstb.2023.0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 09/18/2024] Open
Abstract
In Tulving's initial characterization, episodic memory was one of multiple memory systems. It was postulated, in pursuit of explanatory depth, as displaying proprietary operations, representations and substrates such as to explain a range of cognitive, behavioural and experiential phenomena. Yet the subsequent development of this research programme has, paradoxically, introduced surprising doubts about the nature, and indeed existence, of episodic memory. On dominant versions of the 'common system' view, on which a single simulation system underlies both remembering and imagining, there are no processes unique to memory to support robust generalizations with inductive potential. Eliminativism about episodic memory seems to follow from the claim that it has no dedicated neurocognitive system of its own. After identifying this under-noticed threat, we push back against modern eliminativists by surveying recent evidence that still indicates specialized mechanisms, computations and representations that are distinctly mnemic in character. We argue that contemporary realists about episodic memory can retain lessons of the common system approach while resisting the further move to eliminativism. This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
Affiliation(s)
- Nikola Andonovski
- Centre for Philosophy of Memory, IPhiG, Université Grenoble Alpes, Saint-Martin-d’Heres38400, France
| | - John Sutton
- Philosophy, Macquarie University, Sydney, New South Wales, Australia
- Philosophy, University of Stirling, Stirling, UK
| | | |
Collapse
|
4
|
Ladd SL, Gabrieli JDE. Implicit memory reduced selectively for negative words with aging. Front Aging Neurosci 2024; 16:1454867. [PMID: 39444803 PMCID: PMC11497464 DOI: 10.3389/fnagi.2024.1454867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
Background Disproportionally better memory for positive versus negative information (mnemonic positivity effect, MPE) in older versus younger adults has been reported on tests of explicit memory (direct, intentional) as measured by recall and recognition. The purpose of this investigation was to examine whether the MPE would be observed for implicit memory (indirect, unintentional) under conditions where, based on previous research using single words, it was expected that the MPE for explicit memory would be absent. Methods This study investigated the influence of age on explicit and implicit memory for positive, negative, and neutral single words as measured by yes/no recognition and word identification on 24 older adults (aged 66-85) and 24 younger adults (aged 18-37) recruited from community centers in South Boston, Massachusetts. Results Older adults had lower recognition memory accuracy for positive, negative, and neutral words than younger adults, and, consistent with most prior studies, did not exhibit an explicit memory MPE for single words. For both groups, recognition accuracy was greatest for negative words, and was similar for positive and neutral words. In contrast, older adults exhibited implicit repetition priming, as measured by superior identification performance for repeated words, that was similar to younger adults for positive and neutral words. In younger adults, implicit memory was significantly greater for negative words than for positive and neutral words, whereas in older adults there were no significant differences in implicit memory for negative, positive, and neutral words. Therefore, selectively reduced priming for negative words in older adults was found in the context of enhanced priming for negative words in the younger adults. Conclusion These findings show that there was an implicit memory MPE in older adults for words even under conditions where there was no explicit memory MPE in the older adults. Dampening of negative valence implicit memory with aging expands the perimeter of the age-related positivity framework.
Collapse
Affiliation(s)
- Sandra L. Ladd
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | |
Collapse
|
5
|
Martin E, Chowdury A, Kopchick J, Thomas P, Khatib D, Rajan U, Zajac-Benitez C, Haddad L, Amirsadri A, Robison AJ, Thakkar KN, Stanley JA, Diwadkar VA. The mesolimbic system and the loss of higher order network features in schizophrenia when learning without reward. Front Psychiatry 2024; 15:1337882. [PMID: 39355381 PMCID: PMC11443173 DOI: 10.3389/fpsyt.2024.1337882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Schizophrenia is characterized by a loss of network features between cognition and reward sub-circuits (notably involving the mesolimbic system), and this loss may explain deficits in learning and cognition. Learning in schizophrenia has typically been studied with tasks that include reward related contingencies, but recent theoretical models have argued that a loss of network features should be seen even when learning without reward. We tested this model using a learning paradigm that required participants to learn without reward or feedback. We used a novel method for capturing higher order network features, to demonstrate that the mesolimbic system is heavily implicated in the loss of network features in schizophrenia, even when learning without reward. Methods fMRI data (Siemens Verio 3T) were acquired in a group of schizophrenia patients and controls (n=78; 46 SCZ, 18 ≤ Age ≤ 50) while participants engaged in associative learning without reward-related contingencies. The task was divided into task-active conditions for encoding (of associations) and cued-retrieval (where the cue was to be used to retrieve the associated memoranda). No feedback was provided during retrieval. From the fMRI time series data, network features were defined as follows: First, for each condition of the task, we estimated 2nd order undirected functional connectivity for each participant (uFC, based on zero lag correlations between all pairs of regions). These conventional 2nd order features represent the task/condition evoked synchronization of activity between pairs of brain regions. Next, in each of the patient and control groups, the statistical relationship between all possible pairs of 2nd order features were computed. These higher order features represent the consistency between all possible pairs of 2nd order features in that group and embed within them the contributions of individual regions to such group structure. Results From the identified inter-group differences (SCZ ≠ HC) in higher order features, we quantified the respective contributions of individual brain regions. Two principal effects emerged: 1) SCZ were characterized by a massive loss of higher order features during multiple task conditions (encoding and retrieval of associations). 2) Nodes in the mesolimbic system were over-represented in the loss of higher order features in SCZ, and notably so during retrieval. Discussion Our analytical goals were linked to a recent circuit-based integrative model which argued that synergy between learning and reward circuits is lost in schizophrenia. The model's notable prediction was that such a loss would be observed even when patients learned without reward. Our results provide substantial support for these predictions where we observed a loss of network features between the brain's sub-circuits for a) learning (including the hippocampus and prefrontal cortex) and b) reward processing (specifically constituents of the mesolimbic system that included the ventral tegmental area and the nucleus accumbens. Our findings motivate a renewed appraisal of the relationship between reward and cognition in schizophrenia and we discuss their relevance for putative behavioral interventions.
Collapse
Affiliation(s)
- Elizabeth Martin
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Psychiatry, University of Texas Austin, Austin, TX, United States
| | - Asadur Chowdury
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - John Kopchick
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Patricia Thomas
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dalal Khatib
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Usha Rajan
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Caroline Zajac-Benitez
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Luay Haddad
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alireza Amirsadri
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alfred J. Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Katherine N. Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Jeffrey A. Stanley
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Vaibhav A. Diwadkar
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
6
|
Rosero-Pahi M, Andoh J, Shields GS, Acosta-Ortiz A, Serrano-Gomez S, Slavich GM. Cumulative lifetime stressor exposure impairs stimulus-response but not contextual learning. Sci Rep 2024; 14:13080. [PMID: 38844465 PMCID: PMC11156921 DOI: 10.1038/s41598-024-62595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Greater exposure to stressors over the life course is believed to promote striatum-dependent over hippocampus-dependent learning and memory processes under stressful conditions. However, little research in this context has actually assessed lifetime stressor exposure and, moreover, it remains unknown whether greater cumulative lifetime stressor exposure exerts comparable effects on striatum-dependent learning and hippocampus-dependent learning in non-stressful contexts. To investigate this issue, we used the Stress and Adversity Inventory for Adults (Adult STRAIN) and Multicued Search Task to investigate the relation between cumulative lifetime stressor exposure and striatum-dependent stimulus-response learning and hippocampus-dependent contextual learning under non-stressful conditions among healthcare professionals (N = 205; 157 females, 48 males; Age: M = 34.23, SD 9.3, range 20-59 years). Individuals with moderate, but not low, cumulative lifetime stressor exposure exhibited impaired learning for stimulus-response associations. In contrast, learning for context associations was unrelated to participants' lifetime stressor exposure profiles. These results thus provide first evidence that cumulative lifetime stressor exposure may have negative consequences on human striatum-dependent stimulus-response learning under non-stressful environmental conditions.
Collapse
Affiliation(s)
- Mario Rosero-Pahi
- Cognitive and Translational Neuroscience Lab, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Santander, Colombia.
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Jamila Andoh
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Grant S Shields
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| | - Alida Acosta-Ortiz
- Cognitive and Translational Neuroscience Lab, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Santander, Colombia
| | - Sergio Serrano-Gomez
- Cognitive and Translational Neuroscience Lab, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Santander, Colombia
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Terruzzi S, Albini F, Massetti G, Etzi R, Gallace A, Vallar G. The Neuropsychological Assessment of Unilateral Spatial Neglect Through Computerized and Virtual Reality Tools: A Scoping Review. Neuropsychol Rev 2024; 34:363-401. [PMID: 36913099 PMCID: PMC10009867 DOI: 10.1007/s11065-023-09586-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 09/28/2022] [Indexed: 03/14/2023]
Abstract
Unilateral Spatial Neglect is a disabling neuropsychological deficit. Patients with spatial neglect fail to detect and report events, and to perform actions in the side of space contralateral to a hemispheric cerebral lesion. Neglect is assessed by evaluating the patients' abilities in daily life activities and by psychometric tests. Computer-based, portable and Virtual Reality technologies may provide more and precise data, and be more sensitive and informative, compared to current paper-and-pencil procedures. Studies since 2010, in which such technologies have been used, are reviewed. Forty-two articles meeting inclusion criteria are categorized according to their technological approaches (computer-, graphics tablet or tablet-, virtual reality-based assessment, and other). The results are promising. However, a definite golden standard, technologically based procedure cannot be still established. Developing technologically based tests is a laborious process, which requires technical and user experience improvements as well as normative data, to increase the evidence of efficacy for clinical evaluation of at least some of the tests considered in this review.
Collapse
Affiliation(s)
- Stefano Terruzzi
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, Milan, 20126, Italy.
- Mind and Behavior Technological Center, University of Milano-Bicocca, Milan, Italy.
- Neurocognitive Rehabilitation Center (CeRiN), University of Trento, Rovereto, Italy.
| | - Federica Albini
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, Milan, 20126, Italy
- Mind and Behavior Technological Center, University of Milano-Bicocca, Milan, Italy
| | - Gemma Massetti
- Mind and Behavior Technological Center, University of Milano-Bicocca, Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Roberta Etzi
- Mind and Behavior Technological Center, University of Milano-Bicocca, Milan, Italy
| | - Alberto Gallace
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, Milan, 20126, Italy
- Mind and Behavior Technological Center, University of Milano-Bicocca, Milan, Italy
| | - Giuseppe Vallar
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, Milan, 20126, Italy.
- Mind and Behavior Technological Center, University of Milano-Bicocca, Milan, Italy.
- Neuropsychological Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Auxologico Italiano, Milan, Italy.
| |
Collapse
|
8
|
Weller P, Recio G, Kaltwasser L, Rostami HN, Stürmer B, Sommer W. Conflicts between priming and episodic retrieval: a question of fluency? PSYCHOLOGICAL RESEARCH 2024; 88:1127-1140. [PMID: 38418591 PMCID: PMC11142949 DOI: 10.1007/s00426-023-01919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/20/2023] [Indexed: 03/01/2024]
Abstract
Human memory consists of different underlying processes whose interaction can result in counterintuitive findings. One phenomenon that relies on various types of mnemonic processes is the repetition priming effect for unfamiliar target faces in familiarity decisions, which is highly variable and may even reverse. Here, we tested the hypothesis that this reversed priming effect may be due to a conflict between target fluency signals and episodic retrieval processes. After replicating the reverse priming effect, three different manipulations were effective in diminishing it. We suggest that each of these manipulations diminished the ambiguity regarding the source of priming-induced fluency of target processing. Our findings argue against a strictly independent view of different types of memory.
Collapse
Affiliation(s)
- Peter Weller
- Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | - Laura Kaltwasser
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Birgit Stürmer
- International Psychoanalytic University, Berlin, Germany
| | | |
Collapse
|
9
|
Zárate-Rochín AM. Contemporary neurocognitive models of memory: A descriptive comparative analysis. Neuropsychologia 2024; 196:108846. [PMID: 38430963 DOI: 10.1016/j.neuropsychologia.2024.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The great complexity involved in the study of memory has given rise to numerous hypotheses and models associated with various phenomena at different levels of analysis. This has allowed us to delve deeper in our knowledge about memory but has also made it difficult to synthesize and integrate data from different lines of research. In this context, this work presents a descriptive comparative analysis of contemporary models that address the structure and function of multiple memory systems. The main goal is to outline a panoramic view of the key elements that constitute these models in order to visualize both the current state of research and possible future directions. The elements that stand out from different levels of analysis are distributed neural networks, hierarchical organization, predictive coding, homeostasis, and evolutionary perspective.
Collapse
Affiliation(s)
- Alba Marcela Zárate-Rochín
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Dr. Castelazo Ayala s/n, Industrial Animas, 91190, Xalapa-Enríquez, Veracruz, Mexico.
| |
Collapse
|
10
|
Miller TD, Kennard C, Gowland PA, Antoniades CA, Rosenthal CR. Differential effects of bilateral hippocampal CA3 damage on the implicit learning and recognition of complex event sequences. Cogn Neurosci 2024; 15:27-55. [PMID: 38384107 PMCID: PMC11147457 DOI: 10.1080/17588928.2024.2315818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Learning regularities in the environment is a fundament of human cognition, which is supported by a network of brain regions that include the hippocampus. In two experiments, we assessed the effects of selective bilateral damage to human hippocampal subregion CA3, which was associated with autobiographical episodic amnesia extending ~50 years prior to the damage, on the ability to recognize complex, deterministic event sequences presented either in a spatial or a non-spatial configuration. In contrast to findings from related paradigms, modalities, and homologue species, hippocampal damage did not preclude recognition memory for an event sequence studied and tested at four spatial locations, whereas recognition memory for an event sequence presented at a single location was at chance. In two additional experiments, recognition memory for novel single-items was intact, whereas the ability to recognize novel single-items in a different location from that presented at study was at chance. The results are at variance with a general role of the hippocampus in the learning and recognition of complex event sequences based on non-adjacent spatial and temporal dependencies. We discuss the impact of the results on established theoretical accounts of the hippocampal contributions to implicit sequence learning and episodic memory.
Collapse
Affiliation(s)
- Thomas D. Miller
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Christopher Kennard
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Penny A. Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Clive R. Rosenthal
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Mulligan NW, Spataro P, West JT. Memory and attention: A double dissociation between memory encoding and memory retrieval. Cognition 2023; 238:105509. [PMID: 37354786 DOI: 10.1016/j.cognition.2023.105509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/26/2023]
Abstract
Research has found substantial negative effects of divided attention (DA) during encoding but less substantial effects when attention is divided during retrieval, an asymmetry which has been interpreted as indicating that different control processes or forms of attention are involved in encoding and retrieval (e.g., Chun & Johnson, 2011; Craik, Govoni, Naveh-Benjamin, & Anderson, 1996; Long, Kuhl, & Chun, 2018). The extant evidence, however, is not strong support for qualitative differences and might simply indicate differential sensitivity. The present experiments document a stronger, double dissociation by focusing on the Attentional Boost Effect (ABE) - a phenomenon in which the detection of targets in a secondary task enhances encoding of co-occurring stimuli. The dual-task interaction account proposes that the classical negative effects produced by dual-task interference are offset by a transient increase in externally-directed attention brought about by target detection. Since externally-directed attention is less valuable for retrieval processes, the ABE should result in a net negative effect when applied in the test phase because the dual-task interference would no longer be offset by the externally-directed boost occurring during target trials. Experiments 1, 2 and 4 confirmed the predictions by showing that test words paired with target stimuli were recognized significantly worse than test words paired with distractor stimuli. In contrast, Experiments 3 and 4 replicated the usual positive effects of the ABE with respect to encoding. We discuss these findings in light of recent theoretical proposals suggesting that encoding and retrieval processes are subserved by different forms of attention (external [perceptual] vs. internal [reflective]). Implications for the Transfer-Appropriate-Processing view of memory are also illustrated.
Collapse
Affiliation(s)
| | | | - John T West
- University of North Carolina, United States of America
| |
Collapse
|
12
|
Parra-Barrero E, Vijayabaskaran S, Seabrook E, Wiskott L, Cheng S. A map of spatial navigation for neuroscience. Neurosci Biobehav Rev 2023; 152:105200. [PMID: 37178943 DOI: 10.1016/j.neubiorev.2023.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Spatial navigation has received much attention from neuroscientists, leading to the identification of key brain areas and the discovery of numerous spatially selective cells. Despite this progress, our understanding of how the pieces fit together to drive behavior is generally lacking. We argue that this is partly caused by insufficient communication between behavioral and neuroscientific researchers. This has led the latter to under-appreciate the relevance and complexity of spatial behavior, and to focus too narrowly on characterizing neural representations of space-disconnected from the computations these representations are meant to enable. We therefore propose a taxonomy of navigation processes in mammals that can serve as a common framework for structuring and facilitating interdisciplinary research in the field. Using the taxonomy as a guide, we review behavioral and neural studies of spatial navigation. In doing so, we validate the taxonomy and showcase its usefulness in identifying potential issues with common experimental approaches, designing experiments that adequately target particular behaviors, correctly interpreting neural activity, and pointing to new avenues of research.
Collapse
Affiliation(s)
- Eloy Parra-Barrero
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sandhiya Vijayabaskaran
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Eddie Seabrook
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Laurenz Wiskott
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
13
|
Gasalla P, Manahan-Vaughan D, Dwyer DM, Hall J, Méndez-Couz M. Characterisation of the neural basis underlying appetitive extinction & renewal in Cacna1c rats. Neuropharmacology 2023; 227:109444. [PMID: 36724867 DOI: 10.1016/j.neuropharm.2023.109444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Recent studies have revealed impairments in Cacna1c ± heterozygous animals (a gene that encodes the Cav 1.2 L-type voltage-gated calcium channels and is implicated in risk for multiple neuropsychiatric disorders) in aversive forms of learning, such as latent inhibition, reversal learning or context discrimination. However, the role of Cav 1.2 L-type voltage-gated calcium channels in extinction of appetitive associations remains under-investigated. Here, we used an appetitive Pavlovian conditioning task and evaluated extinction learning (EL) with a change of context from that of training and test (ABA) and without such a change (AAA) in Cacna1c ± male rats versus their wild-type (WT) littermates. In addition, we used fluorescence in situ hybridization of somatic immediate early genes (IEGs) Arc and Homer1a expression to scrutinize associated changes in the medial prefrontal cortex and the amygdala. Cacna1c ± animals successfully adapt their responses by engaging in appetitive EL and renewal. However, the regional IEG expression profile changed. For the EL occurring in the same context, Cacna1c ± animals presented higher IEG expression in the infralimbic cortex and the central amygdala than controls. The prelimbic region presented a larger neural ensemble in Cacna1c ± than WT animals, co-labelled for the time window of EL in the original context and prolonged exposure to the unrewarded context. With a context change, the Cacna1c ± infralimbic region displayed higher IEG expression during renewal than controls. Taken together, our findings provide novel evidence of distinct brain activation patterns occurring in Cacna1c ± rats after appetitive extinction and renewal despite preserved behavioral responses. This article is part of the Special Issue on "L-type calcium channel mechanisms in neuropsychiatric disorders".
Collapse
Affiliation(s)
- Patricia Gasalla
- Neuroscience & Mental Health Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK; School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Denise Manahan-Vaughan
- Dept. Neurophysiology, Medical Faculty, Ruhr-University Bochum, Universitätsstraße 150, Building MA 4/158, 44780, Bochum, Germany
| | - Dominic Michael Dwyer
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Marta Méndez-Couz
- Dept. Neurophysiology, Medical Faculty, Ruhr-University Bochum, Universitätsstraße 150, Building MA 4/158, 44780, Bochum, Germany.
| |
Collapse
|
14
|
Chung M, Park YS. Hyperkinetic Rat Model Induced by Optogenetic Parafascicular Nucleus Stimulation. J Korean Neurosurg Soc 2023; 66:121-132. [PMID: 36239081 PMCID: PMC10009241 DOI: 10.3340/jkns.2022.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The parafascicular nucleus (PF) plays important roles in controlling the basal ganglia. It is not well known whether the PF affects the development of abnormal involuntary movements (AIMs). This study was aimed to find a role of the PF in development of AIMs using optogenetic methods in an animal model. METHODS Fourteen rats were underwent stereotactic operation, in which they were injected with an adeno-associated virus with channelrhodopsin (AAV2-hSyn-ChR2-mCherry) to the lateral one third of the PF. Behavior test was performed with and without optical stimulation 14 days after the injection of the virus. AIM of rat was examined using AIM score. After the behavior test, rat's brain was carefully extracted and the section was examined using a fluorescence microscope to confirm transfection of the PF. RESULTS Of the 14 rats, seven rats displayed evident involuntary abnormal movements. AIM scores were increased significantly after the stimulation compared to those at baseline. In rats with AIMs, mCherry expression was prominent in the PF, while the rats without AIM lacked with the mCherry expression. CONCLUSION AIMs could be reversibly induced by stimulating the PF through an optogenetic method.
Collapse
Affiliation(s)
- Moonyoung Chung
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University, Korea
| | - Young Seok Park
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
15
|
Lavi A, Sehgal M, de Sousa AF, Ter-Mkrtchyan D, Sisan F, Luchetti A, Okabe A, Bear C, Silva AJ. Local memory allocation recruits memory ensembles across brain regions. Neuron 2023; 111:470-480.e5. [PMID: 36563678 PMCID: PMC10548338 DOI: 10.1016/j.neuron.2022.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Memories are thought to be stored in ensembles of neurons across multiple brain regions. However, whether and how these ensembles are coordinated at the time of learning remains largely unknown. Here, we combined CREB-mediated memory allocation with transsynaptic retrograde tracing to demonstrate that the allocation of aversive memories to a group of neurons in one brain region directly affects the allocation of interconnected neurons in upstream brain regions in a behavioral- and brain region-specific manner in mice. Our analysis suggests that this cross-regional recruitment of presynaptic neurons is initiated by downstream memory neurons through a retrograde mechanism. Together with statistical modeling, our results indicate that in addition to the anterograde flow of information between brain regions, the establishment of interconnected, brain-wide memory traces relies on a retrograde mechanism that coordinates memory ensembles at the time of learning.
Collapse
Affiliation(s)
- Ayal Lavi
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Megha Sehgal
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andre F de Sousa
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Donara Ter-Mkrtchyan
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fardad Sisan
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alessandro Luchetti
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna Okabe
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cameron Bear
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alcino J Silva
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Osorio-Gómez D, Miranda MI, Guzmán-Ramos K, Bermúdez-Rattoni F. Transforming experiences: Neurobiology of memory updating/editing. Front Syst Neurosci 2023; 17:1103770. [PMID: 36896148 PMCID: PMC9989287 DOI: 10.3389/fnsys.2023.1103770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Long-term memory is achieved through a consolidation process where structural and molecular changes integrate information into a stable memory. However, environmental conditions constantly change, and organisms must adapt their behavior by updating their memories, providing dynamic flexibility for adaptive responses. Consequently, novel stimulation/experiences can be integrated during memory retrieval; where consolidated memories are updated by a dynamic process after the appearance of a prediction error or by the exposure to new information, generating edited memories. This review will discuss the neurobiological systems involved in memory updating including recognition memory and emotional memories. In this regard, we will review the salient and emotional experiences that promote the gradual shifting from displeasure to pleasure (or vice versa), leading to hedonic or aversive responses, throughout memory updating. Finally, we will discuss evidence regarding memory updating and its potential clinical implication in drug addiction, phobias, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Isabel Miranda
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Kioko Guzmán-Ramos
- División de Ciencias Biológicas y de la Salud, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Lerma de Villada, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
17
|
Kody E, Diwadkar VA. Magnocellular and parvocellular contributions to brain network dysfunction during learning and memory: Implications for schizophrenia. J Psychiatr Res 2022; 156:520-531. [PMID: 36351307 DOI: 10.1016/j.jpsychires.2022.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Memory deficits are core features of schizophrenia, and a central aim in biological psychiatry is to identify the etiology of these deficits. Scrutiny is naturally focused on the dorsolateral prefrontal cortex and the hippocampal cortices, given these structures' roles in memory and learning. The fronto-hippocampal framework is valuable but restrictive. Network-based underpinnings of learning and memory are substantially diverse and include interactions between hetero-modal and early sensory networks. Thus, a loss of fidelity in sensory information may impact memorial and cognitive processing in higher-order brain sub-networks, becoming a sensory source for learning and memory deficits. In this overview, we suggest that impairments in magno- and parvo-cellular visual pathways result in degraded inputs to core learning and memory networks. The ascending cascade of aberrant neural events significantly contributes to learning and memory deficits in schizophrenia. We outline the network bases of these effects, and suggest that any network perspectives of dysfunction in schizophrenia must assess the impact of impaired perceptual contributions. Finally, we speculate on how this framework enriches the space of biomarkers and expands intervention strategies to ameliorate this prototypical disconnection syndrome.
Collapse
Affiliation(s)
- Elizabeth Kody
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA.
| |
Collapse
|
18
|
Moore PA, Turnbull OH. Like a rolling stone: Psychotherapy without (episodic) memory. Front Psychiatry 2022; 13:958194. [PMID: 36405914 PMCID: PMC9666688 DOI: 10.3389/fpsyt.2022.958194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
People with profound amnesia still retain the capacity to learn about the emotional value of experiences, which is crucial in developing and sustaining interpersonal relationships. In a 2017 paper, we demonstrated for the first time (with patient JL) that transferential feelings develop across the therapeutic process, despite profound episodic memory impairment after medial temporal lesions. This paper reports a second case (GA) of a profoundly amnesic patient in psychotherapy, this time after lesions to the anterior fornix. The work with GA opens issues such as the differences and similarities to the previous case, counter-transference phenomena, and the effects of hyperphagia. The findings make it clear that many phenomena are common to both GA and JL, such as forgetfulness, various types of repetition, the importance of the therapeutic alliance, and the ability to make therapeutic gain. However, there were differences between the cases, for example as regards confabulation, which may relate to either pre-morbid personality or lesion site. The paper also discusses the way in which patients of this type bear the very status of psychotherapeutic work with profoundly amnesic patients. Where others have seen barriers and in principle problems in working with such patients, we see many opportunities.
Collapse
Affiliation(s)
- Paul A. Moore
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Oliver Hugh Turnbull
- School of Human and Behavioral Sciences, Bangor University, Wales, United Kingdom
| |
Collapse
|
19
|
Kelvington BA, Nickl-Jockschat T, Abel T. Neurobiological insights into twice-exceptionality: Circuits, cells, and molecules. Neurobiol Learn Mem 2022; 195:107684. [PMID: 36174887 PMCID: PMC9888516 DOI: 10.1016/j.nlm.2022.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 02/02/2023]
Abstract
Twice-exceptional learners face a unique set of challenges arising from the intersection of extraordinary talent and disability. Neurobiology research has the capacity to complement pedagogical research and provide support for twice-exceptional learners. Very few studies have attempted to specifically address the neurobiological underpinnings of twice-exceptionality. However, neurobiologists have built a broad base of knowledge in nervous system function spanning from the level of neural circuits to the molecular basis of behavior. It is known that distinct neural circuits mediate different neural functions, which suggests that 2e learning may result from enhancement in one circuit and disruption in another. Neural circuits are known to adapt and change in response to experience, a cellular process known as neuroplasticity. Plasticity is controlled by a bidirectional connection between the synapse, where neural signals are received, and the nucleus, where regulated gene expression can return to alter synaptic function. Complex molecular mechanisms compose this connection in distinct neural circuits, and genetic alterations in these mechanisms are associated with both memory enhancements and psychiatric disorder. Understanding the consequences of these changes at the molecular, cellular, and circuit levels will provide critical insights into the neurobiological bases of twice-exceptionality.
Collapse
Affiliation(s)
- Benjamin A Kelvington
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Thomas Nickl-Jockschat
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Ted Abel
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
20
|
Kipper K, Mansour A, Pulk A. Neuronal RNA granules are ribosome complexes stalled at the pre-translocation state. J Mol Biol 2022; 434:167801. [PMID: 36038000 DOI: 10.1016/j.jmb.2022.167801] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
The polarized cell morphology of neurons dictates many neuronal processes, including the axodendridic transport of specific mRNAs and subsequent translation. mRNAs together with ribosomes and RNA-binding proteins form RNA granules that are targeted to axodendrites for localized translation in neurons. It has been established that localized protein synthesis in neurons is essential for long-term memory formation, synaptic plasticity, and neurodegeneration. We have used proteomics and electron microscopy to characterize neuronal RNA granules (nRNAg) isolated from rat brain tissues or human neuroblastoma. We show that ribosome containing RNA granules are morula-like structures when visualized by electron microscopy. Crosslinking-coupled mass-spectrometry identified potential G3BP2 binding site on the ribosome near the eIF3d-binding site on the 40S ribosomal subunit. We used cryo-EM to resolve the structure of the ribosome-component of nRNAg. The cryo-EM reveals that predominant particles in nRNAg are 80S ribosomes, resembling the pre-translocation state where tRNA's are in the hybrid A/P and P/E site. We also describe a new kind of principal motion of the ribosome, which we call the rocking motion.
Collapse
Affiliation(s)
- Kalle Kipper
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Abbas Mansour
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Arto Pulk
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia.
| |
Collapse
|
21
|
Chung M, Huh R. Neuromodulation for trigeminal neuralgia. J Korean Neurosurg Soc 2022; 65:640-651. [PMID: 35574582 PMCID: PMC9452392 DOI: 10.3340/jkns.2022.0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/16/2022] [Indexed: 11/27/2022] Open
|
22
|
He Y, Hu Y. Functional Connectivity Signatures Underlying Simultaneous Language Translation in Interpreters and Non-Interpreters of Mandarin and English: An fNIRS Study. Brain Sci 2022; 12:brainsci12020273. [PMID: 35204036 PMCID: PMC8870181 DOI: 10.3390/brainsci12020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 11/27/2022] Open
Abstract
Recent neuroimaging research has suggested that interpreters and non-interpreters elicit different brain activation patterns during simultaneous language translation. However, whether these two groups have different functional connectivity during such a task, and how the neural coupling is among brain subregions, are still not well understood. In this study, we recruited Mandarin (L1)/English (L2) interpreters and non-interpreter bilinguals, whom we asked to perform simultaneous language translation and reading tasks. Functional near-infrared spectroscopy (fNIRS) was used to collect cortical brain data for participants during each task, using 68 channels that covered the prefrontal cortex and the bilateral perisylvian regions. Our findings revealed both interpreter and non-interpreter groups recruited the right dorsolateral prefrontal hub when completing the simultaneous language translation tasks. We also found different functional connectivity between the groups. The interpreter group was characterized by information exchange between the frontal cortex and Wernicke’s area. In comparison, the non-interpreter group revealed neural coupling between the frontal cortex and Broca’s area. These findings indicate expertise modulates functional connectivity, possibly because of more developed cognitive skills associated with executive functions in interpreters.
Collapse
Affiliation(s)
- Yan He
- College of Foreign Languages and Literatures, Fudan University, Shanghai 200433, China;
| | - Yinying Hu
- Institute of Brain and Education Innovation, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Correspondence:
| |
Collapse
|
23
|
Shurtleff HA, Poliakov A, Barry D, Wright JN, Warner MH, Novotny EJ, Marashly A, Buckley R, Goldstein HE, Hauptman JS, Ojemann JG, Shaw DWW. A clinically applicable functional MRI memory paradigm for use with pediatric patients. Epilepsy Behav 2022; 126:108461. [PMID: 34896785 DOI: 10.1016/j.yebeh.2021.108461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Clinically employable functional MRI (fMRI) memory paradigms are not yet established for pediatric patient epilepsy surgery workups. Seeking to establish such a paradigm, we evaluated the effectiveness of memory fMRI tasks we developed by quantifying individual activation in a clinical pediatric setting, analyzing patterns of activation relative to the side of temporal lobe (TL) pathology, and comparing fMRI and Wada test results. METHODS We retrospectively identified 72 patients aged 6.7-20.9 years with pathology (seizure focus and/or tumor) limited to the TL who had attempted memory and language fMRI tasks over a 9-year period as part of presurgical workups. Memory fMRI tasks required visualization of autobiographical memories in a block design alternating with covert counting. Language fMRI protocols involved verb and sentence generation. Scans were both qualitatively interpreted and quantitatively assessed for blood oxygenation level dependent (BOLD) signal change using region of interest (ROI) masks. We calculated the percentage of successfully scanned individual cases, compared 2 memory task activation masks in cases with left versus right TL pathology, and compared fMRI with Wada tests when available. Patients who had viable fMRI and Wada tests had generally concordant results. RESULTS Of the 72 cases, 60 (83%), aged 7.6-20.9 years, successfully performed the memory fMRI tasks and 12 (17%) failed. Eleven of 12 unsuccessful scans were due to motion and/or inability to perform the tasks, and the success of a twelfth was indeterminate due to orthodontic metal artifact. Seven of the successful 60 cases had distorted anatomy that precluded employing predetermined masks for quantitative analysis. Successful fMRI memory studies showed bilateral mesial temporal activation and quantitatively demonstrated: (1) left activation (L-ACT) less than right activation (R-ACT) in cases with left temporal lobe (L-TL) pathology, (2) nonsignificant R-ACT less than L-ACT in cases with right temporal lobe (R-TL) pathology, and (3) lower L-ACT plus R-ACT activation for cases with L-TL versus R-TL pathology. Patients who had viable fMRI and Wada tests had generally concordant results. SIGNIFICANCE This study demonstrates evidence of an fMRI memory task paradigm that elicits reliable activation at the individual level and can generally be accomplished in clinically involved pediatric patients. This autobiographical memory paradigm showed activation in mesial TL structures, and cases with left compared to right TL pathology showed differences in activation consistent with extant literature in TL epilepsy. Further studies will be required to assess outcome prediction.
Collapse
Affiliation(s)
- Hillary A Shurtleff
- Neurosciences Institute, Seattle Children's Hospital, United States; Center for Integrated Brain Research Seattle Children's, United States.
| | | | - Dwight Barry
- Clinical Analytics, Seattle Children's Hospital, United States
| | - Jason N Wright
- Radiology, Seattle Children's Hospital, United States; Department of Radiology, University of Washington School of Medicine, United States
| | - Molly H Warner
- Neurosciences Institute, Seattle Children's Hospital, United States; Center for Integrated Brain Research Seattle Children's, United States
| | - Edward J Novotny
- Neurosciences Institute, Seattle Children's Hospital, United States; Center for Integrated Brain Research Seattle Children's, United States; Neurology, Seattle Children's Hospital, United States; Department of Neurology, University of Washington School of Medicine, United States
| | - Ahmad Marashly
- Neurosciences Institute, Seattle Children's Hospital, United States; Center for Integrated Brain Research Seattle Children's, United States; Neurology, Seattle Children's Hospital, United States; Department of Neurology, University of Washington School of Medicine, United States
| | - Robert Buckley
- Department of Neurological Surgery, University of Washington School of Medicine, United States
| | - Hannah E Goldstein
- Neurosciences Institute, Seattle Children's Hospital, United States; Department of Neurological Surgery, University of Washington School of Medicine, United States; Neurological Surgery, Seattle Children's Hospital, United States
| | - Jason S Hauptman
- Neurosciences Institute, Seattle Children's Hospital, United States; Department of Neurological Surgery, University of Washington School of Medicine, United States; Neurological Surgery, Seattle Children's Hospital, United States
| | - Jeffrey G Ojemann
- Neurosciences Institute, Seattle Children's Hospital, United States; Center for Integrated Brain Research Seattle Children's, United States; Department of Neurological Surgery, University of Washington School of Medicine, United States; Neurological Surgery, Seattle Children's Hospital, United States
| | - Dennis W W Shaw
- Radiology, Seattle Children's Hospital, United States; Department of Radiology, University of Washington School of Medicine, United States
| |
Collapse
|
24
|
Packard MG, Gadberry T, Goodman J. Neural systems and the emotion-memory link. Neurobiol Learn Mem 2021; 185:107503. [PMID: 34418544 DOI: 10.1016/j.nlm.2021.107503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
The present brief review for this Special Issue summarizes some of the original research on the emotional modulation of memory. The review begins by highlighting the pioneering research from James L. McGaugh and colleagues demonstrating modulatory effects of post-training drug administration on memory consolidation, in particular the stress hormone epinephrine. The subsequent discovery of a critical role for the basolateral amygdala in emotional modulation of memory is described. Within the context of a multiple systems approach to memory focusing on selective roles for the hippocampus and dorsolateral striatum in cognitive and habit memory, the original studies indicating that robust emotional arousal can bias animals and humans toward the predominant use of habit memory are reviewed. This effect of emotional arousal on the relative use of multiple memory systems depends on a modulatory role of the basolateral amygdala. Finally, we briefly consider how an emotion-induced enhancement of dorsolateral striatal-dependent memory may be relevant to understanding maladaptive habitual behaviors in certain human psychopathologies.
Collapse
Affiliation(s)
- Mark G Packard
- Department of Psychological and Brain Sciences, Texas A&M University, United States.
| | - Ty Gadberry
- Department of Psychological and Brain Sciences, Texas A&M University, United States
| | - Jarid Goodman
- Department of Psychology, Delaware State University, United States
| |
Collapse
|
25
|
Stress, memory, and implications for major depression. Behav Brain Res 2021; 412:113410. [PMID: 34116119 DOI: 10.1016/j.bbr.2021.113410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022]
Abstract
The stress response comprises a phylogenetically conserved set of cognitive, physiological, and behavioral responses that evolved as a survival strategy. In this context, the memory of stressful events would be adaptive as it could avoid re-exposure to an adverse event, otherwise the event would be facilitated in positively stressful or non-distressful conditions. However, the interaction between stress and memory comprises complex responses, some of them which are not yet completely understood, and which depend on several factors such as the memory system that is recruited, the nature and duration of the stressful event, as well as the timing in which this interaction takes place. In this narrative review, we briefly discuss the mechanisms of the stress response, the main memory systems, and its neural correlates. Then, we show how stress, through the action of its biochemical mediators, influences memory systems and mnemonic processes. Finally, we make use of major depressive disorder to explore the possible implications of non-adaptive interactions between stress and memory to psychiatric disorders, as well as possible roles for memory studies in the field of psychiatry.
Collapse
|
26
|
Hertrich I, Dietrich S, Blum C, Ackermann H. The Role of the Dorsolateral Prefrontal Cortex for Speech and Language Processing. Front Hum Neurosci 2021; 15:645209. [PMID: 34079444 PMCID: PMC8165195 DOI: 10.3389/fnhum.2021.645209] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
This review article summarizes various functions of the dorsolateral prefrontal cortex (DLPFC) that are related to language processing. To this end, its connectivity with the left-dominant perisylvian language network was considered, as well as its interaction with other functional networks that, directly or indirectly, contribute to language processing. Language-related functions of the DLPFC comprise various aspects of pragmatic processing such as discourse management, integration of prosody, interpretation of nonliteral meanings, inference making, ambiguity resolution, and error repair. Neurophysiologically, the DLPFC seems to be a key region for implementing functional connectivity between the language network and other functional networks, including cortico-cortical as well as subcortical circuits. Considering clinical aspects, damage to the DLPFC causes psychiatric communication deficits rather than typical aphasic language syndromes. Although the number of well-controlled studies on DLPFC language functions is still limited, the DLPFC might be an important target region for the treatment of pragmatic language disorders.
Collapse
Affiliation(s)
- Ingo Hertrich
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Susanne Dietrich
- Evolutionary Cognition, Department of Psychology, University of Tübingen, Tübingen, Germany
| | - Corinna Blum
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hermann Ackermann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Goodman J. Place vs. Response Learning: History, Controversy, and Neurobiology. Front Behav Neurosci 2021; 14:598570. [PMID: 33643005 PMCID: PMC7904695 DOI: 10.3389/fnbeh.2020.598570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/21/2020] [Indexed: 01/26/2023] Open
Abstract
The present article provides a historical review of the place and response learning plus-maze tasks with a focus on the behavioral and neurobiological findings. The article begins by reviewing the conflict between Edward C. Tolman's cognitive view and Clark L. Hull's stimulus-response (S-R) view of learning and how the place and response learning plus-maze tasks were designed to resolve this debate. Cognitive learning theorists predicted that place learning would be acquired faster than response learning, indicating the dominance of cognitive learning, whereas S-R learning theorists predicted that response learning would be acquired faster, indicating the dominance of S-R learning. Here, the evidence is reviewed demonstrating that either place or response learning may be dominant in a given learning situation and that the relative dominance of place and response learning depends on various parametric factors (i.e., amount of training, visual aspects of the learning environment, emotional arousal, et cetera). Next, the neurobiology underlying place and response learning is reviewed, providing strong evidence for the existence of multiple memory systems in the mammalian brain. Research has indicated that place learning is principally mediated by the hippocampus, whereas response learning is mediated by the dorsolateral striatum. Other brain regions implicated in place and response learning are also discussed in this section, including the dorsomedial striatum, amygdala, and medial prefrontal cortex. An exhaustive review of the neurotransmitter systems underlying place and response learning is subsequently provided, indicating important roles for glutamate, dopamine, acetylcholine, cannabinoids, and estrogen. Closing remarks are made emphasizing the historical importance of the place and response learning tasks in resolving problems in learning theory, as well as for examining the behavioral and neurobiological mechanisms of multiple memory systems. How the place and response learning tasks may be employed in the future for examining extinction, neural circuits of memory, and human psychopathology is also briefly considered.
Collapse
Affiliation(s)
- Jarid Goodman
- Department of Psychology, Delaware State University, Dover, DE, United States
| |
Collapse
|
28
|
Ferbinteanu J. The Hippocampus and Dorsolateral Striatum Integrate Distinct Types of Memories through Time and Space, Respectively. J Neurosci 2020; 40:9055-9065. [PMID: 33051349 PMCID: PMC7673003 DOI: 10.1523/jneurosci.1084-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023] Open
Abstract
Several decades of research have established that different kinds of memories result from the activity of discrete neural networks. Studying how these networks process information in experiments that target specific types of mnemonic representations has provided deep insights into memory architecture and its neural underpinnings. However, in natural settings reality confronts organisms with problems that are not neatly compartmentalized. Thus, a critical problem in memory research that still needs to be addressed is how distinct types of memories are ultimately integrated. Here we demonstrate how two memory networks, the hippocampus and dorsolateral striatum, may accomplish such a goal. The hippocampus supports memory for facts and events, collectively known as declarative memory and often studied as spatial memory in rodents. The dorsolateral striatum provides the basis for habits that are assessed in stimulus-response types of tasks. Expanding previous findings, the current work revealed that in male Long-Evans rats, the hippocampus and dorsolateral striatum use time and space in distinct and largely complementary ways to integrate spatial and habitual representations. Specifically, the hippocampus supported both types of memories when they were formed in temporal juxtaposition, even if the learning took place in different environments. In contrast, the lateral striatum supported both types of memories if they were formed in the same environment, even at temporally distinct points. These results reveal for the first time that by using fundamental aspects of experience in specific ways, the hippocampus and dorsolateral striatum can transcend their attributed roles in information storage.SIGNIFICANCE STATEMENT The current paradigm in memory research postulates that different types of memories reflected in separate types of behavioral strategies result from activity in distinct neural circuits. However, recent data have shown that when rats concurrently acquired in the same environment of hippocampal-dependent spatial navigation and striatal-dependent approach of a visual cue, each of the two types of memories became dependent on both the hippocampus and dorsolateral striatum. The current work reveals that the hippocampus and dorsolateral striatum use distinct and complementary principles to integrate different types of memories in time and space: the hippocampus integrates memories formed in temporal proximity, while the lateral striatum integrates memories formed in the same space.
Collapse
Affiliation(s)
- Janina Ferbinteanu
- Departments of Physiology and Pharmacology, and Neurology, SUNY Downstate Medical Center, Brooklyn, New York 11203
| |
Collapse
|
29
|
Leblanc H, Ramirez S. Linking Social Cognition to Learning and Memory. J Neurosci 2020; 40:8782-8798. [PMID: 33177112 PMCID: PMC7659449 DOI: 10.1523/jneurosci.1280-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
Many mammals have evolved to be social creatures. In humans, the ability to learn from others' experiences is essential to survival; and from an early age, individuals are surrounded by a social environment that helps them develop a variety of skills, such as walking, talking, and avoiding danger. Similarly, in rodents, behaviors, such as food preference, exploration of novel contexts, and social approach, can be learned through social interaction. Social encounters facilitate new learning and help modify preexisting memories throughout the lifespan of an organism. Moreover, social encounters can help buffer stress or the effects of negative memories, as well as extinguish maladaptive behaviors. Given the importance of such interactions, there has been increasing work studying social learning and applying its concepts in a wide range of fields, including psychotherapy and medical sociology. The process of social learning, including its neural and behavioral mechanisms, has also been a rapidly growing field of interest in neuroscience. However, the term "social learning" has been loosely applied to a variety of psychological phenomena, often without clear definition or delineations. Therefore, this review gives a definition for specific aspects of social learning, provides an overview of previous work at the circuit, systems, and behavioral levels, and finally, introduces new findings on the social modulation of learning. We contextualize such social processes in the brain both through the role of the hippocampus and its capacity to process "social engrams" as well as through the brainwide realization of social experiences. With the integration of new technologies, such as optogenetics, chemogenetics, and calcium imaging, manipulating social engrams will likely offer a novel therapeutic target to enhance the positive buffering effects of social experiences or to inhibit fear-inducing social stimuli in models of anxiety and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Heloise Leblanc
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, 02119
- Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, 02119
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02119
- Neurophotonics Center at Boston University, Boston, Massachusetts, 02119
- Center for Systems Neuroscience at Boston University, Boston, Massachusetts, 02119
| |
Collapse
|
30
|
Goldenberg JE, Lentzou S, Ackert-Smith L, Knowlton H, Dash MB. Interindividual differences in memory system local field potential activity predict behavioral strategy on a dual-solution T-maze. Hippocampus 2020; 30:1313-1326. [PMID: 32894595 DOI: 10.1002/hipo.23258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/31/2022]
Abstract
Individuals can use diverse behavioral strategies to navigate their environment including hippocampal-dependent place strategies reliant upon cognitive maps and striatal-dependent response strategies reliant upon egocentric body turns. The existence of multiple memory systems appears to facilitate successful navigation across a wide range of environmental and physiological conditions. The mechanisms by which these systems interact to ultimately generate a unitary behavioral response, however, remain unclear. We trained 20 male, Sprague-Dawley rats on a dual-solution T-maze while simultaneously recording local field potentials that were targeted to the dorsolateral striatum and dorsal hippocampus. Eight rats spontaneously exhibited a place strategy while the remaining 12 rats exhibited a response strategy. Interindividual differences in behavioral strategy were associated with distinct patterns of LFP activity between the dorsolateral striatum and dorsal hippocampus. Specifically, striatal-hippocampal theta activity was in-phase in response rats and out-of-phase in place rats and response rats exhibited elevated striatal-hippocampal coherence across a wide range of frequency bands. These contrasting striatal-hippocampal activity regimes were (a) present during both maze-learning and a 30 min premaze habituation period and (b) could be used to train support vector machines to reliably predict behavioral strategy. Distinct patterns of neuronal activity across multiple memory systems, therefore, appear to bias behavioral strategy selection and thereby contribute to interindividual differences in behavior.
Collapse
Affiliation(s)
| | - Stergiani Lentzou
- Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Lyn Ackert-Smith
- Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Harrison Knowlton
- Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Michael B Dash
- Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA.,Department of Psychology, Middlebury College, Middlebury, Vermont, USA
| |
Collapse
|
31
|
Thome J, Terpou BA, McKinnon MC, Lanius RA. The neural correlates of trauma-related autobiographical memory in posttraumatic stress disorder: A meta-analysis. Depress Anxiety 2020; 37:321-345. [PMID: 31815346 DOI: 10.1002/da.22977] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/02/2019] [Accepted: 11/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autobiographical memory (AM) refers to memories of events that are personally relevant and are remembered from one's own past. The AM network is a distributed brain network comprised largely by prefrontal medial and posteromedial cortical brain regions, which together facilitate AM. Autobiographical memories with high arousal and negatively valenced emotional states are thought to be retrieved more readily and re-experienced more vividly. This is critical in the case of trauma-related AMs, which are related to altered phenomenological experiences as well as aberrations to the underlying neural systems in posttraumatic stress disorder (PTSD). Critically, these alterations to the AM network have not been explored recently and have never been analyzed with consideration to the different processes of AM, them being retrieval and re-experiencing. METHODS We conducted a series of effect-size signed differential mapping meta-analyses across twenty-eight studies investigating the neural correlates of trauma-related AMs in participants with PTSD as compared with controls. Studies included either trauma-related scripts or trauma-related materials (i.e., sounds, images, pictures) implemented to evoke the recollection of a trauma-related memory. RESULTS The meta-analyses revealed that control and PTSD participants displayed greater common brain activation of prefrontal medial and posteromedial cortices, respectively. Whereby the prefrontal medial cortices are suggested to facilitate retrieval monitoring, the posteromedial cortices are thought to enable the visual imagery processes of AM. CONCLUSIONS Taken together, reduced common activation of prefrontal cortices may be interpreted as a bias toward greater re-experiencing, where the more salient elements of the traumatic memory are relived as opposed to retrieved in a controlled manner in PTSD.
Collapse
Affiliation(s)
- Janine Thome
- Department of Psychiatry, Western University, London, Ontario, Canada.,Department of Theoretical Neuroscience, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Braeden A Terpou
- Department of Neuroscience, Western University, London, Ontario, Canada
| | - Margaret C McKinnon
- Mood Disorders Program, St. Joseph's Healthcare, Hamilton, Ontario, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Homewood Research Institute, Guelph, Ontario, Canada
| | - Ruth A Lanius
- Department of Psychiatry, Western University, London, Ontario, Canada.,Department of Neuroscience, Western University, London, Ontario, Canada
| |
Collapse
|
32
|
Staniloiu A, Kordon A, Markowitsch HJ. Quo vadis 'episodic memory'? - Past, present, and perspective. Neuropsychologia 2020; 141:107362. [PMID: 32014452 DOI: 10.1016/j.neuropsychologia.2020.107362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/01/2019] [Accepted: 01/24/2020] [Indexed: 02/07/2023]
Abstract
The term 'episodic memory' was coined by Endel Tulving, who also created a classification in several memory systems. This classification is presented, and it is described which predecessors existed for the partition of memory into systems. The 'episodic memory system' is discussed as being in general equivalent with the 'episodic-autobiographical memory system'. It is seen as an emotionally colorized system. A special paragraph is devoted to the 'perceptual memory system', as this was not included in Tulving's previous schemes of memory systems. More recent sub-categorizations of the 'episodic memory system' are presented and a perspective on the future of the episodic memory system is developed.
Collapse
Affiliation(s)
- Angelica Staniloiu
- University of Bielefeld, Germany; University of Bucharest, Romania; Oberberg Clinic Hornberg, Germany
| | - Andreas Kordon
- Oberberg Clinic Hornberg, Germany; University of Freiburg, Germany
| | | |
Collapse
|
33
|
Gahnstrom CJ, Spiers HJ. Striatal and hippocampal contributions to flexible navigation in rats and humans. Brain Neurosci Adv 2020; 4:2398212820979772. [PMID: 33426302 PMCID: PMC7755934 DOI: 10.1177/2398212820979772] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
The hippocampus has been firmly established as playing a crucial role in flexible navigation. Recent evidence suggests that dorsal striatum may also play an important role in such goal-directed behaviour in both rodents and humans. Across recent studies, activity in the caudate nucleus has been linked to forward planning and adaptation to changes in the environment. In particular, several human neuroimaging studies have found the caudate nucleus tracks information traditionally associated with that by the hippocampus. In this brief review, we examine this evidence and argue the dorsal striatum encodes the transition structure of the environment during flexible, goal-directed behaviour. We highlight that future research should explore the following: (1) Investigate neural responses during spatial navigation via a biophysically plausible framework explained by reinforcement learning models and (2) Observe the interaction between cortical areas and both the dorsal striatum and hippocampus during flexible navigation.
Collapse
Affiliation(s)
- Christoffer J. Gahnstrom
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Hugo J. Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| |
Collapse
|
34
|
Marshall L, Cross N, Binder S, Dang-Vu TT. Brain Rhythms During Sleep and Memory Consolidation: Neurobiological Insights. Physiology (Bethesda) 2020; 35:4-15. [DOI: 10.1152/physiol.00004.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sleep can benefit memory consolidation. The characterization of brain regions underlying memory consolidation during sleep, as well as their temporal interplay, reflected by specific patterns of brain electric activity, is surfacing. Here, we provide an overview of recent concepts and results on the mechanisms of sleep-related memory consolidation. The latest studies strongly impacting future directions of research in this field are highlighted.
Collapse
Affiliation(s)
- Lisa Marshall
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck, Germany
- Center for Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Nathan Cross
- Perform Center, Center for Studies in Behavioral Neurobiology, and Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l’Ile-de-Montréal, Montreal, Quebec, Canada
| | - Sonja Binder
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck, Germany
- Center for Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Thien Thanh Dang-Vu
- Perform Center, Center for Studies in Behavioral Neurobiology, and Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l’Ile-de-Montréal, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Tronson NC, Keiser AA. A Dynamic Memory Systems Framework for Sex Differences in Fear Memory. Trends Neurosci 2019; 42:680-692. [PMID: 31473031 DOI: 10.1016/j.tins.2019.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/17/2019] [Accepted: 07/29/2019] [Indexed: 01/04/2023]
Abstract
Emerging research demonstrates that a pattern of overlapping but distinct molecular and circuit mechanisms are engaged by males and females during memory tasks. Importantly, sex differences in neural mechanisms and behavioral strategies are evident even when performance on a memory task is similar between females and males. We propose that sex differences in memory may be best understood within a dynamic memory systems framework. Specifically, sex differences in hormonal influences and neural circuit development result in biases in the circuits engaged and the information preferentially stored or retrieved in males and females. By using animal models to understand the neural networks and molecular mechanisms required for memory in both sexes, we can gain crucial insights into sex and gender biases in disorders including post-traumatic stress disorder (PTSD) in humans.
Collapse
Affiliation(s)
- Natalie C Tronson
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ashley A Keiser
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
36
|
Cortés Pascual A, Moyano Muñoz N, Quílez Robres A. The Relationship Between Executive Functions and Academic Performance in Primary Education: Review and Meta-Analysis. Front Psychol 2019; 10:1582. [PMID: 31354585 PMCID: PMC6638196 DOI: 10.3389/fpsyg.2019.01582] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to research the relationship between executive functions and academic performance in primary education (6–12 years). Based on 21 samples (n = 7,947), a meta-analysis of random effects demonstrated a moderately significant weighted effect size (r = 0.365) and was found to be a good predictor of academic performance. For the subjects of language and mathematics, the results of the random effects model were similar and slightly higher for mathematics (r = 0.350; r = 0.365). Thus, the theory that executive functions have greater influence on mathematical performance is supported, especially in aspects such as coding, organization, and the immediate retrieval of information. Regarding the different executive function components (working memory, inhibition, cognitive flexibility, and planning), working memory had the highest presence (k = 14, n = 3,740) and predictive weight for performance, with an effect size of r = 0.370 for random effects, with a moderate level of significance. The moderating effect of variables such as gender and age were also analyzed. After performing a meta-regression, gender resulted in a value of R2 = 0.49; the age variable was not significant. This result is especially important since age has traditionally been considered to be the moderating variable of executive functions. The review reveals a good predictive power of executive functions in the primary education stage, and it is even higher at the early ages, indicating its great significance in describing future performance. The study also revealed the competencies and specific aspects of the executive functions that affect the way in which its components intervene in the academic area, demonstrating the mediating effect of variables such as physical fitness, motor skills, and memory processes.
Collapse
Affiliation(s)
| | - Nieves Moyano Muñoz
- Department of Psychology and Sociology, Faculty of Humanities and Education, University of Zaragoza, Aragon, Spain
| | | |
Collapse
|
37
|
Van Diest I. Interoception, conditioning, and fear: The panic threesome. Psychophysiology 2019; 56:e13421. [DOI: 10.1111/psyp.13421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/11/2019] [Accepted: 05/16/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Ilse Van Diest
- Health, Behavior & Psychopathology, Faculty of Psychology & Educational Sciences; University of Leuven; Leuven Belgium
| |
Collapse
|