1
|
Balietti M, Principi E, Giacomini L, Giorgetti B, Conti F. The effect of late-life environmental enrichment on stress and anxiety: The role of sex and age-related differences in coping with aversive stimuli. Heliyon 2024; 10:e32021. [PMID: 38867995 PMCID: PMC11168381 DOI: 10.1016/j.heliyon.2024.e32021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Anxiety significantly diminishes the quality of life in older adults, and the drugs used for its treatment often come with risky side effects. Non-pharmacological protocols could be valuable, but more research is needed in this area. Environmental enrichment induces positive effects on anxiety-like behavior in young and adult animals; whether the same happens in aged animals is still elusive. The aged brain undergoes changes that contribute to make it "fragile" and consequently even mild, potentially positive stimuli can trigger dyshomeostasis, worsening rather than ameliorating functioning. Here, by combining behavioral analysis and measurement of serum and brain corticosterone levels, we show that late-life environmental enrichment can induce eustress or distress, depending on sex and hypothalamic-pituitary-adrenal axis function. These findings pave the way for optimizing outcomes and minimizing undesired effects in the clinical setting, underscoring the need to overcome the limits of gender medicine and emphasizing the crucial role of individually tailored therapies.
Collapse
Affiliation(s)
- Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Elisa Principi
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Luca Giacomini
- Center for Animal Welfare, Università Politecnica delle Marche, Ancona, Italy
| | | | - Fiorenzo Conti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
2
|
Balietti M, Conti F. Environmental enrichment and the aging brain: is it time for standardization? Neurosci Biobehav Rev 2022; 139:104728. [PMID: 35691473 DOI: 10.1016/j.neubiorev.2022.104728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/01/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Aging entails a progressive decline of cognitive abilities. However, since the brain is endowed with considerable plasticity, adequate stimulation can delay or partially compensate for age-related structural and functional impairment. Environmental enrichment (EE) has been reported to determine a wide range of cerebral changes. Although most findings have been obtained in young and adult animals, research has recently turned to aged individuals. Notably, EE can contribute identifying key lifestyle factors whose change can help extend the "mind-span", i.e., the time an individual lives in a healthy cognitive condition. Here we discuss specific methodological issues that can affect the outcomes of EE interventions applied to aged rodents, summarize the main variables that would need standardization (e.g., timing and duration, enrichment items, control animals and setting), and offer some suggestions on how this goal may be achieved. Reaching a consensus on EE experiment design would significantly reduce differences between and within laboratories, enable constructive discussions among researchers, and improve data interpretation.
Collapse
Affiliation(s)
- Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| | - Fiorenzo Conti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy; Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
3
|
Long-Term Environmental Enrichment Relieves Dysfunctional Cognition and Synaptic Protein Levels Induced by Prenatal Inflammation in Older CD-1 Mice. Neural Plast 2022; 2022:1483101. [PMID: 35574247 PMCID: PMC9106518 DOI: 10.1155/2022/1483101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
A mounting body of evidence suggests that prenatal inflammation may enhance the rate of age-associated cognitive decline and may involve aberrant amounts of synaptic proteins in the hippocampus, including synaptotagmin-1 (Syt1) and activity-regulated cytoskeleton-associated protein (Arc). However, little is known about the specific impact of adolescent environmental enrichment (EE) on age-associated cognitive decline and the changes in synaptic proteins caused by prenatal inflammation. In this study, CD-1 mice in late pregnancy were given intraperitoneal doses of lipopolysaccharide (LPS, 50 μg/kg) or normal saline. Offspring arising from LPS dams were divided into a LPS group and a LPS plus EE (LPS-E) group. The LPS-E mice were exposed to EE from 2 months of age until the end of the experiment (3 or 15 months old). The Morris water maze (MWM) was used to assess the spatial learning and memory capacities of experimental mice, while western blotting and RNA-scope were used to determine the expression levels of Arc and Syt1 in the hippocampus at the protein and mRNA levels, respectively. Analysis revealed that at 15 months of age, the control mice experienced a reduction in cognitive ability and elevated expression levels of Arc and Syt1 genes when compared to control mice at 3 months of age. The LPS-E group exhibited better cognition and lower protein and mRNA levels of Arc and Syt1 than mice in the LPS group of the same age. However, the enriched environment mitigated but did not counteract, the effects of prenatal inflammation on cognitive and synaptic proteins when tested at either 3 or 15 months of age. Our findings revealed that long-term environmental enrichment improved the expression levels of synaptic proteins in CD-1 mice and that this effect was linked to the dysfunctional cognition caused by prenatal inflammation; this process may also be involved in the reduction of hippocampal Arc and Syt1 gene expression.
Collapse
|
4
|
Age-Related Individual Behavioural Characteristics of Adult Wistar Rats. Animals (Basel) 2021; 11:ani11082282. [PMID: 34438740 PMCID: PMC8388463 DOI: 10.3390/ani11082282] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Rats are considered adults from 2 to 5 months. During this period, they are used for experimentation in physiology and pharmacology. Adult rats, depending on their age, can be in a different physiological state, which can influence the results of experiments carried out on them. Despite this, age-related changes in adult rats have not yet been examined. Our results showed that as male and female rats progressed from 2 to 5 months of age there was a decrease in the level of motor and exploratory activities, and an increase in the level of anxiety-like behaviour. Age-related changes were dependent upon initial individual characteristics of behaviour. For example, animals that demonstrated high motor activity at 2 months become significantly less active by 5 months, and animals that showed a low level of anxiety at 2 months become more anxious by 5 months. Low-activity and high-anxiety rats did not show any significant age-related changes from 2 to 5 months of age. The results of this work should be taken into account when choosing the age of rats for conducting behavioural experiments. Abstract The aim of this work was to study age-related changes in the behaviour of adult Wistar rats using the open field (OF) and elevated plus maze (EPM) tests. Behavioural changes related to motor activity and anxiety were of particular interest. Results showed that as male and female rats progressed from 2 to 5 months of age, there was a decrease in the level of motor and exploratory activities and an increase in their level of anxiety. Age-related changes were dependent upon initial individual characteristics of behaviour. For example, animals that demonstrated high motor activity at 2 months become significantly less active by 5 months, and animals that showed a low level of anxiety at 2 months become more anxious by 5 months. Low-activity and high-anxiety rats did not show any significant age-related changes in OF and EPM tests from 2 to 5 months of age, except for a decrease in the number of rearings in the EPM. Thus, the behaviour of the same adult rat at 2 and 5 months of age is significantly different, which may lead to differences in the experimental results of physiological and pharmacological studies using adult animals of different ages.
Collapse
|
5
|
McQuail JA, Dunn AR, Stern Y, Barnes CA, Kempermann G, Rapp PR, Kaczorowski CC, Foster TC. Cognitive Reserve in Model Systems for Mechanistic Discovery: The Importance of Longitudinal Studies. Front Aging Neurosci 2021; 12:607685. [PMID: 33551788 PMCID: PMC7859530 DOI: 10.3389/fnagi.2020.607685] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
The goal of this review article is to provide a resource for longitudinal studies, using animal models, directed at understanding and modifying the relationship between cognition and brain structure and function throughout life. We propose that forthcoming longitudinal studies will build upon a wealth of knowledge gleaned from prior cross-sectional designs to identify early predictors of variability in cognitive function during aging, and characterize fundamental neurobiological mechanisms that underlie the vulnerability to, and the trajectory of, cognitive decline. Finally, we present examples of biological measures that may differentiate mechanisms of the cognitive reserve at the molecular, cellular, and network level.
Collapse
Affiliation(s)
- Joseph A. McQuail
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Amy R. Dunn
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Carol A. Barnes
- Departments of Psychology and Neuroscience, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Gerd Kempermann
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers (HZ), Dresden, Germany
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, Baltimore, MD, United States
| | | | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Balietti M, Pugliese A, Conti F. In aged rats, differences in spatial learning and memory influence the response to late-life Environmental Enrichment. Exp Gerontol 2020; 146:111225. [PMID: 33388381 DOI: 10.1016/j.exger.2020.111225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 11/26/2022]
Abstract
It has clearly been demonstrated that cognitive stimulation, physical exercise, and social engagement help counteract age-related cognitive decline. However, several important issues remain to be addressed. Given the wide differences in cognitive impairment found among individuals of the same age, identifying the subjects who will benefit most from late-life interventions is one such issue. Environmental Enrichment (EE) is a particularly valuable approach to do this. In this study, aged (21-month-old) rats were assigned to a better (BL) or a worse (WL) learner group (training phase) and to a non-impaired (NI) or an impaired (I) group (probe phase) by their performance on the Morris Water Maze, using the test performances of adult (12-month-old) rats as the cut-offs. The aged rats were retested after a 12-week EE or standard housing (SH) protocol. After 12 weeks, the performances of SH rats had deteriorated, whereas all rats benefited from EE, albeit in different ways. In particular, the animals assigned to the BL and the NI groups prior to EE still performed as well as the adult rats (performance preservation) whereas, critically, the animals assigned to the WL and the I groups before EE showed such improved performances that they reached the level of the adult rats (performance improvement), despite having aged further. EE seems to induce the preservation in BLs and the improvement in WLs of spatial search strategies and the preservation in NIs and the increase in Is of a focused and protract research of the escape point. Our findings suggest that late-life EE prevents spatial learning and memory decline in still cognitively preserved animals and stimulates residual functional reserve in already cognitively compromised animals. Future research should focus on individually tailored stimulation protocols to improve their effect and afford a better understanding of the underlying processes.
Collapse
Affiliation(s)
- Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| | - Arianna Pugliese
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
| | - Fiorenzo Conti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy; Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
7
|
Shafie A, Rahimi AM, Ahmadi I, Nabavizadeh F, Ranjbaran M, Ashabi G. High-protein and low-calorie diets improved the anti-aging Klotho protein in the rats' brain: the toxic role of high-fat diet. Nutr Metab (Lond) 2020; 17:86. [PMID: 33072166 PMCID: PMC7559193 DOI: 10.1186/s12986-020-00508-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In the current study, our specific aim was to characterize the Klotho protein and expression levels in the hippocampus and prefrontal cortex of old rats treated with different diets (high-fat, high-protein, low-calorie, high-protein and low-calorie). METHODS Rats were treated with high-fat, high-protein, low-calorie, low-calorie high-protein diets for 10 weeks and then behavioral and molecular assessments were evaluated. RESULTS Statistical analysis showed the percentage of open arm time was increased in the high-protein, low-calorie and low-calorie high-protein groups compared with old control (old-C) rats. The percentage of open arm entries was increased in the low-calorie and low-calorie high-protein group compared with old-C rats. The body weight and serum triglyceride were decreased in the low-calorie and low-calorie high-protein groups in comparison to control old rats. Low-calorie and low-calorie high-protein treatments statistically enhanced caspase-3 level compared with old-C rats in the hippocampus and prefrontal cortex. Treatment of old rats with high-protein, low-calorie and low-calorie high-protein could increase Klotho-α level compared with control old rats. The levels of Klotho-α, c-fos and brain-derived neurotrophic factors were decreased in the low-calorie high-protein group in Klotho inhibitor's presence compared with the low-calorie high-protein group. CONCLUSION According to our findings, Klotho-α level was reduced in old rats. Low-calorie, high-protein and particularly low-calorie high-protein diets increased this protein level and consequently increased neuronal plasticity and improved memory function. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Anahid Shafie
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, P.O.box: 1417613151, Tehran, Iran
| | - Ahmad Mustafa Rahimi
- Department of Physiology, School of Medicine, Alberoni University, Kohestan, Afghanistan
| | - Iraj Ahmadi
- Department of Physiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatemeh Nabavizadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, P.O.box: 1417613151, Tehran, Iran
| | - Mina Ranjbaran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, P.O.box: 1417613151, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, P.O.box: 1417613151, Tehran, Iran
| |
Collapse
|
8
|
Zhou T, Lin L, Hao C, Liao W. Environmental enrichment rescues cognitive impairment with suppression of TLR4-p38MAPK signaling pathway in vascular dementia rats. Neurosci Lett 2020; 737:135318. [PMID: 32846221 DOI: 10.1016/j.neulet.2020.135318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 01/23/2023]
Abstract
Increasing evidence demonstrated the promising effects of environmental enrichment (EE) on brain recovery and cognitive performance in animal models of various diseases. However, the effect and molecular mechanisms of EE on vascular dementia (VD) remain to be studied. The aim of this study was to explore the effect of EE on cognitive decline and its mechanism. Sprague-Dawley rats underwent 2-vessel occlusion (2-VO) surgery or sham operation. Subsequently, rats were kept in EE for 4 weeks. In Morris water maze (MWM) test, we demonstrated that EE significantly improved cognitive function in rats with VD. HE staining exhibited morphological changes of neurons and quantitative analysis of TUNEL showed increased apoptotic neurons in hippocampal CA1 region following 2-VO. Results from RT-qPCR showed up-regulation of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) after 2-VO. Western blotting analysis revealed enhanced toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MYD88) and phosphorylated p38 mitogen-activated protein kinase (p-p38MAPK) in 2-VO rats. Whereas administration of EE reduced apoptotic neurons, down-regulated inflammatory factors. Moreover, EE suppressed protein expression of TLR4-p38MAPK pathway. Spearman correlation analysis showed that improved cognitive function was associated with decreased expression of TLR4 and p-p38MAPK proteins. Thus, our study proved that EE has a prominent effect on cognitive impairment and neuronal damage following 2-VO by attenuating inflammation and apoptosis, which may be realized via inhibiting the TLR4-P38MAPK signaling pathway.
Collapse
Affiliation(s)
- Tiantian Zhou
- Departmenta of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lu Lin
- Departmenta of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chizi Hao
- Departmenta of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Weijing Liao
- Departmenta of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
9
|
Rybka V, Suzuki YJ, Gavrish AS, Dibrova VA, Gychka SG, Shults NV. Transmission Electron Microscopy Study of Mitochondria in Aging Brain Synapses. Antioxidants (Basel) 2019; 8:antiox8060171. [PMID: 31212589 PMCID: PMC6616891 DOI: 10.3390/antiox8060171] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022] Open
Abstract
The brain is sensitive to aging-related morphological changes, where many neurodegenerative diseases manifest accompanied by a reduction in memory. The hippocampus is especially vulnerable to damage at an early stage of aging. The present transmission electron microscopy study examined the synapses and synaptic mitochondria of the CA1 region of the hippocampal layer in young-adult and old rats by means of a computer-assisted image analysis technique. Comparing young-adult (10 months of age) and old (22 months) male Fischer (CDF) rats, the total numerical density of synapses was significantly lower in aged rats than in the young adults. This age-related synaptic loss involved degenerative changes in the synaptic architectonic organization, including damage to mitochondria in both pre- and post-synaptic compartments. The number of asymmetric synapses with concave curvature decreased with age, while the number of asymmetric synapses with flat and convex curvatures increased. Old rats had a greater number of damaged mitochondria in their synapses, and most of this was type II and type III mitochondrial structural damage. These results demonstrate age-dependent changes in the morphology of synaptic mitochondria that may underlie declines in age-related synaptic function and may couple to age-dependent loss of synapses.
Collapse
Affiliation(s)
- Vladyslava Rybka
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Yuichiro J Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Alexander S Gavrish
- Department of Pathological Anatomy N2, Bogomolets National Medical University, Kiev 01601, Ukraine.
| | - Vyacheslav A Dibrova
- Department of Pathological Anatomy N2, Bogomolets National Medical University, Kiev 01601, Ukraine.
| | - Sergiy G Gychka
- Department of Pathological Anatomy N2, Bogomolets National Medical University, Kiev 01601, Ukraine.
| | - Nataliia V Shults
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|