1
|
Oleksiak CR, Plas SL, Carriaga D, Vasudevan K, Maren S, Moscarello JM. Ventral hippocampus mediates inter-trial responding in signaled active avoidance. Behav Brain Res 2024; 470:115071. [PMID: 38806099 PMCID: PMC12006846 DOI: 10.1016/j.bbr.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
The hippocampus has a central role in regulating contextual processes in memory. We have shown that pharmacological inactivation of ventral hippocampus (VH) attenuates the context-dependence of signaled active avoidance (SAA) in rats. Here, we explore whether the VH mediates intertrial responses (ITRs), which are putative unreinforced avoidance responses that occur between trials. First, we examined whether VH inactivation would affect ITRs. Male rats underwent SAA training and subsequently received intra-VH infusions of saline or muscimol before retrieval tests in the training context. Rats that received muscimol performed significantly fewer ITRs, but equivalent avoidance responses, compared to controls. Next, we asked whether chemogenetic VH activation would increase ITR vigor. In male and female rats expressing excitatory (hM3Dq) DREADDs, systemic CNO administration produced a robust ITR increase that was not due to nonspecific locomotor effects. Then, we examined whether chemogenetic VH activation potentiated ITRs in an alternate (non-training) test context and found it did. Finally, to determine if context-US associations mediate ITRs, we exposed rats to the training context for three days after SAA training to extinguish the context. Rats submitted to context extinction did not show a reliable decrease in ITRs during a retrieval test, suggesting that context-US associations are not responsible for ITRs. Collectively, these results reveal an important role for the VH in context-dependent ITRs during SAA. Further work is required to explore the neural circuits and associative basis for these responses, which may be underlie pathological avoidance that occurs in humans after threat has passed.
Collapse
Affiliation(s)
- Cecily R Oleksiak
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA
| | - Samantha L Plas
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA
| | - Denise Carriaga
- Department of Psychological Science, University of Texas Rio Grande Valley, TX 78539
| | - Krithika Vasudevan
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA
| | - Justin M Moscarello
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA.
| |
Collapse
|
2
|
Abdou K, Nomoto M, Aly MH, Ibrahim AZ, Choko K, Okubo-Suzuki R, Muramatsu SI, Inokuchi K. Prefrontal coding of learned and inferred knowledge during REM and NREM sleep. Nat Commun 2024; 15:4566. [PMID: 38914541 PMCID: PMC11196720 DOI: 10.1038/s41467-024-48816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 05/14/2024] [Indexed: 06/26/2024] Open
Abstract
Idling brain activity has been proposed to facilitate inference, insight, and innovative problem-solving. However, it remains unclear how and when the idling brain can create novel ideas. Here, we show that cortical offline activity is both necessary and sufficient for building unlearned inferential knowledge from previously acquired information. In a transitive inference paradigm, male C57BL/6J mice gained the inference 1 day after, but not shortly after, complete training. Inhibiting the neuronal computations in the anterior cingulate cortex (ACC) during post-learning either non-rapid eye movement (NREM) or rapid eye movement (REM) sleep, but not wakefulness, disrupted the inference without affecting the learned knowledge. In vivo Ca2+ imaging suggests that NREM sleep organizes the scattered learned knowledge in a complete hierarchy, while REM sleep computes the inferential information from the organized hierarchy. Furthermore, after insufficient learning, artificial activation of medial entorhinal cortex-ACC dialog during only REM sleep created inferential knowledge. Collectively, our study provides a mechanistic insight on NREM and REM coordination in weaving inferential knowledge, thus highlighting the power of idling brain in cognitive flexibility.
Collapse
Affiliation(s)
- Kareem Abdou
- Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan
| | - Masanori Nomoto
- Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan
- Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Mohamed H Aly
- Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Ahmed Z Ibrahim
- Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan
| | - Kiriko Choko
- Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan
| | - Reiko Okubo-Suzuki
- Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Centre for Open Innovation, Jichi Medical University, Tochigi, 3290498, Japan
- Centre for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Kaoru Inokuchi
- Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan.
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan.
| |
Collapse
|
3
|
Wilmot JH, Diniz CRAF, Crestani AP, Puhger KR, Roshgadol J, Tian L, Wiltgen BJ. Phasic locus coeruleus activity enhances trace fear conditioning by increasing dopamine release in the hippocampus. eLife 2024; 12:RP91465. [PMID: 38592773 PMCID: PMC11003744 DOI: 10.7554/elife.91465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Locus coeruleus (LC) projections to the hippocampus play a critical role in learning and memory. However, the precise timing of LC-hippocampus communication during learning and which LC-derived neurotransmitters are important for memory formation in the hippocampus are currently unknown. Although the LC is typically thought to modulate neural activity via the release of norepinephrine, several recent studies have suggested that it may also release dopamine into the hippocampus and other cortical regions. In some cases, it appears that dopamine release from LC into the hippocampus may be more important for memory than norepinephrine. Here, we extend these data by characterizing the phasic responses of the LC and its projections to the dorsal hippocampus during trace fear conditioning in mice. We find that the LC and its projections to the hippocampus respond to task-relevant stimuli and that amplifying these responses with optogenetic stimulation can enhance long-term memory formation. We also demonstrate that LC activity increases both norepinephrine and dopamine content in the dorsal hippocampus and that the timing of hippocampal dopamine release during trace fear conditioning is similar to the timing of LC activity. Finally, we show that hippocampal dopamine is important for trace fear memory formation, while norepinephrine is not.
Collapse
Affiliation(s)
- Jacob H Wilmot
- Department of Psychology, University of California, DavisDavisUnited States
- Center for Neuroscience, University of California, DavisDavisUnited States
| | - Cassiano RAF Diniz
- Center for Neuroscience, University of California, DavisDavisUnited States
| | - Ana P Crestani
- Center for Neuroscience, University of California, DavisDavisUnited States
| | - Kyle R Puhger
- Department of Psychology, University of California, DavisDavisUnited States
- Center for Neuroscience, University of California, DavisDavisUnited States
| | - Jacob Roshgadol
- Center for Neuroscience, University of California, DavisDavisUnited States
- Department of Biomedical Engineering, University of California, DavisDavisUnited States
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, DavisDavisUnited States
| | - Brian Joseph Wiltgen
- Department of Psychology, University of California, DavisDavisUnited States
- Center for Neuroscience, University of California, DavisDavisUnited States
| |
Collapse
|
4
|
Oleksiak CR, Plas SL, Carriaga D, Vasudevan K, Maren S, Moscarello JM. Ventral hippocampus mediates inter-trial responding in signaled active avoidance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585627. [PMID: 38562746 PMCID: PMC10983994 DOI: 10.1101/2024.03.18.585627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The hippocampus has a central role in regulating contextual processes in memory. We have shown that pharmacological inactivation of ventral hippocampus (VH) attenuates the context-dependence of signaled active avoidance (SAA) in rats. Here, we explore whether the VH mediates intertrial responses (ITRs), which are putative unreinforced avoidance responses that occur between trials. First, we examined whether VH inactivation would affect ITRs. Male rats underwent SAA training and subsequently received intra-VH infusions of saline or muscimol before retrieval tests in the training context. Rats that received muscimol performed significantly fewer ITRs, but equivalent avoidance responses, compared to controls. Next, we asked whether chemogenetic VH activation would increase ITR vigor. In male and female rats expressing excitatory (hM3Dq) DREADDs, systemic CNO administration produced a robust ITR increase that was not due to nonspecific locomotor effects. Then, we examined whether chemogenetic VH activation potentiated ITRs in an alternate (non-training) test context and found it did. Finally, to determine if context-US associations mediate ITRs, we exposed rats to the training context for three days after SAA training to extinguish the context. Rats submitted to context extinction did not show a reliable decrease in ITRs during a retrieval test, suggesting that context-US associations are not responsible for ITRs. Collectively, these results reveal an important role for the VH in context-dependent ITRs during SAA. Further work is required to explore the neural circuits and associative basis for these responses, which may be underlie pathological avoidance that occurs in humans after threat has passed.
Collapse
Affiliation(s)
- Cecily R. Oleksiak
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| | - Samantha L. Plas
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| | - Denise Carriaga
- Department of Psychological Science, University of Texas Rio Grande Valley, TX 78539
| | - Krithika Vasudevan
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| | - Justin M. Moscarello
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| |
Collapse
|
5
|
Guskjolen A, Cembrowski MS. Engram neurons: Encoding, consolidation, retrieval, and forgetting of memory. Mol Psychiatry 2023; 28:3207-3219. [PMID: 37369721 PMCID: PMC10618102 DOI: 10.1038/s41380-023-02137-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Tremendous strides have been made in our understanding of the neurobiological substrates of memory - the so-called memory "engram". Here, we integrate recent progress in the engram field to illustrate how engram neurons transform across the "lifespan" of a memory - from initial memory encoding, to consolidation and retrieval, and ultimately to forgetting. To do so, we first describe how cell-intrinsic properties shape the initial emergence of the engram at memory encoding. Second, we highlight how these encoding neurons preferentially participate in synaptic- and systems-level consolidation of memory. Third, we describe how these changes during encoding and consolidation guide neural reactivation during retrieval, and facilitate memory recall. Fourth, we describe neurobiological mechanisms of forgetting, and how these mechanisms can counteract engram properties established during memory encoding, consolidation, and retrieval. Motivated by recent experimental results across these four sections, we conclude by proposing some conceptual extensions to the traditional view of the engram, including broadening the view of cell-type participation within engrams and across memory stages. In collection, our review synthesizes general principles of the engram across memory stages, and describes future avenues to further understand the dynamic engram.
Collapse
Affiliation(s)
- Axel Guskjolen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Mark S Cembrowski
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Aoki Y, Yokoi T, Morikawa S, Kuga N, Ikegaya Y, Sasaki T. Effects of theta phase precessing optogenetic intervention on hippocampal neuronal reactivation and spatial maps. iScience 2023; 26:107233. [PMID: 37534136 PMCID: PMC10392074 DOI: 10.1016/j.isci.2023.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/04/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
As animals explore environments, hippocampal place cells sequentially fire at progressively earlier phases of theta oscillations in hippocampal local field potentials. In this study, we evaluated the network-level significance of theta phase-entrained neuronal activity in organizing place cell spike patterns. A closed-loop system was developed in which optogenetic stimulation with a temporal pattern replicating theta phase precession is delivered to hippocampal CA1 neurons when rats traversed a particular region on a linear track. Place cells that had place fields during phase precessing stimulation, but not random phase stimulation, showed stronger reactivation during hippocampal sharp-wave ripples in a subsequent rest period. After the rest period, place cells with place fields that emerged during phase precessing stimulation showed more stable place fields. These results imply that neuronal reactivation and stability of spatial maps are mediated by theta phase precession in the hippocampus.
Collapse
Affiliation(s)
- Yuki Aoki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taiki Yokoi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Shota Morikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
| | - Nahoko Kuga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Takuya Sasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| |
Collapse
|
7
|
Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat Neurosci 2022; 25:1059-1070. [PMID: 35798980 PMCID: PMC9817483 DOI: 10.1038/s41593-022-01102-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/19/2022] [Indexed: 01/11/2023]
Abstract
Sleep has a complex micro-architecture, encompassing micro-arousals, sleep spindles and transitions between sleep stages. Fragmented sleep impairs memory consolidation, whereas spindle-rich and delta-rich non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep promote it. However, the relationship between micro-arousals and memory-promoting aspects of sleep remains unclear. In this study, we used fiber photometry in mice to examine how release of the arousal mediator norepinephrine (NE) shapes sleep micro-architecture. Here we show that micro-arousals are generated in a periodic pattern during NREM sleep, riding on the peak of locus-coeruleus-generated infraslow oscillations of extracellular NE, whereas descending phases of NE oscillations drive spindles. The amplitude of NE oscillations is crucial for shaping sleep micro-architecture related to memory performance: prolonged descent of NE promotes spindle-enriched intermediate state and REM sleep but also associates with awakenings, whereas shorter NE descents uphold NREM sleep and micro-arousals. Thus, the NE oscillatory amplitude may be a target for improving sleep in sleep disorders.
Collapse
|
8
|
Sachella TE, Ihidoype MR, Proulx CD, Pafundo DE, Medina JH, Mendez P, Piriz J. A novel role for the lateral habenula in fear learning. Neuropsychopharmacology 2022; 47:1210-1219. [PMID: 35217797 PMCID: PMC9018839 DOI: 10.1038/s41386-022-01294-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/02/2023]
Abstract
Fear is an extreme form of aversion that underlies pathological conditions such as panic or phobias. Fear conditioning (FC) is the best-understood model of fear learning. In FC the context and a cue are independently associated with a threatening unconditioned stimulus (US). The lateral habenula (LHb) is a general encoder of aversion. However, its role in fear learning remains poorly understood. Here we studied in rats the role of the LHb in FC using optogenetics and pharmacological tools. We found that inhibition or activation of the LHb during entire FC training impaired both cued and contextual FC. In contrast, optogenetic inhibition of the LHb restricted to cue and US presentation impaired cued but not contextual FC. In either case, simultaneous activation of contextual and cued components of FC, by the presentation of the cue in the training context, recovered the conditioned fear response. Our results support the notion that the LHb is required for the formation of independent contextual and cued fear memories, a previously uncharacterized function for this structure, that could be critical in fear generalization.
Collapse
Affiliation(s)
- Tomas E. Sachella
- grid.423606.50000 0001 1945 2152Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marina R. Ihidoype
- grid.423606.50000 0001 1945 2152Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Christophe D. Proulx
- grid.23856.3a0000 0004 1936 8390CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Quebec City, Quebec Canada
| | - Diego E. Pafundo
- grid.423606.50000 0001 1945 2152Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge H. Medina
- grid.423606.50000 0001 1945 2152Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina ,grid.441574.70000000090137393Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Pablo Mendez
- grid.419043.b0000 0001 2177 5516Instituto Cajal, CSIC, Madrid, España
| | - Joaquin Piriz
- Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Botterill JJ, Khlaifia A, Walters BJ, Brimble MA, Scharfman HE, Arruda-Carvalho M. Off-Target Expression of Cre-Dependent Adeno-Associated Viruses in Wild-Type C57BL/6J Mice. eNeuro 2021; 8:ENEURO.0363-21.2021. [PMID: 34785571 PMCID: PMC8614227 DOI: 10.1523/eneuro.0363-21.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022] Open
Abstract
Adeno-associated viruses (AAVs) are a commonly used tool in neuroscience to efficiently label, trace, and/or manipulate neuronal populations. Highly specific targeting can be achieved through recombinase-dependent AAVs in combination with transgenic rodent lines that express Cre-recombinase in specific cell types. Visualization of viral expression is typically achieved through fluorescent reporter proteins (e.g., GFP or mCherry) packaged within the AAV genome. Although nonamplified fluorescence is usually sufficient to observe viral expression, immunohistochemical amplification of the fluorescent reporter is routinely used to improve viral visualization. In the present study, Cre-dependent AAVs were injected into the neocortex of wild-type C57BL/6J mice. While we observed weak but consistent nonamplified off-target double inverted open reading frame (DIO) expression in C57BL/6J mice, antibody amplification of the GFP or mCherry reporter revealed notable Cre-independent viral expression. Off-target expression of DIO constructs in wild-type C57BL/6J mice occurred independent of vendor, AAV serotype, or promoter. We also evaluated whether Cre-independent expression had functional effects via designer receptors exclusively activated by designer drugs (DREADDs). The DREADD agonist C21 (compound 21) had no effect on contextual fear conditioning or c-Fos expression in DIO-hM3Dq-mCherry+ cells of C57BL/6J mice. Together, our results indicate that DIO constructs have off-target expression in wild-type subjects. Our findings are particularly important for the design of experiments featuring sensitive systems and/or quantitative measurements that could be negatively impacted by off-target expression.
Collapse
Affiliation(s)
- Justin J Botterill
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Brandon J Walters
- Department of Cell & Systems Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Mark A Brimble
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennnessee 38105
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and New York University Neuroscience Institute, New York University Langone Health, New York, New York 10016
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
10
|
Finnie PSB, Komorowski RW, Bear MF. The spatiotemporal organization of experience dictates hippocampal involvement in primary visual cortical plasticity. Curr Biol 2021; 31:3996-4008.e6. [PMID: 34314678 PMCID: PMC8524775 DOI: 10.1016/j.cub.2021.06.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
The hippocampus and neocortex are theorized to be crucial partners in the formation of long-term memories. Here, we assess hippocampal involvement in two related forms of experience-dependent plasticity in the primary visual cortex (V1) of mice. Like control animals, those with hippocampal lesions exhibit potentiation of visually evoked potentials after passive daily exposure to a phase-reversing oriented grating stimulus, which is accompanied by long-term habituation of a reflexive behavioral response. Thus, low-level recognition memory is formed independently of the hippocampus. However, response potentiation resulting from daily exposure to a fixed sequence of four oriented gratings is severely impaired in mice with hippocampal damage. A feature of sequence plasticity in V1 of controls, which is absent in lesioned mice, is the generation of predictive responses to an anticipated stimulus element when it is withheld or delayed. Thus, the hippocampus is involved in encoding temporally structured experience, even within the primary sensory cortex.
Collapse
Affiliation(s)
- Peter S B Finnie
- Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Robert W Komorowski
- Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mark F Bear
- Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Graham J, D’Ambra AF, Jung SJ, Teratani-Ota Y, Vishwakarma N, Venkatesh R, Parigi A, Antzoulatos EG, Fioravante D, Wiltgen BJ. High-Frequency Stimulation of Ventral CA1 Neurons Reduces Amygdala Activity and Inhibits Fear. Front Behav Neurosci 2021; 15:595049. [PMID: 33767614 PMCID: PMC7985556 DOI: 10.3389/fnbeh.2021.595049] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/10/2021] [Indexed: 11/13/2022] Open
Abstract
The hippocampus can be divided into distinct segments that make unique contributions to learning and memory. The dorsal segment supports cognitive processes like spatial learning and navigation while the ventral hippocampus regulates emotional behaviors related to fear, anxiety and reward. In the current study, we determined how pyramidal cells in ventral CA1 respond to spatial cues and aversive stimulation during a context fear conditioning task. We also examined the effects of high and low frequency stimulation of these neurons on defensive behavior. Similar to previous work in the dorsal hippocampus, we found that cells in ventral CA1 expressed high-levels of c-Fos in response to a novel spatial environment. Surprisingly, however, the number of activated neurons did not increase when the environment was paired with footshock. This was true even in the subpopulation of ventral CA1 pyramidal cells that send direct projections to the amygdala. When these cells were stimulated at high-frequencies (20 Hz) we observed feedforward inhibition of basal amygdala neurons and impaired expression of context fear. In contrast, low-frequency stimulation (4 Hz) did not inhibit principal cells in the basal amygdala and produced an increase in fear generalization. Similar results have been reported in dorsal CA1. Therefore, despite clear differences between the dorsal and ventral hippocampus, CA1 neurons in each segment appear to make similar contributions to context fear conditioning.
Collapse
Affiliation(s)
- Jalina Graham
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Alexa F. D’Ambra
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Se Jung Jung
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Yusuke Teratani-Ota
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Nina Vishwakarma
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Rasika Venkatesh
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Abhijna Parigi
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Evan G. Antzoulatos
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Diasynou Fioravante
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Brian J. Wiltgen
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
| |
Collapse
|