1
|
Holter KM, Klausner MG, Hite MH, Moriarty CT, Barth SH, Pierce BE, Iannucci AN, Sheffler DJ, Cosford NDP, Bimonte-Nelson HA, Raab-Graham KF, Gould RW. 17β-estradiol status alters NMDAR function and antipsychotic-like activity in female rats. Mol Psychiatry 2025:10.1038/s41380-025-02996-0. [PMID: 40185905 DOI: 10.1038/s41380-025-02996-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Low 17β-estradiol (E2) in females of reproductive age, and marked E2 decline with menopause, contributes to heightened symptom severity in schizophrenia (i.e. cognitive dysfunction) and diminished response to antipsychotic medications. However, the underlying mechanisms are unknown. N-methyl-D-aspartate receptor (NMDAR) hypofunction contributes to the pathophysiology of schizophrenia, yet impact of E2 depletion on NMDAR function is not well characterized. Quantitative electroencephalography (qEEG), specifically gamma power, is a well-established functional readout of cortical activity that is elevated in patients with schizophrenia and is sensitive to alterations in NMDAR function. Using qEEG and touchscreen cognitive assessments, present studies investigated the effects of E2 on NMDAR function by administering MK-801 (NMDAR antagonist) to ovariectomized rats with or without E2 implants (Ovx+E and Ovx, respectively). Ovx rats were more sensitive to MK-801-induced elevations in gamma power and attentional impairments compared to Ovx+E rats. Further investigation revealed these effects were mediated by reduced synaptic GluN2A expression. Consistent with clinical reports, olanzapine (second-generation antipsychotic) was less effective in mitigating MK-801-induced elevations in gamma power in Ovx rats. Lastly, we examined antipsychotic-like activity of a Group II metabotropic glutamate receptor (mGlu2/3) positive allosteric modulator (PAM), SBI-0646535, as a novel therapeutic in E2-deprived conditions. SBI-0646535 reversed MK-801-induced elevations in gamma power regardless of E2 status. Collectively, these studies established a relationship between E2 deprivation and NMDAR function that is in part GluN2A-dependent, supporting the notion that E2 deprivation increases susceptibility to NMDAR hypofunction. This highlights the need to examine age/hormone-specific factors when considering antipsychotic response and designing novel pharmacotherapies.
Collapse
Affiliation(s)
- Kimberly M Holter
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - McKenna G Klausner
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mary Hunter Hite
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Carson T Moriarty
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Samuel H Barth
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Bethany E Pierce
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Alexandria N Iannucci
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Douglas J Sheffler
- Cancer Molecular Therapeutics Program. NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nicholas D P Cosford
- Cancer Molecular Therapeutics Program. NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Kimberly F Raab-Graham
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Robert W Gould
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
2
|
Skirzewski M, Saksida LM, Bussey TJ. Preface to the Special Issue "Touchscreen Testing to Investigate the Neurochemistry of Cognition". J Neurochem 2025; 169:e70071. [PMID: 40243354 DOI: 10.1111/jnc.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Touchscreen-based methodologies have enabled significant advancements in cognitive neuroscience by providing standardized, translationally relevant assessments of advanced cognitive functions in rodent models. This special issue highlights the potential of these systems to bridge animal and human research, providing insights into the neurochemical and biological mechanisms underlying cognition. The included studies explore diverse applications, from understanding the cognitive impacts of chronic stress and maternal immune activation to evaluating the effectiveness of novel therapeutics and assessing cross-species cognitive testing approaches that enhance translational relevance. By combining touchscreen technologies with cutting-edge approaches like electrophysiology and open science databases, these contributions underscore the critical role of automated systems in advancing translational research. Together, they lay the foundation for novel therapeutic strategies to address cognitive deficits in brain disorders.
Collapse
Affiliation(s)
- Miguel Skirzewski
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lisa M Saksida
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Tim J Bussey
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Holter KM, Klausner M, Hite MH, Moriarty C, Barth S, Pierce B, Iannucci A, Sheffler D, Cosford N, Bimonte-Nelson H, Raab-Graham KF, Gould RW. 17β-estradiol status alters NMDAR function and antipsychotic-like activity in female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637465. [PMID: 39990384 PMCID: PMC11844370 DOI: 10.1101/2025.02.10.637465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Low 17β-estradiol (E2) in females of reproductive age, and marked E2 decline with menopause, contributes to heightened symptom severity in schizophrenia (i.e. cognitive dysfunction) and diminished response to antipsychotic medications. However, the underlying mechanisms are unknown. N-methyl-D-aspartate receptor (NMDAR) hypofunction contributes to the pathophysiology of schizophrenia, yet impact of E2 depletion on NMDAR function is not well characterized. Quantitative electroencephalography (qEEG), specifically gamma power, is a well-established functional readout of cortical activity that is elevated in patients with schizophrenia and is sensitive to alterations in NMDAR function. Using qEEG and touchscreen cognitive assessments, present studies investigated the effects of E2 on NMDAR function by administering MK-801 (NMDAR antagonist) to ovariectomized rats with or without E2 implants (Ovx+E and Ovx, respectively). Ovx rats were more sensitive to MK-801-induced elevations in gamma power and attentional impairments compared to Ovx+E rats. Further investigation revealed these effects were mediated by reduced synaptic GluN2A expression. Consistent with clinical reports, olanzapine (second-generation antipsychotic) was less effective in mitigating MK-801-induced elevations in gamma power in Ovx rats. Lastly, we examined antipsychotic-like activity of a Group II metabotropic glutamate receptor (mGlu2/3) positive allosteric modulator (PAM), SBI-0646535, as a novel therapeutic in E2-deprived conditions. SBI-0646535 reversed MK-801-induced elevations in gamma power equally regardless of E2 status. Collectively, these studies established a relationship between E2 deprivation and NMDAR function that is in part GluN2A-dependent, supporting the notion that E2 deprivation increases susceptibility to NMDAR hypofunction. This highlights the need to examine age/hormone-specific factors when considering antipsychotic response and designing novel pharmacotherapies.
Collapse
|
4
|
Tanaka M. From Serendipity to Precision: Integrating AI, Multi-Omics, and Human-Specific Models for Personalized Neuropsychiatric Care. Biomedicines 2025; 13:167. [PMID: 39857751 PMCID: PMC11761901 DOI: 10.3390/biomedicines13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The dual forces of structured inquiry and serendipitous discovery have long shaped neuropsychiatric research, with groundbreaking treatments such as lithium and ketamine resulting from unexpected discoveries. However, relying on chance is becoming increasingly insufficient to address the rising prevalence of mental health disorders like depression and schizophrenia, which necessitate precise, innovative approaches. Emerging technologies like artificial intelligence, induced pluripotent stem cells, and multi-omics have the potential to transform this field by allowing for predictive, patient-specific interventions. Despite these advancements, traditional methodologies such as animal models and single-variable analyses continue to be used, frequently failing to capture the complexities of human neuropsychiatric conditions. Summary: This review critically evaluates the transition from serendipity to precision-based methodologies in neuropsychiatric research. It focuses on key innovations such as dynamic systems modeling and network-based approaches that use genetic, molecular, and environmental data to identify new therapeutic targets. Furthermore, it emphasizes the importance of interdisciplinary collaboration and human-specific models in overcoming the limitations of traditional approaches. Conclusions: We highlight precision psychiatry's transformative potential for revolutionizing mental health care. This paradigm shift, which combines cutting-edge technologies with systematic frameworks, promises increased diagnostic accuracy, reproducibility, and efficiency, paving the way for tailored treatments and better patient outcomes in neuropsychiatric care.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
5
|
Carr GV. Electrophysiological recording during touchscreen-based behavioral assays in rodents: A platform for improving early-stage neuroscience drug discovery. J Neurochem 2025; 169:e16289. [PMID: 39680493 PMCID: PMC11753410 DOI: 10.1111/jnc.16289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/01/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
Preclinical behavioral testing is essential for drug discovery in neuropsychiatric disorders, yet translational challenges persist because of interspecies differences. Touchscreen-based behavioral tasks offer a promising solution for bridging this gap. These tasks provide flexibility across cognitive domains and species, facilitating rigorous comparisons. They complement traditional assays, offering improved face, predictive, and construct validity by mirroring human neuropsychological tests. Notably, nearly identical tasks have been validated in multiple species, enhancing translational potential. Recent studies demonstrate conserved neurocircuitry engagement in touchscreen tasks, supporting their relevance to human function and therapeutic development. The integration of electrophysiological measures, such as electroencephalography (EEG) and local field potential (LFP) recordings with touchscreen behavioral assays, enhances translational biomarker discovery and serves to elucidate neural circuit dynamics. Despite current limitations and the need for further validation, this approach offers a pathway to more efficient drug discovery. This review covers recent research describing the feasibility and benefits of EEG/LFP-touchscreen combination studies in rodents. While the field is still in its early stages, the promise of this research strategy is evident. Future efforts will likely focus on refining methodologies, identifying robust translational biomarkers, and expanding studies across species. Touchscreen-based platforms, integrated with electrophysiological measurements, hold significant potential to advance our understanding of neuropsychiatric disorders and accelerate the development of effective treatments.
Collapse
Affiliation(s)
- Gregory V. Carr
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Dexter TD, Roberts BZ, Ayoub SM, Noback M, Barnes SA, Young JW. Cross-species translational paradigms for assessing positive valence system as defined by the RDoC matrix. J Neurochem 2025; 169:e16243. [PMID: 39463161 PMCID: PMC11996045 DOI: 10.1111/jnc.16243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Functions associated with processing reward-related information are fundamental drivers of motivation, learning, and goal-directed behavior. Such functions have been classified as the positive valence system under the Research Domain and Criteria (RDoC) criteria and are negatively impacted across a range of psychiatric disorders and mental illnesses. The positive valence system is composed of three comprehensive categories containing related but dissociable functions that are organized into either Reward Responsiveness, Reward Learning, or Reward Valuation. The presence of overlapping behavioral dysfunction across diagnostic mental disorders is in-part what motivated the RDoC initiative, which emphasized that the study of mental illness focus on investigating relevant behavior and cognitive functions and their underlying mechanisms, rather than separating efforts on diagnostic categories (i.e., transdiagnostic). Moreover, the RDoC approach is well-suited for preclinical neuroscience research, as the rise in genetic toolboxes and associated neurotechnologies enables researchers to probe specific cellular targets with high specificity. Thus, there is an opportunity to dissect whether behaviors and cognitive functions are supported by shared or distinct neural mechanisms. For preclinical research to effectively inform our understandings of human behavior however, the cognitive and behavioral paradigms should have predictive, neurobiological, and pharmacological predictive validity to the human test. Touchscreen-based testing systems provide a further advantage for this endeavor enabling tasks to be presented to animals using the same media and task design as in humans. Here, we outline the primary categories of the positive valence system and review the work that has been done cross-species to investigate the neurobiology and neurochemistry underlying reward-related functioning. Additionally, we provide clinical tasks outlined by RDoC, along with validity and/or need for further validation for analogous rodent paradigms with a focus on implementing the touchscreen-based cognitive testing systems.
Collapse
Affiliation(s)
- Tyler D. Dexter
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | | | - Samantha M. Ayoub
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Michael Noback
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Samuel A. Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Jared W. Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA
- Research Service, VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|
7
|
Nippert KE, Rowland CP, Vazey EM, Moorman DE. Alcohol, flexible behavior, and the prefrontal cortex: Functional changes underlying impaired cognitive flexibility. Neuropharmacology 2024; 260:110114. [PMID: 39134298 PMCID: PMC11694314 DOI: 10.1016/j.neuropharm.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Cognitive flexibility enables individuals to alter their behavior in response to changing environmental demands, facilitating optimal behavior in a dynamic world. The inability to do this, called behavioral inflexibility, is a pervasive behavioral phenotype in alcohol use disorder (AUD), driven by disruptions in cognitive flexibility. Research has repeatedly shown that behavioral inflexibility not only results from alcohol exposure across species but can itself be predictive of future drinking. Like many high-level executive functions, flexible behavior requires healthy functioning of the prefrontal cortex (PFC). The scope of this review addresses two primary themes: first, we outline tasks that have been used to investigate flexibility in the context of AUD or AUD models. We characterize these based on the task features and underlying cognitive processes that differentiate them from one another. We highlight the neural basis of flexibility measures, focusing on the PFC, and how acute or chronic alcohol in humans and non-human animal models impacts flexibility. Second, we consolidate findings on the molecular, physiological and functional changes in the PFC elicited by alcohol, that may contribute to cognitive flexibility deficits seen in AUD. Collectively, this approach identifies several key avenues for future research that will facilitate effective treatments to promote flexible behavior in the context of AUD, to reduce the risk of alcohol related harm, and to improve outcomes following AUD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Kathryn E Nippert
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Courtney P Rowland
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Elena M Vazey
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - David E Moorman
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
8
|
Salmon C, Li S, Burrows EL, Johnson KA. Translational validity of neuropsychological tasks of sustained attention between rodents and humans: A systematic review of three rodent tasks. J Neurochem 2024; 168:2170-2189. [PMID: 38690648 DOI: 10.1111/jnc.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Atypical sustained attention is a symptom in a number of neurological and psychological conditions. Investigations into its neural underpinnings are required for improved management and treatment. Rodents are useful in investigating the neurobiology underlying atypical sustained attention and several rodent tasks have been developed for use in touchscreen testing platforms that mimic methodology used in human clinical attention assessment. This systematic review was conducted to assess how translatable these rodent tasks are to equivalent clinical human tasks. Studies using the rodent Continuous Performance Task (rCPT), Sustained Attention Task (SAT), and 5-choice CPT (5C-CPT) were sought and screened. Included in the review were 138 studies, using the rCPT (n = 21), SAT (n = 90), and 5C-CPT (n = 27). Translatability between rodent and human studies was assessed based on (1) methodological similarity, (2) performance similarity, and (3) replication of results. The 5C-CPT was found to be the most translatable cross-species paradigm with good utility, while the rCPT and SAT require adaptation and further development to meet these translatability benchmarks. With greater replication and more consistent results, greater confidence in the translation of sustained attention results between species will be engendered.
Collapse
Affiliation(s)
- Claire Salmon
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Shuting Li
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Katherine A Johnson
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Imenez Silva PH, Pepin M, Figurek A, Gutiérrez-Jiménez E, Bobot M, Iervolino A, Mattace-Raso F, Hoorn EJ, Bailey MA, Hénaut L, Nielsen R, Frische S, Trepiccione F, Hafez G, Altunkaynak HO, Endlich N, Unwin R, Capasso G, Pesic V, Massy Z, Wagner CA. Animal models to study cognitive impairment of chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F894-F916. [PMID: 38634137 DOI: 10.1152/ajprenal.00338.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Mild cognitive impairment (MCI) is common in people with chronic kidney disease (CKD), and its prevalence increases with progressive loss of kidney function. MCI is characterized by a decline in cognitive performance greater than expected for an individual age and education level but with minimal impairment of instrumental activities of daily living. Deterioration can affect one or several cognitive domains (attention, memory, executive functions, language, and perceptual motor or social cognition). Given the increasing prevalence of kidney disease, more and more people with CKD will also develop MCI causing an enormous disease burden for these individuals, their relatives, and society. However, the underlying pathomechanisms are poorly understood, and current therapies mostly aim at supporting patients in their daily lives. This illustrates the urgent need to elucidate the pathogenesis and potential therapeutic targets and test novel therapies in appropriate preclinical models. Here, we will outline the necessary criteria for experimental modeling of cognitive disorders in CKD. We discuss the use of mice, rats, and zebrafish as model systems and present valuable techniques through which kidney function and cognitive impairment can be assessed in this setting. Our objective is to enable researchers to overcome hurdles and accelerate preclinical research aimed at improving the therapy of people with CKD and MCI.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Marion Pepin
- Institut National de la Santé et de la Recherche Médicale U-1018 Centre de Recherche en Épidémiologie et Santé des Population, Équipe 5, Paris-Saclay University, Versailles Saint-Quentin-en-Yvelines University, Villejuif, France
- Department of Geriatrics, Centre Hospitalier Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris Université Paris-Saclay, Paris, France
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Eugenio Gutiérrez-Jiménez
- Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mickaël Bobot
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistance Publique-Hopitaux de Marseille, and INSERM 1263, Institut National de la Recherche Agronomique 1260, C2VN, Aix-Marseille Universitaire, Marseille, France
| | - Anna Iervolino
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
| | - Francesco Mattace-Raso
- Division of Geriatrics, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Matthew A Bailey
- Edinburgh Kidney, Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lucie Hénaut
- UR UPJV 7517, Jules Verne University of Picardie, Amiens, France
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
| | - Gaye Hafez
- Department of Pharmacology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Hande O Altunkaynak
- Department of Pharmacology, Gulhane Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, United Kingdom
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
- Biogem Research Institute, Ariano Irpino, Italy
| | - Vesna Pesic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ziad Massy
- Centre for Research in Epidemiology and Population Health, INSERM UMRS 1018, Clinical Epidemiology Team, University Paris-Saclay, University Versailles-Saint Quentin, Villejuif, France
- Department of Nephrology, Centre Hospitalier Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris Université Paris-Saclay, Paris, France
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Sheppard PAS, Oomen CA, Bussey TJ, Saksida LM. The Granular Retrosplenial Cortex Is Necessary in Male Rats for Object-Location Associative Learning and Memory, But Not Spatial Working Memory or Visual Discrimination and Reversal, in the Touchscreen Operant Chamber. eNeuro 2024; 11:ENEURO.0120-24.2024. [PMID: 38844347 PMCID: PMC11208985 DOI: 10.1523/eneuro.0120-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
The retrosplenial cortex (RSC) is a hub of diverse afferent and efferent projections thought to be involved in associative learning. RSC shows early pathology in mild cognitive impairment and Alzheimer's disease (AD), which impairs associative learning. To understand and develop therapies for diseases such as AD, animal models are essential. Given the importance of human RSC in object-location associative learning and the success of object-location associative paradigms in human studies and in the clinic, it would be of considerable value to establish a translational model of object-location learning for the rodent. For this reason, we sought to test the role of RSC in object-location learning in male rats using the object-location paired-associates learning (PAL) touchscreen task. First, increased cFos immunoreactivity was observed in granular RSC following PAL training when compared with extended pretraining controls. Following this, RSC lesions following PAL acquisition were used to explore the necessity of the RSC in object-location associative learning and memory and two tasks involving only one modality: trial-unique nonmatching-to-location for spatial working memory and pairwise visual discrimination/reversal. RSC lesions impaired both memory for learned paired-associates and learning of new object-location associations but did not affect performance in either the spatial or visual single-modality tasks. These findings provide evidence that RSC is necessary for object-location learning and less so for learning and memory involving the individual modalities therein.
Collapse
Affiliation(s)
- Paul A S Sheppard
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - Charlotte A Oomen
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- MRC and Wellcome Trust Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Timothy J Bussey
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- MRC and Wellcome Trust Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Lisa M Saksida
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- MRC and Wellcome Trust Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
11
|
Murai T, Bailey L, Schultz L, Mongeau L, DeSana A, Silva AC, Roberts AC, Sukoff Rizzo SJ. Improving preclinical to clinical translation of cognitive function for aging-related disorders: the utility of comprehensive touchscreen testing batteries in common marmosets. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:325-348. [PMID: 38200282 PMCID: PMC11039501 DOI: 10.3758/s13415-023-01144-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Concerns about poor animal to human translation have come increasingly to the fore, in particular with regards to cognitive improvements in rodent models, which have failed to translate to meaningful clinical benefit in humans. This problem has been widely acknowledged, most recently in the field of Alzheimer's disease, although this issue pervades the spectrum of central nervous system (CNS) disorders, including neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. Consequently, recent efforts have focused on improving preclinical to clinical translation by incorporating more clinically analogous outcome measures of cognition, such as touchscreen-based assays, which can be employed across species, and have great potential to minimize the translational gap. For aging-related research, it also is important to incorporate model systems that facilitate the study of the long prodromal phase in which cognitive decline begins to emerge and which is a major limitation of short-lived species, such as laboratory rodents. We posit that to improve translation of cognitive function and dysfunction, nonhuman primate models, which have conserved anatomical and functional organization of the primate brain, are necessary to move the field of translational research forward and to bridge the translational gaps. The present studies describe the establishment of a comprehensive battery of touchscreen-based tasks that capture a spectrum of domains sensitive to detecting aging-related cognitive decline, which will provide the greatest benefit through longitudinal evaluation throughout the prolonged lifespan of the marmoset.
Collapse
Affiliation(s)
- Takeshi Murai
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lauren Bailey
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laura Schultz
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lauren Mongeau
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andrew DeSana
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh School of Medicine, 514A Bridgeside Point 1, 100 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Stacey J Sukoff Rizzo
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Neurobiology, University of Pittsburgh School of Medicine, 514A Bridgeside Point 1, 100 Technology Drive, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
12
|
Lipp HP, Krackow S, Turkes E, Benner S, Endo T, Russig H. IntelliCage: the development and perspectives of a mouse- and user-friendly automated behavioral test system. Front Behav Neurosci 2024; 17:1270538. [PMID: 38235003 PMCID: PMC10793385 DOI: 10.3389/fnbeh.2023.1270538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
IntelliCage for mice is a rodent home-cage equipped with four corner structures harboring symmetrical double panels for operant conditioning at each of the two sides, either by reward (access to water) or by aversion (non-painful stimuli: air-puffs, LED lights). Corner visits, nose-pokes and actual licks at bottle-nipples are recorded individually using subcutaneously implanted transponders for RFID identification of up to 16 adult mice housed in the same home-cage. This allows for recording individual in-cage activity of mice and applying reward/punishment operant conditioning schemes in corners using workflows designed on a versatile graphic user interface. IntelliCage development had four roots: (i) dissatisfaction with standard approaches for analyzing mouse behavior, including standardization and reproducibility issues, (ii) response to handling and housing animal welfare issues, (iii) the increasing number of mouse models had produced a high work burden on classic manual behavioral phenotyping of single mice. and (iv), studies of transponder-chipped mice in outdoor settings revealed clear genetic behavioral differences in mouse models corresponding to those observed by classic testing in the laboratory. The latter observations were important for the development of home-cage testing in social groups, because they contradicted the traditional belief that animals must be tested under social isolation to prevent disturbance by other group members. The use of IntelliCages reduced indeed the amount of classic testing remarkably, while its flexibility was proved in a wide range of applications worldwide including transcontinental parallel testing. Essentially, two lines of testing emerged: sophisticated analysis of spontaneous behavior in the IntelliCage for screening of new genetic models, and hypothesis testing in many fields of behavioral neuroscience. Upcoming developments of the IntelliCage aim at improved stimulus presentation in the learning corners and videotracking of social interactions within the IntelliCage. Its main advantages are (i) that mice live in social context and are not stressfully handled for experiments, (ii) that studies are not restricted in time and can run in absence of humans, (iii) that it increases reproducibility of behavioral phenotyping worldwide, and (iv) that the industrial standardization of the cage permits retrospective data analysis with new statistical tools even after many years.
Collapse
Affiliation(s)
- Hans-Peter Lipp
- Faculty of Medicine, Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| | - Sven Krackow
- Institute of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Emir Turkes
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | | | | |
Collapse
|
13
|
Watson MR, Traczewski N, Dunghana S, Boroujeni KB, Neumann A, Wen X, Womelsdorf T. A Multi-task Platform for Profiling Cognitive and Motivational Constructs in Humans and Nonhuman Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566422. [PMID: 38014107 PMCID: PMC10680597 DOI: 10.1101/2023.11.09.566422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Understanding the neurobiological substrates of psychiatric disorders requires comprehensive evaluations of cognitive and motivational functions in preclinical research settings. The translational validity of such evaluations will be supported by (1) tasks with high construct validity that are engaging and easy to teach to human and nonhuman participants, (2) software that enables efficient switching between multiple tasks in single sessions, (3) software that supports tasks across a broad range of physical experimental setups, and (4) by platform architectures that are easily extendable and customizable to encourage future optimization and development. New Method We describe the Multi-task Universal Suite for Experiments ( M-USE ), a software platform designed to meet these requirements. It leverages the Unity video game engine and C# programming language to (1) support immersive and engaging tasks for humans and nonhuman primates, (2) allow experimenters or participants to switch between multiple tasks within-session, (3) generate builds that function across computers, tablets, and websites, and (4) is freely available online with documentation and tutorials for users and developers. M-USE includes a task library with seven pre-existing tasks assessing cognitive and motivational constructs of perception, attention, working memory, cognitive flexibility, motivational and affective self-control, relational long-term memory, and visuo-spatial problem solving. Results M-USE was used to test NHPs on up to six tasks per session, all available as part of the Task Library, and to extract performance metrics for all major cognitive and motivational constructs spanning the Research Domain Criteria (RDoC) of the National Institutes of Mental Health. Comparison with Existing Methods Other experiment design and control systems exist, but do not provide the full range of features available in M-USE, including a pre-existing task library for cross-species assessments; the ability to switch seamlessly between tasks in individual sessions; cross-platform build capabilities; license-free availability; and its leveraging of video-engine capabilities used to gamify tasks. Conclusions The new multi-task platform facilitates cross-species translational research for understanding the neurobiological substrates of higher cognitive and motivational functions.
Collapse
|
14
|
Molloy CJ, Cooke J, Gatford NJF, Rivera-Olvera A, Avazzadeh S, Homberg JR, Grandjean J, Fernandes C, Shen S, Loth E, Srivastava DP, Gallagher L. Bridging the translational gap: what can synaptopathies tell us about autism? Front Mol Neurosci 2023; 16:1191323. [PMID: 37441676 PMCID: PMC10333541 DOI: 10.3389/fnmol.2023.1191323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple molecular pathways and cellular processes have been implicated in the neurobiology of autism and other neurodevelopmental conditions. There is a current focus on synaptic gene conditions, or synaptopathies, which refer to clinical conditions associated with rare genetic variants disrupting genes involved in synaptic biology. Synaptopathies are commonly associated with autism and developmental delay and may be associated with a range of other neuropsychiatric outcomes. Altered synaptic biology is suggested by both preclinical and clinical studies in autism based on evidence of differences in early brain structural development and altered glutamatergic and GABAergic neurotransmission potentially perturbing excitatory and inhibitory balance. This review focusses on the NRXN-NLGN-SHANK pathway, which is implicated in the synaptic assembly, trans-synaptic signalling, and synaptic functioning. We provide an overview of the insights from preclinical molecular studies of the pathway. Concentrating on NRXN1 deletion and SHANK3 mutations, we discuss emerging understanding of cellular processes and electrophysiology from induced pluripotent stem cells (iPSC) models derived from individuals with synaptopathies, neuroimaging and behavioural findings in animal models of Nrxn1 and Shank3 synaptic gene conditions, and key findings regarding autism features, brain and behavioural phenotypes from human clinical studies of synaptopathies. The identification of molecular-based biomarkers from preclinical models aims to advance the development of targeted therapeutic treatments. However, it remains challenging to translate preclinical animal models and iPSC studies to interpret human brain development and autism features. We discuss the existing challenges in preclinical and clinical synaptopathy research, and potential solutions to align methodologies across preclinical and clinical research. Bridging the translational gap between preclinical and clinical studies will be necessary to understand biological mechanisms, to identify targeted therapies, and ultimately to progress towards personalised approaches for complex neurodevelopmental conditions such as autism.
Collapse
Affiliation(s)
- Ciara J. Molloy
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jennifer Cooke
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Nicholas J. F. Gatford
- Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Medical Sciences Division, Oxford, United Kingdom
| | - Alejandro Rivera-Olvera
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Sahar Avazzadeh
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
| | - Judith R. Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Joanes Grandjean
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons, Dublin, Ireland
| | - Eva Loth
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Deepak P. Srivastava
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- The Hospital for SickKids, Toronto, ON, Canada
- The Peter Gilgan Centre for Research and Learning, SickKids Research Institute, Toronto, ON, Canada
- The Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Wang H, Kwan AC. Competitive and cooperative games for probing the neural basis of social decision-making in animals. Neurosci Biobehav Rev 2023; 149:105158. [PMID: 37019249 PMCID: PMC10175234 DOI: 10.1016/j.neubiorev.2023.105158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023]
Abstract
In a social environment, it is essential for animals to consider the behavior of others when making decisions. To quantitatively assess such social decisions, games offer unique advantages. Games may have competitive and cooperative components, modeling situations with antagonistic and shared objectives between players. Games can be analyzed by mathematical frameworks, including game theory and reinforcement learning, such that an animal's choice behavior can be compared against the optimal strategy. However, so far games have been underappreciated in neuroscience research, particularly for rodent studies. In this review, we survey the varieties of competitive and cooperative games that have been tested, contrasting strategies employed by non-human primates and birds with rodents. We provide examples of how games can be used to uncover neural mechanisms and explore species-specific behavioral differences. We assess critically the limitations of current paradigms and propose improvements. Together, the synthesis of current literature highlights the advantages of using games to probe the neural basis of social decisions for neuroscience studies.
Collapse
Affiliation(s)
- Hongli Wang
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Alex C Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
16
|
Hassani S, Neumann A, Russell J, Jones C, Womelsdorf T. M 1-selective muscarinic allosteric modulation enhances cognitive flexibility and effective salience in nonhuman primates. Proc Natl Acad Sci U S A 2023; 120:e2216792120. [PMID: 37104474 PMCID: PMC10161096 DOI: 10.1073/pnas.2216792120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
Acetylcholine (ACh) in cortical neural circuits mediates how selective attention is sustained in the presence of distractors and how flexible cognition adjusts to changing task demands. The cognitive domains of attention and cognitive flexibility might be differentially supported by the M1 muscarinic acetylcholine receptor (mAChR) subtype. Understanding how M1 mAChR mechanisms support these cognitive subdomains is of highest importance for advancing novel drug treatments for conditions with altered attention and reduced cognitive control including Alzheimer's disease or schizophrenia. Here, we tested this question by assessing how the subtype-selective M1 mAChR positive allosteric modulator (PAM) VU0453595 affects visual search and flexible reward learning in nonhuman primates. We found that allosteric potentiation of M1 mAChRs enhanced flexible learning performance by improving extradimensional set shifting, reducing latent inhibition from previously experienced distractors and reducing response perseveration in the absence of adverse side effects. These procognitive effects occurred in the absence of apparent changes of attentional performance during visual search. In contrast, nonselective ACh modulation using the acetylcholinesterase inhibitor (AChEI) donepezil improved attention during visual search at doses that did not alter cognitive flexibility and that already triggered gastrointestinal cholinergic side effects. These findings illustrate that M1 mAChR positive allosteric modulation enhances cognitive flexibility without affecting attentional filtering of distraction, consistent with M1 activity boosting the effective salience of relevant over irrelevant objects specifically during learning. These results suggest that M1 PAMs are versatile compounds for enhancing cognitive flexibility in disorders spanning schizophrenia and Alzheimer's diseases.
Collapse
Affiliation(s)
- Seyed A. Hassani
- Department of Psychology, Vanderbilt University, Nashville, TN37240
| | - Adam Neumann
- Department of Psychology, Vanderbilt University, Nashville, TN37240
| | - Jason Russell
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN37240
| | - Carrie K. Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN37240
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN37240
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37240
| |
Collapse
|
17
|
Petroff RL, Grant KS, Burbacher TM. The Role of Nonhuman Primates in Neurotoxicology Research: Preclinical Models and Experimental Methods. Curr Protoc 2023; 3:e698. [PMID: 36912610 PMCID: PMC10084743 DOI: 10.1002/cpz1.698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Although noteworthy progress has been made in developing alternatives to animal testing, nonhuman primates still play a critical role in advancing biomedical research and will likely do so for many years. Core similarities between monkeys and humans in genetics, physiology, reproduction, development, and behavior make them excellent models for translational studies relevant to human health. This unit is designed to specifically address the role of nonhuman primates in neurotoxicology research and outlines the specialized assessments that can be used to measure exposure-related changes at the structural, chemical, cellular, molecular, and functional levels. © 2023 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Rebekah L Petroff
- Department of Environmental & Occupational Health Sciences (DEOHS), University of Washington, Seattle, Washington
| | - Kimberly S Grant
- Department of Environmental & Occupational Health Sciences (DEOHS), University of Washington, Seattle, Washington
| | - Thomas M Burbacher
- Department of Environmental & Occupational Health Sciences (DEOHS), University of Washington, Seattle, Washington
| |
Collapse
|
18
|
Cotter KM, Bancroft GL, Haas HA, Shi R, Clarkson AN, Croxall ME, Stowe AM, Yun S, Eisch AJ. Use of an Automated Mouse Touchscreen Platform for Quantification of Cognitive Deficits After Central Nervous System Injury. Methods Mol Biol 2023; 2616:279-326. [PMID: 36715942 DOI: 10.1007/978-1-0716-2926-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Analyzing cognitive performance is an important aspect of assessing physiological deficits after stroke or other central nervous system (CNS) injuries in both humans and in basic science animal models. Cognitive testing on an automated touchscreen operant platform began in humans but is now increasingly popular in preclinical studies as it enables testing in many cognitive domains in a highly reproducible way while minimizing stress to the laboratory animal. Here, we describe the step-by-step setup and application of four operant touchscreen tests used on adult mice. In brief, mice are trained to touch a graphical image on a lit screen and initiate subsequent trials for a reward. Following initial training, mice can be tested on tasks that probe performance in many cognitive domains and thus infer the integrity of brain circuits and regions. There are already many outstanding published protocols on touchscreen cognitive testing. This chapter is designed to add to the literature in two specific ways. First, this chapter provides in a single location practical, behind-the-scenes tips for setup and testing of mice in four touchscreen tasks that are useful to assess in CNS injury models: Paired Associates Learning (PAL), a task of episodic, associative (object-location) memory; Location Discrimination Reversal (LDR), a test for mnemonic discrimination (also called behavioral pattern separation) and cognitive flexibility; Autoshaping (AUTO), a test of Pavlovian or classical conditioning; and Extinction (EXT), tasks of stimulus-response and response inhibition, respectively. Second, this chapter summarizes issues to consider when performing touchscreen tests in mouse models of CNS injury. Quantifying gross and fine aspects of cognitive function is essential to improved treatment for brain dysfunction after stroke or CNS injury as well as other brain diseases, and touchscreen testing provides a sensitive, reliable, and robust way to achieve this.
Collapse
Affiliation(s)
- Katherine M Cotter
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA
| | | | | | - Raymon Shi
- University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | | | - Ann M Stowe
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA
| | - Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA.
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Amelia J Eisch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA.
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Ao W, Grace M, Floyd CL, Vonder Haar C. A Touchscreen Device for Behavioral Testing in Pigs. Biomedicines 2022; 10:biomedicines10102612. [PMID: 36289877 PMCID: PMC9599053 DOI: 10.3390/biomedicines10102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Pigs are becoming more common research models due to their utility in studying neurological conditions such as traumatic brain injury, Alzheimer’s disease, and Huntington’s Disease. However, behavioral tasks often require a large apparatus and are not automated, which may disinterest researchers in using important functional measures. To address this, we developed a touchscreen that pigs could be trained on for behavioral testing. A rack-mounted touchscreen monitor was placed in an enclosed, weighted audio rack. A pellet dispenser was operated by a radio frequency transceiver to deliver fruit-flavored sugar pellets from across the testing room. Programs were custom written in Python and executed on a microcomputer. A behavioral shaping program was designed to train pigs to interact with the screen and setup responses for future tasks. Pigs rapidly learned to interact with the screen. To demonstrate efficacy in more complex behavior, two pigs were trained on a delay discounting tasks and two pigs on a color discrimination task. The device held up to repeated testing of large pigs and could be adjusted to the height of minipigs. The device can be easily recreated and constructed at a relatively low cost. Research topics ranging from brain injury to pharmacology to vision could benefit from behavioral tasks designed to specifically interrogate relevant function. More work will be needed to develop tests which are of specific relevance to these disciplines.
Collapse
Affiliation(s)
- Will Ao
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, 460 W 12th Ave, Columbus, OH 43210, USA
| | - Megan Grace
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, 460 W 12th Ave, Columbus, OH 43210, USA
| | - Candace L. Floyd
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT 84132, USA
| | - Cole Vonder Haar
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, 460 W 12th Ave, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
20
|
Wang H, Sun N, Wang X, Han J, Zhang Y, Huang Y, Zhou W. A touchscreen-based paradigm to measure visual pattern separation and pattern completion in mice. Front Neurosci 2022; 16:947742. [PMID: 36090275 PMCID: PMC9449699 DOI: 10.3389/fnins.2022.947742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/29/2022] [Indexed: 11/27/2022] Open
Abstract
Memory accuracy involves two major processes: pattern separation and pattern completion. Pattern separation refers to the ability to reduce overlap among similar inputs to avoid interference, and pattern completion refers to the ability to retrieve the whole information from partial or degraded cues. Impairments in pattern separation/pattern completion contribute to cognitive deficits in several diseases of the nervous system. Therefore, it is better to evaluate both pattern separation and pattern completion in one apparatus. However, few tools are available to assess pattern separation and pattern completion within the same apparatus for rodents. In this study, we designed a series of images with varying degrees of similarity to the correct image to evaluate pattern separation and pattern completion. First, mice were trained to discriminate between two totally different images, and once the correct percentage reached above 77% for two consecutive days, the images with different degrees of similarity were used to measure pattern separation and pattern completion. The results showed the mice performed progressively worse from S0 to S4 (increasing similarity) when discriminating similar images in pattern separation, and the mice performed progressively worse from C0 to C4 (decreasing cues information) when recalling the correct image according to partial cues in pattern completion, implying a good image similarity-dependent manner for memory accuracy evaluation. In sum, we designed a convenient, effective paradigm to evaluate pattern separation and pattern completion based on a touchscreen pairwise discrimination task, which may provide a new method for the studies of the effects and mechanisms of memory accuracy enhancing drugs.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Na Sun
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinyue Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jinyuan Han
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yan Huang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Yan Huang,
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Wenxia Zhou,
| |
Collapse
|
21
|
Muthukumar S, Mehrotra K, Fouda M, Hamimi S, Jantzie LL, Robinson S. Prenatal and postnatal insults differentially contribute to executive function and cognition: Utilizing touchscreen technology for perinatal brain injury research. Exp Neurol 2022; 354:114104. [PMID: 35525306 PMCID: PMC10085749 DOI: 10.1016/j.expneurol.2022.114104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 12/19/2022]
Abstract
The use of touchscreen technology to evaluate cognitive deficits in animal models has grown tremendously over the past 20 years. The touchscreen apparatus encompasses many advantages, namely a high level of standardization and translational capability. Improvements in technology in recent years have expanded the versatility of the touchscreen platform, as it is able to test distinct cognitive modalities including working memory, attention, discrimination, and association. Importantly, touchscreen technology has allowed researchers to explore deficits in multiple pillars of cognition in a wide variety of perinatal disorders with neurological sequelae across critical developmental windows. The touchscreen platform has been used to dissect deficits in antenatal CNS injury including fetal alcohol syndrome, prenatal opioid exposure, and chorioamnionitis, to peripartum insults such as term hypoxic-ischemic encephalopathy, to early postnatal insults including infantile traumatic brain injury. Most importantly, touchscreen technology offers the sensitivity necessary to detect subtle injury and treatment-induced changes in cognition and executive function beyond those offered by more rudimentary tests of rodent cognition. Understanding the pathophysiology of these disorders in rodents is paramount to addressing these deficits in human infants and dissecting the neural circuitry essential to perinatal brain injury pathophysiology and responsiveness to novel therapeutics. Touchscreen testing provides an effective, facile, sophisticated technique to accelerate the goal of improving cognitive and behavioral outcomes of children who suffer perinatal brain injury.
Collapse
Affiliation(s)
- Sankar Muthukumar
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karnika Mehrotra
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohammed Fouda
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Hamimi
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren L Jantzie
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kennedy Krieger Institute, Baltimore, MD, USA
| | - Shenandoah Robinson
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
22
|
Stewart CE, Branyan TE, Sampath D, Sohrabji F. Sex Differences in the Long-Term Consequences of Stroke. Curr Top Behav Neurosci 2022; 62:287-308. [PMID: 35332459 DOI: 10.1007/7854_2022_311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Stroke is the fifth leading cause of death and as healthcare intervention improves, the number of stroke survivors has also increased. Furthermore, there exists a subgroup of younger adults, who suffer stroke and survive. Given the overall improved survival rate, bettering our understanding of long-term stroke outcomes is critical. In this review we will explore the causes and challenges of known long-term consequences of stroke and if present, their corresponding sex differences in both old and young survivors. We have separated these long-term post-stroke consequences into three categories: mobility and muscle weakness, memory and cognitive deficits, and mental health and mood. Lastly, we discuss the potential of common preclinical stroke models to contribute to our understanding of long-term outcomes following stroke.
Collapse
Affiliation(s)
- Courtney E Stewart
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA
| | - Taylor E Branyan
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA.,Texas A&M Institute for Neuroscience, College Station, TX, USA
| | - Dayalan Sampath
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA. .,Texas A&M Institute for Neuroscience, College Station, TX, USA.
| |
Collapse
|
23
|
Stress-inducible phosphoprotein 1 (HOP/STI1/STIP1) regulates the accumulation and toxicity of α-synuclein in vivo. Acta Neuropathol 2022; 144:881-910. [PMID: 36121476 PMCID: PMC9547791 DOI: 10.1007/s00401-022-02491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023]
Abstract
The predominantly pre-synaptic intrinsically disordered protein α-synuclein is prone to misfolding and aggregation in synucleinopathies, such as Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). Molecular chaperones play important roles in protein misfolding diseases and members of the chaperone machinery are often deposited in Lewy bodies. Here, we show that the Hsp90 co-chaperone STI1 co-immunoprecipitated α-synuclein, and co-deposited with Hsp90 and Hsp70 in insoluble protein fractions in two mouse models of α-synuclein misfolding. STI1 and Hsp90 also co-localized extensively with filamentous S129 phosphorylated α-synuclein in ubiquitin-positive inclusions. In PD human brains, STI1 transcripts were increased, and in neurologically healthy brains, STI1 and α-synuclein transcripts correlated. Nuclear Magnetic Resonance (NMR) analyses revealed direct interaction of α-synuclein with STI1 and indicated that the STI1 TPR2A, but not TPR1 or TPR2B domains, interacted with the C-terminal domain of α-synuclein. In vitro, the STI1 TPR2A domain facilitated S129 phosphorylation by Polo-like kinase 3. Moreover, mice over-expressing STI1 and Hsp90ß presented elevated α-synuclein S129 phosphorylation accompanied by inclusions when injected with α-synuclein pre-formed fibrils. In contrast, reduced STI1 function decreased protein inclusion formation, S129 α-synuclein phosphorylation, while mitigating motor and cognitive deficits as well as mesoscopic brain atrophy in α-synuclein-over-expressing mice. Our findings reveal a vicious cycle in which STI1 facilitates the generation and accumulation of toxic α-synuclein conformers, while α-synuclein-induced proteostatic stress increased insoluble STI1 and Hsp90.
Collapse
|
24
|
Shepherd A, Zhang T, Hoffmann LB, Zeleznikow-Johnston AM, Churilov L, Hannan AJ, Burrows EL. A Preclinical Model of Computerized Cognitive Training: Touchscreen Cognitive Testing Enhances Cognition and Hippocampal Cellular Plasticity in Wildtype and Alzheimer's Disease Mice. Front Behav Neurosci 2021; 15:766745. [PMID: 34938165 PMCID: PMC8685297 DOI: 10.3389/fnbeh.2021.766745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022] Open
Abstract
With the growing popularity of touchscreen cognitive testing in rodents, it is imperative to understand the fundamental effects exposure to this paradigm can have on the animals involved. In this study, we set out to assess hippocampal-dependant learning in the APP/PS1 mouse model of Alzheimer’s disease (AD) on two highly translatable touchscreen tasks – the Paired Associate Learning (PAL) task and the Trial Unique Non-Matching to Location (TUNL) task. Both of these tests are based on human tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB) and are sensitive to deficits in both mild cognitive impairment (MCI) and AD. Mice were assessed for deficits in PAL at 9–12 months of age, then on TUNL at 8–11 and 13–16 months. No cognitive deficits were evident in APP/PS1 mice at any age, contrary to previous reports using maze-based learning and memory tasks. We hypothesized that daily and long-term touchscreen training may have inadvertently acted as a cognitive enhancer. When touchscreen-tested mice were assessed on the Morris water maze, they showed improved task acquisition compared to naïve APP/PS1 mice and wild-type (WT) littermate controls. In addition, we show that touchscreen-trained WT and APP/PS1 mice show increased cell proliferation and immature neuron numbers in the dentate gyrus compared to behaviorally naïve WT and APP/PS1 mice. This result indicates that the touchscreen testing paradigm could improve cognitive performance, and/or mask an impairment, in experimental mouse models. This touchscreen-induced cognitive enhancement may involve increased neurogenesis, and possibly other forms of cellular plasticity. This is the first study to show increased numbers of proliferating cells and immature neurons in the hippocampus following touchscreen testing, and that touchscreen training can improve cognitive performance in maze-based spatial navigation tasks. This potential for touchscreen testing to induce cognitive enhancement, or other phenotypic shifts, in preclinical models should be considered in study design. Furthermore, touchscreen-mediated cognitive enhancement could have therapeutic implications for cognitive disorders.
Collapse
Affiliation(s)
- Amy Shepherd
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Tracy Zhang
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Lucas B Hoffmann
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Ariel M Zeleznikow-Johnston
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Leonid Churilov
- Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|