1
|
Takenaka-Ninagawa N, Kim J, Zhao M, Sato M, Jonouchi T, Goto M, Yoshioka CKB, Ikeda R, Harada A, Sato T, Ikeya M, Uezumi A, Nakatani M, Noguchi S, Sakurai H. Collagen-VI supplementation by cell transplantation improves muscle regeneration in Ullrich congenital muscular dystrophy model mice. Stem Cell Res Ther 2021; 12:446. [PMID: 34372931 PMCID: PMC8351132 DOI: 10.1186/s13287-021-02514-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) function as supportive cells on skeletal muscle homeostasis through several secretory factors including type 6 collagen (COL6). Several mutations of COL6A1, 2, and 3 genes cause Ullrich congenital muscular dystrophy (UCMD). Skeletal muscle regeneration deficiency has been reported as a characteristic phenotype in muscle biopsy samples of human UCMD patients and UCMD model mice. However, little is known about the COL6-dependent mechanism for the occurrence and progression of the deficiency. The purpose of this study was to clarify the pathological mechanism of UCMD by supplementing COL6 through cell transplantation. Methods To test whether COL6 supplementation has a therapeutic effect for UCMD, in vivo and in vitro experiments were conducted using four types of MSCs: (1) healthy donors derived-primary MSCs (pMSCs), (2) MSCs derived from healthy donor induced pluripotent stem cell (iMSCs), (3) COL6-knockout iMSCs (COL6KO-iMSCs), and (4) UCMD patient-derived iMSCs (UCMD-iMSCs). Results All four MSC types could engraft for at least 12 weeks when transplanted into the tibialis anterior muscles of immunodeficient UCMD model (Col6a1KO) mice. COL6 protein was restored by the MSC transplantation if the MSCs were not COL6-deficient (types 1 and 2). Moreover, muscle regeneration and maturation in Col6a1KO mice were promoted with the transplantation of the COL6-producing MSCs only in the region supplemented with COL6. Skeletal muscle satellite cells derived from UCMD model mice (Col6a1KO-MuSCs) co-cultured with type 1 or 2 MSCs showed improved proliferation, differentiation, and maturation, whereas those co-cultured with type 3 or 4 MSCs did not. Conclusions These findings indicate that COL6 supplementation improves muscle regeneration and maturation in UCMD model mice. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02514-3.
Collapse
Affiliation(s)
- Nana Takenaka-Ninagawa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Jinsol Kim
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mingming Zhao
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masae Sato
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuya Jonouchi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Megumi Goto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Clémence Kiho Bourgeois Yoshioka
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Rukia Ikeda
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Aya Harada
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takahiko Sato
- Department of Anatomy, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Masashi Nakatani
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, Department of Clinical Development, Translational Medical Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8551, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
2
|
Villar-Quiles RN, Donkervoort S, de Becdelièvre A, Gartioux C, Jobic V, Foley AR, McCarty RM, Hu Y, Menassa R, Michel L, Gousse G, Lacour A, Petiot P, Streichenberger N, Choumert A, Declerck L, Urtizberea JA, Sole G, Furby A, Cérino M, Krahn M, Campana-Salort E, Ferreiro A, Eymard B, Bönnemann CG, Bharucha-Goebel D, Sumner CJ, Connolly AM, Richard P, Allamand V, Métay C, Stojkovic T. Clinical and Molecular Spectrum Associated with COL6A3 c.7447A>G p.(Lys2483Glu) Variant: Elucidating its Role in Collagen VI-related Myopathies. J Neuromuscul Dis 2021; 8:633-645. [PMID: 33749658 DOI: 10.3233/jnd-200577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Dominant and recessive autosomal pathogenic variants in the three major genes (COL6A1-A2-A3) encoding the extracellular matrix protein collagen VI underlie a group of myopathies ranging from early-onset severe conditions (Ullrich congenital muscular dystrophy) to milder forms maintaining independent ambulation (Bethlem myopathy). Diagnosis is based on the combination of clinical presentation, muscle MRI, muscle biopsy, analysis of collagen VI secretion, and COL6A1-A2-A3 genetic analysis, the interpretation of which can be challenging. OBJECTIVE To refine the phenotypical spectrum associated with the frequent COL6A3 missense variant c.7447A>G (p.Lys2483Glu). METHODS We report the clinical and molecular findings in 16 patients: 12 patients carrying this variant in compound heterozygosity with another COL6A3 variant, and four homozygous patients. RESULTS Patients carrying this variant in compound heterozygosity with a truncating COL6A3 variant exhibit a phenotype consistent with COL6-related myopathies (COL6-RM), with joint contractures, proximal weakness and skin abnormalities. All remain ambulant in adulthood and only three have mild respiratory involvement. Most show typical muscle MRI findings. In five patients, reduced collagen VI secretion was observed in skin fibroblasts cultures. All tested parents were unaffected heterozygous carriers. Conversely, two out of four homozygous patients did not present with the classical COL6-RM clinical and imaging findings. Collagen VI immunolabelling on cultured fibroblasts revealed rather normal secretion in one and reduced secretion in another. Muscle biopsy from one homozygous patient showed myofibrillar disorganization and rimmed vacuoles. CONCLUSIONS In light of our results, we postulate that the COL6A3 variant c.7447A>G may act as a modulator of the clinical phenotype. Thus, in patients with a typical COL6-RM phenotype, a second variant must be thoroughly searched for, while for patients with atypical phenotypes further investigations should be conducted to exclude alternative causes. This works expands the clinical and molecular spectrum of COLVI-related myopathies.
Collapse
Affiliation(s)
- Rocío N Villar-Quiles
- AP-HP, Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, Paris, France.,Centre de Recherche en Myologie, Institut de Myologie, Sorbonne Université, Inserm, Paris, France
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alix de Becdelièvre
- AP-HP, Département de Génétique, Hôpital Henri Mondor, Créteil, France.,AP-HP, Centre de Génétique Moléculaire et Chromosomique, UF Cardiogénétique et Myogénétique Moléculaire et Cellulaire, GH Pitié-Salpêtrière, Paris, France
| | - Corine Gartioux
- Centre de Recherche en Myologie, Institut de Myologie, Sorbonne Université, Inserm, Paris, France
| | - Valérie Jobic
- AP-HP, Centre de Génétique Moléculaire et Chromosomique, UF Cardiogénétique et Myogénétique Moléculaire et Cellulaire, GH Pitié-Salpêtrière, Paris, France
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Riley M McCarty
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rita Menassa
- Hospices Civils de Lyon, LBMMS, Service Biochimie Biologie Moléculaire Grand Est, Groupement Hospitalier Est, CBPE, Bron, France
| | - Laurence Michel
- Hospices Civils de Lyon, LBMMS, Service Biochimie Biologie Moléculaire Grand Est, Groupement Hospitalier Est, CBPE, Bron, France
| | - Gaelle Gousse
- Service de Neuropédiatrie, CHU Saint-Étienne, Saint-Étienne, France
| | - Arnaud Lacour
- Service de Neurologie, CHU Saint-Étienne, Saint-Étienne, France
| | - Philippe Petiot
- Neurologie et Explorations Fonctionnelles Neurologiques, Centre de Référence Maladies Neuromusculaires de la Région Rhône-Alpes Hôpital de la Croix-Rousse, Lyon, France
| | - Nathalie Streichenberger
- Centre de Pathologie et Neuropathologie Est, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Ariane Choumert
- Centre des Maladies Rares Neurologiques, CHU Sud Réunion, Saint-Pierre, France
| | - Léa Declerck
- Centre des Maladies Rares Neurologiques, CHU Sud Réunion, Saint-Pierre, France
| | - J A Urtizberea
- Hôpital Marin, Centre de Compétence Neuromusculaire, Hendaye, France
| | - Guilhem Sole
- Centre de Référence des Maladies Neuromusculaires AOC, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France
| | - Alain Furby
- Centre de Référence des Maladies Neuromusculaires Rares Rhônes-Alpes, Hôpital Nord, CHU de Saint-Étienne, Saint-Étienne, France
| | - Matthieu Cérino
- AP-HM, Département de Génétique Médicale, Hôpital Timone Enfants, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Martin Krahn
- AP-HM, Département de Génétique Médicale, Hôpital Timone Enfants, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | | | - Ana Ferreiro
- AP-HP, Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, Paris, France.,Basic and Translational Myology Lab, UMR8251, University Paris Diderot/CNRS, Paris, France
| | - Bruno Eymard
- AP-HP, Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, Paris, France
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Diana Bharucha-Goebel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Division of Neurology, Children's National Hospital, Washington, DC, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne M Connolly
- Department of Pediatrics, Neurology Division, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Pascale Richard
- AP-HP, Centre de Génétique Moléculaire et Chromosomique, UF Cardiogénétique et Myogénétique Moléculaire et Cellulaire, GH Pitié-Salpêtrière, Paris, France
| | - Valérie Allamand
- Centre de Recherche en Myologie, Institut de Myologie, Sorbonne Université, Inserm, Paris, France.,Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Corinne Métay
- AP-HP, Centre de Génétique Moléculaire et Chromosomique, UF Cardiogénétique et Myogénétique Moléculaire et Cellulaire, GH Pitié-Salpêtrière, Paris, France.,Centre de Recherche en Myologie, Institut de Myologie, Sorbonne Université, Inserm, Paris, France
| | - Tanya Stojkovic
- AP-HP, Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, Paris, France.,Centre de Recherche en Myologie, Institut de Myologie, Sorbonne Université, Inserm, Paris, France
| |
Collapse
|
3
|
Mohassel P, Foley AR, Bönnemann CG. Extracellular matrix-driven congenital muscular dystrophies. Matrix Biol 2018; 71-72:188-204. [PMID: 29933045 DOI: 10.1016/j.matbio.2018.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 12/20/2022]
Abstract
Skeletal muscle function relies on the myofibrillar apparatus inside myofibers as well as an intact extracellular matrix surrounding each myofiber. Muscle extracellular matrix (ECM) plays several roles including but not limited to force transmission, regulation of growth factors and inflammatory responses, and influencing muscle stem cell (i.e. satellite cell) proliferation and differentiation. In most myopathies, muscle ECM undergoes remodeling and fibrotic changes that may be maladaptive for normal muscle function and recovery. In addition, mutations in skeletal muscle ECM and basement proteins can cause muscle disease. In this review, we summarize the clinical features of two of the most common congenital muscular dystrophies, COL6-related dystrophies and LAMA2-related dystrophies, which are caused by mutations in muscle ECM and basement membrane proteins. The study of clinical features of these diseases has helped to inform basic research and understanding of the biology of muscle ECM. In return, basic studies of muscle ECM have provided the conceptual framework to develop therapeutic interventions for these and other similar disorders of muscle.
Collapse
Affiliation(s)
- Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States of America
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States of America
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States of America.
| |
Collapse
|
4
|
D'Amico A, Fattori F, Tasca G, Petrini S, Gualandi F, Bruselles A, D'Oria V, Verardo M, Carrozzo R, Niceta M, Udd B, Ferlini A, Tartaglia M, Bertini E. Somatic mosaicism represents an underestimated event underlying collagen 6-related disorders. Eur J Paediatr Neurol 2017; 21:873-883. [PMID: 28760337 DOI: 10.1016/j.ejpn.2017.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/19/2017] [Accepted: 07/17/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Collagen VI-related disorders (COL6-RD) are a group of heterogenous muscular diseases due to mutations in the COL6A1, COL6A2 and COL6A3 genes, encoding for collagen VI, a critical component of the extracellular matrix. Ullrich congenital muscle disorder and Bethlem myopathy represent the ends of a clinical spectrum that includes intermediate phenotypes of variable severity. UCMD are caused by recessive loss of function mutations or de-novo dominant-negative mutations. The intermediate phenotype and BM are more commonly caused by dominantly acting mutations, and less commonly by recessive mutations. Recently parental mosaicism for dominant mutations in COL6 have been reported in four COL6-RD families and germinal mosaicism has been also identified in a family with recurrence of UCMD in two half-sibs. METHODS AND RESULTS Here we report three unrelated patients affected by a COL6-RD who carried de novo mosaic mutations in COL6A genes. These mutations, missed by Sanger sequencing, were identified by next generation sequencing. CONCLUSIONS This report highlights the importance of a complete diagnostic workup when clinical and histological finding are consistent with a COL6-RD and strengthen the impression that mosaicisms are underestimated events underlying COL6-RD.
Collapse
Affiliation(s)
- Adele D'Amico
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, Rome, Italy.
| | - Fabiana Fattori
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giorgio Tasca
- Institute of Neurology, Catholic University, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Gualandi
- Department of Medical Sciences, Logistic Unit of Medical Genetics, University-Hospital of Ferrara, Italy
| | - Alessandro Bruselles
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina D'Oria
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Margherita Verardo
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, Rome, Italy
| | - Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, Rome, Italy
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Bjarne Udd
- Folkhälsan Institute of Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Alessandra Ferlini
- Department of Medical Sciences, Logistic Unit of Medical Genetics, University-Hospital of Ferrara, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
5
|
Davignon L, Chauveau C, Julien C, Dill C, Duband-Goulet I, Cabet E, Buendia B, Lilienbaum A, Rendu J, Minot MC, Guichet A, Allamand V, Vadrot N, Fauré J, Odent S, Lazaro L, Leroy JP, Marcorelles P, Dubourg O, Ferreiro A. The transcription coactivator ASC-1 is a regulator of skeletal myogenesis, and its deficiency causes a novel form of congenital muscle disease. Hum Mol Genet 2016; 25:1559-73. [PMID: 27008887 DOI: 10.1093/hmg/ddw033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/04/2016] [Indexed: 01/17/2023] Open
Abstract
Despite recent progress in the genetic characterization of congenital muscle diseases, the genes responsible for a significant proportion of cases remain unknown. We analysed two branches of a large consanguineous family in which four patients presented with a severe new phenotype, clinically marked by neonatal-onset muscle weakness predominantly involving axial muscles, life-threatening respiratory failure, skin abnormalities and joint hyperlaxity without contractures. Muscle biopsies showed the unreported association of multi-minicores, caps and dystrophic lesions. Genome-wide linkage analysis followed by gene and exome sequencing in patients identified a homozygous nonsense mutation in TRIP4 encoding Activating Signal Cointegrator-1 (ASC-1), a poorly characterized transcription coactivator never associated with muscle or with human inherited disease. This mutation resulted in TRIP4 mRNA decay to around 10% of control levels and absence of detectable protein in patient cells. ASC-1 levels were higher in axial than in limb muscles in mouse, and increased during differentiation in C2C12 myogenic cells. Depletion of ASC-1 in cultured muscle cells from a patient and in Trip4 knocked-down C2C12 led to a significant reduction in myotube diameter ex vivo and in vitro, without changes in fusion index or markers of initial myogenic differentiation. This work reports the first TRIP4 mutation and defines a novel form of congenital muscle disease, expanding their histological, clinical and molecular spectrum. We establish the importance of ASC-1 in human skeletal muscle, identify transcriptional co-regulation as novel pathophysiological pathway, define ASC-1 as a regulator of late myogenic differentiation and suggest defects in myotube growth as a novel myopathic mechanism.
Collapse
Affiliation(s)
- Laurianne Davignon
- Pathophysiology of Striated Muscles Laboratory, Unit of Functional and Adaptive Biology (BFA), University Paris Diderot, Sorbonne Paris Cité, BFA, UMR CNRS 8251, 75250 Paris Cedex 13, France, Inserm U787, Myology Group, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France, UPMC, UMR787, 75013 Paris, France
| | - Claire Chauveau
- Inserm U787, Myology Group, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France, UPMC, UMR787, 75013 Paris, France
| | - Cédric Julien
- Inserm U787, Myology Group, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France, UPMC, UMR787, 75013 Paris, France
| | - Corinne Dill
- Pathophysiology of Striated Muscles Laboratory, Unit of Functional and Adaptive Biology (BFA), University Paris Diderot, Sorbonne Paris Cité, BFA, UMR CNRS 8251, 75250 Paris Cedex 13, France
| | - Isabelle Duband-Goulet
- Pathophysiology of Striated Muscles Laboratory, Unit of Functional and Adaptive Biology (BFA), University Paris Diderot, Sorbonne Paris Cité, BFA, UMR CNRS 8251, 75250 Paris Cedex 13, France
| | - Eva Cabet
- Pathophysiology of Striated Muscles Laboratory, Unit of Functional and Adaptive Biology (BFA), University Paris Diderot, Sorbonne Paris Cité, BFA, UMR CNRS 8251, 75250 Paris Cedex 13, France
| | - Brigitte Buendia
- Pathophysiology of Striated Muscles Laboratory, Unit of Functional and Adaptive Biology (BFA), University Paris Diderot, Sorbonne Paris Cité, BFA, UMR CNRS 8251, 75250 Paris Cedex 13, France
| | - Alain Lilienbaum
- Pathophysiology of Striated Muscles Laboratory, Unit of Functional and Adaptive Biology (BFA), University Paris Diderot, Sorbonne Paris Cité, BFA, UMR CNRS 8251, 75250 Paris Cedex 13, France
| | - John Rendu
- Université Grenoble Alpes, Université Joseph Fourier, 38041 Grenoble, France, Biochimie Génétique et Moléculaire, CHRU de Grenoble, 38700 Grenoble, France, INSERM U386, Equipe Muscle et Pathologies, Grenoble Institut des Neurosciences, 38700 Grenoble, France
| | | | - Agnès Guichet
- CHU Angers, Service de génétique médicale, 49100 Angers, France
| | - Valérie Allamand
- UPMC, Inserm UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - Nathalie Vadrot
- Pathophysiology of Striated Muscles Laboratory, Unit of Functional and Adaptive Biology (BFA), University Paris Diderot, Sorbonne Paris Cité, BFA, UMR CNRS 8251, 75250 Paris Cedex 13, France
| | - Julien Fauré
- Université Grenoble Alpes, Université Joseph Fourier, 38041 Grenoble, France, Biochimie Génétique et Moléculaire, CHRU de Grenoble, 38700 Grenoble, France, INSERM U386, Equipe Muscle et Pathologies, Grenoble Institut des Neurosciences, 38700 Grenoble, France
| | - Sylvie Odent
- Pôle Neurosciences, Service de Neurologie, CHU de Rennes, 35033 Rennes, France
| | - Leïla Lazaro
- Service de Pédiatrie, Centre Hospitalier de la Côte Basque, 64109 Bayonne, France
| | - Jean Paul Leroy
- Laboratoire d'Anatomo-Pathologie, CHU de Brest, 29609 Brest, France
| | - Pascale Marcorelles
- Laboratoire d'Anatomo-Pathologie, CHU de Brest, 29609 Brest, France, EA 4685 Laboratoire de Neuroscience de Brest, Université Bretagne Occidentale, 29200 Brest, France
| | - Odile Dubourg
- Inserm U787, Myology Group, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France, UPMC, UMR787, 75013 Paris, France, AP-HP, Laboratoire de Neuropathologie, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France and
| | - Ana Ferreiro
- Pathophysiology of Striated Muscles Laboratory, Unit of Functional and Adaptive Biology (BFA), University Paris Diderot, Sorbonne Paris Cité, BFA, UMR CNRS 8251, 75250 Paris Cedex 13, France, Inserm U787, Myology Group, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France, UPMC, UMR787, 75013 Paris, France, AP-HP, Centre de Référence Maladies Neuromusculaires Paris-Est, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
6
|
Donkervoort S, Hu Y, Stojkovic T, Voermans NC, Foley AR, Leach ME, Dastgir J, Bolduc V, Cullup T, de Becdelièvre A, Yang L, Su H, Meilleur K, Schindler AB, Kamsteeg EJ, Richard P, Butterfield RJ, Winder TL, Crawford TO, Weiss RB, Muntoni F, Allamand V, Bönnemann CG. Mosaicism for dominant collagen 6 mutations as a cause for intrafamilial phenotypic variability. Hum Mutat 2015; 36:48-56. [PMID: 25204870 DOI: 10.1002/humu.22691] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/14/2014] [Indexed: 12/18/2022]
Abstract
Collagen 6-related dystrophies and myopathies (COL6-RD) are a group of disorders that form a wide phenotypic spectrum, ranging from severe Ullrich congenital muscular dystrophy, intermediate phenotypes, to the milder Bethlem myopathy. Both inter- and intrafamilial variable expressivity are commonly observed. We present clinical, immunohistochemical, and genetic data on four COL6-RD families with marked intergenerational phenotypic heterogeneity. This variable expression seemingly masquerades as anticipation is due to parental mosaicism for a dominant mutation, with subsequent full inheritance and penetrance of the mutation in the heterozygous offspring. We also present an additional fifth simplex patient identified as a mosaic carrier. Parental mosaicism was confirmed in the four families through quantitative analysis of the ratio of mutant versus wild-type allele (COL6A1, COL6A2, and COL6A3) in genomic DNA from various tissues, including blood, dermal fibroblasts, and saliva. Consistent with somatic mosaicism, parental samples had lower ratios of mutant versus wild-type allele compared with the fully heterozygote offspring. However, there was notable variability of the mutant allele levels between tissues tested, ranging from 16% (saliva) to 43% (fibroblasts) in one mosaic father. This is the first report demonstrating mosaicism as a cause of intrafamilial/intergenerational variability of COL6-RD, and suggests that sporadic and parental mosaicism may be more common than previously suspected.
Collapse
Affiliation(s)
- Sandra Donkervoort
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Neurogenetics Branch, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Radev Z, Hermel JM, Elipot Y, Bretaud S, Arnould S, Duchateau P, Ruggiero F, Joly JS, Sohm F. A TALEN-Exon Skipping Design for a Bethlem Myopathy Model in Zebrafish. PLoS One 2015. [PMID: 26221953 PMCID: PMC4519248 DOI: 10.1371/journal.pone.0133986] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Presently, human collagen VI-related diseases such as Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) remain incurable, emphasizing the need to unravel their etiology and improve their treatments. In UCMD, symptom onset occurs early, and both diseases aggravate with ageing. In zebrafish fry, morpholinos reproduced early UCMD and BM symptoms but did not allow to study the late phenotype. Here, we produced the first zebrafish line with the human mutation frequently found in collagen VI-related disorders such as UCMD and BM. We used a transcription activator-like effector nuclease (TALEN) to design the col6a1ama605003-line with a mutation within an essential splice donor site, in intron 14 of the col6a1 gene, which provoke an in-frame skipping of exon 14 in the processed mRNA. This mutation at a splice donor site is the first example of a template-independent modification of splicing induced in zebrafish using a targetable nuclease. This technique is readily expandable to other organisms and can be instrumental in other disease studies. Histological and ultrastructural analyzes of homozygous and heterozygous mutant fry and 3 months post-fertilization (mpf) fish revealed co-dominantly inherited abnormal myofibers with disorganized myofibrils, enlarged sarcoplasmic reticulum, altered mitochondria and misaligned sarcomeres. Locomotion analyzes showed hypoxia-response behavior in 9 mpf col6a1 mutant unseen in 3 mpf fish. These symptoms worsened with ageing as described in patients with collagen VI deficiency. Thus, the col6a1ama605003-line is the first adult zebrafish model of collagen VI-related diseases; it will be instrumental both for basic research and drug discovery assays focusing on this type of disorders.
Collapse
Affiliation(s)
- Zlatko Radev
- UMS 1374, AMAGEN, INRA, Jouy en Josas, Domaine de Vilvert, France
- UMS 3504, AMAGEN, CNRS, Gif-sur-Yvette, France
| | - Jean-Michel Hermel
- UMR 9197, INRA-CASBAH team, NEURO-Psi, CNRS, Gif sur Yvette, France
- * E-mail: (FS); (JMH)
| | - Yannick Elipot
- UMR 9197, DECA team, NEURO-Psi, CNRS, Gif sur Yvette, France
| | - Sandrine Bretaud
- UMR 5242, Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Université Lyon 1, Lyon, France
| | | | | | - Florence Ruggiero
- UMR 5242, Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Université Lyon 1, Lyon, France
| | | | - Frédéric Sohm
- UMS 1374, AMAGEN, INRA, Jouy en Josas, Domaine de Vilvert, France
- UMS 3504, AMAGEN, CNRS, Gif-sur-Yvette, France
- * E-mail: (FS); (JMH)
| |
Collapse
|
8
|
Tagliavini F, Pellegrini C, Sardone F, Squarzoni S, Paulsson M, Wagener R, Gualandi F, Trabanelli C, Ferlini A, Merlini L, Santi S, Maraldi NM, Faldini C, Sabatelli P. Defective collagen VI α6 chain expression in the skeletal muscle of patients with collagen VI-related myopathies. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1604-12. [PMID: 24907562 PMCID: PMC4316388 DOI: 10.1016/j.bbadis.2014.05.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/12/2014] [Accepted: 05/28/2014] [Indexed: 12/17/2022]
Abstract
Collagen VI is a non-fibrillar collagen present in the extracellular matrix (ECM) as a complex polymer; the mainly expressed form is composed of α1, α2 and α3 chains; mutations in genes encoding these chains cause myopathies known as Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM). The collagen VI α6 chain is a recently identified component of the ECM of the human skeletal muscle. Here we report that the α6 chain was dramatically reduced in skeletal muscle and muscle cell cultures of genetically characterized UCMD, BM and MM patients, independently of the clinical phenotype, the gene involved and the effect of the mutation on the expression of the “classical” α1α2α3 heterotrimer. By contrast, the collagen VI α6 chain was normally expressed or increased in the muscle of patients affected by other forms of muscular dystrophy, the overexpression matching with areas of increased fibrosis. In vitro treatment with TGF-β1, a potent collagen inducer, promoted the collagen VI α6 chain deposition in the ECM of normal muscle cells, whereas, in cultures derived from collagen VI-related myopathy patients, the collagen VI α6 chain failed to develop a network outside the cells and accumulated in the endoplasmic reticulum. The defect of the α6 chain points to a contribution to the pathogenesis of collagen VI-related disorders. Collagen VI is an ECM component of the human skeletal muscle. We evaluated the α6 chain in collagen VI-related and other muscular dystrophies. The α6 chain was reduced in collagen VI-related diseases but not in other myopathies. A correlation between the α6 chain and fibrosis was demonstrated in MDC1A. The α6 chain is involved in the pathogenesis of collagen VI diseases and fibrosis.
Collapse
Affiliation(s)
- F Tagliavini
- CNR-National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | - C Pellegrini
- SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | - F Sardone
- CNR-National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | - S Squarzoni
- CNR-National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | - M Paulsson
- Center for Biochemistry, Center for Molecular Medicine (CMMC) and Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Germany
| | - R Wagener
- Center for Biochemistry, Center for Molecular Medicine (CMMC) and Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Germany
| | - F Gualandi
- Department of Medical Sciences, University of Ferrara, Italy
| | - C Trabanelli
- Department of Medical Sciences, University of Ferrara, Italy
| | - A Ferlini
- Department of Medical Sciences, University of Ferrara, Italy
| | - L Merlini
- SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | - S Santi
- CNR-National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | - N M Maraldi
- CNR-National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy
| | - C Faldini
- University of Bologna, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - P Sabatelli
- CNR-National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy.
| |
Collapse
|
9
|
Martoni E, Petrini S, Trabanelli C, Sabatelli P, Urciuolo A, Selvatici R, D'Amico A, Falzarano S, Bertini E, Bonaldo P, Ferlini A, Gualandi F. Characterization of a rare case of Ullrich congenital muscular dystrophy due to truncating mutations within the COL6A1 gene C-terminal domain: a case report. BMC MEDICAL GENETICS 2013; 14:59. [PMID: 23738969 PMCID: PMC3681647 DOI: 10.1186/1471-2350-14-59] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 05/28/2013] [Indexed: 11/10/2022]
Abstract
Background Mutations within the C-terminal region of the COL6A1 gene are only detected in Ullrich/Bethlem patients on extremely rare occasions. Case presentation Herein we report two Brazilian brothers with a classic Ullrich phenotype and compound heterozygous for two truncating mutations in COL6A1 gene, expected to result in the loss of the α1(VI) chain C2 subdomain. Despite the reduction in COL6A1 RNA level due to nonsense RNA decay, three truncated alpha1 (VI) chains were produced as protein variants encoded by different out-of-frame transcripts. Collagen VI matrix was severely decreased and intracellular protein retention evident. Conclusion The altered deposition of the fibronectin network highlighted abnormal interactions of the mutated collagen VI, lacking the α1(VI) C2 domain, within the extracellular matrix, focusing further studies on the possible role played by collagen VI in fibronectin deposition and organization.
Collapse
Affiliation(s)
- Elena Martoni
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Congenital muscular dystrophies (CMDs) are clinically and genetically heterogeneous neuromuscular disorders with onset at birth or in infancy in which the muscle biopsy is compatible with a dystrophic myopathy. In the past 10 years, knowledge of neuromuscular disorders has dramatically increased, particularly with the exponential boost of disclosing the genetic background of CMDs. This review will highlight the clinical description of the most important forms of CMD, paying particular attention to the main keys for diagnostic approach. The diagnosis of CMDs requires the concurrence of expertise in multiple specialties (neurology, morphology, genetics, neuroradiology) available in a few centers worldwide that have achieved sufficient experience with the different CMD subtypes. Currently, molecular diagnosis is of paramount importance not only for phenotype-genotype correlations, genetic and prenatal counseling, and prognosis and aspects of management, but also concerning the imminent availability of clinical trials and treatments.
Collapse
|
11
|
Abstract
The collagen VI-related myopathy known as Ullrich congenital muscular dystrophy is an early-onset disease that combines substantial muscle weakness with striking joint laxity and progressive contractures. Patients might learn to walk in early childhood; however, this ability is subsequently lost, concomitant with the development of frequent nocturnal respiratory failure. Patients with intermediate phenotypes of collagen VI-related myopathy display a lesser degree of weakness and a longer period of ambulation than do individuals with Ullrich congenital muscular dystrophy, and the spectrum of disease finally encompasses mild Bethlem myopathy, in which ambulation persists into adulthood. Dominant and recessive autosomal mutations in the three major collagen VI genes-COL6A1, COL6A2, and COL6A3-can underlie this entire clinical spectrum, and result in deficient or dysfunctional microfibrillar collagen VI in the extracellular matrix of muscle and other connective tissues, such as skin and tendons. The potential effects on muscle include progressive dystrophic changes, fibrosis and evidence for increased apoptosis, which potentially open avenues for pharmacological intervention. Optimized respiratory management, including noninvasive nocturnal ventilation together with careful orthopedic management, are the current mainstays of treatment and have already led to a considerable improvement in life expectancy for children with Ullrich congenital muscular dystrophy.
Collapse
|
12
|
Lo HP, Bertini E, Mirabella M, Domazetovska A, Dale RC, Petrini S, D'Amico A, Valente EM, Barresi R, Roberts M, Tozzi G, Tasca G, Cooper ST, Straub V, North KN. Mosaic caveolin-3 expression in acquired rippling muscle disease without evidence of myasthenia gravis or acetylcholine receptor autoantibodies. Neuromuscul Disord 2011; 21:194-203. [PMID: 21295981 DOI: 10.1016/j.nmd.2010.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/21/2010] [Accepted: 11/29/2010] [Indexed: 01/30/2023]
Abstract
Inherited rippling muscle disease is an autosomal dominant disorder usually associated with caveolin-3 mutations. Rare cases of acquired rippling muscle disease with abnormal caveolin-3 localisation have been reported, without primary caveolin-3 mutations and in association with myasthenia gravis and acetylcholine receptor autoantibodies, or thymoma. We present three new patients with electrically-silent muscle rippling and abnormal caveolin-3 localisation, but without acetylcholine receptor autoantibodies, or clinical or electrophysiological evidence of myasthenia gravis. An autoimmune basis for rippling muscle disease is supported by spontaneous recovery and normalisation of caveolin-3 staining in one patient and alleviation of symptoms in response to plasmapheresis and immunosuppression in another. These patients expand the autoimmune rippling muscle disease phenotype, and suggest that autoantibodies to additional unidentified muscle proteins result in autoimmune rippling muscle disease.
Collapse
Affiliation(s)
- Harriet P Lo
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Westmead, NSW 2145, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bönnemann CG. The collagen VI-related myopathies Ullrich congenital muscular dystrophy and Bethlem myopathy. HANDBOOK OF CLINICAL NEUROLOGY 2011; 101:81-96. [PMID: 21496625 DOI: 10.1016/b978-0-08-045031-5.00005-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mutations in the genes COL6A1, COL6A2, and COL6A3, coding for three α chains of collagen type VI, underlie a spectrum of myopathies, ranging from the severe congenital muscular dystrophy-type Ullrich (UCMD) to the milder Bethlem myopathy (BM), with disease manifestations of intermediate severity in between. UCMD is characterized by early-onset weakness, associated with pronounced distal joint hyperlaxity and the early onset or early progression of more proximal contractures. In the most severe cases ambulation is not achieved, or it may be achieved only for a limited period of time. BM may be of early or later onset, but is milder in its manifestations, typically allowing for ambulation well into adulthood, whereas typical joint contractures are frequently prominent. A genetic spectrum is emerging, with BM being caused mostly by dominantly acting mutations, although rarely recessive inheritance of BM is also possible, whereas both dominantly as well as recessively acting mutations underlie UCMD.
Collapse
Affiliation(s)
- Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke/NIH, Bethesda, MD 20892-3705, USA.
| |
Collapse
|
14
|
Bovolenta M, Neri M, Martoni E, Urciuolo A, Sabatelli P, Fabris M, Grumati P, Mercuri E, Bertini E, Merlini L, Bonaldo P, Ferlini A, Gualandi F. Identification of a deep intronic mutation in the COL6A2 gene by a novel custom oligonucleotide CGH array designed to explore allelic and genetic heterogeneity in collagen VI-related myopathies. BMC MEDICAL GENETICS 2010; 11:44. [PMID: 20302629 PMCID: PMC2850895 DOI: 10.1186/1471-2350-11-44] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 03/19/2010] [Indexed: 01/03/2023]
Abstract
Background Molecular characterization of collagen-VI related myopathies currently relies on standard sequencing, which yields a detection rate approximating 75-79% in Ullrich congenital muscular dystrophy (UCMD) and 60-65% in Bethlem myopathy (BM) patients as PCR-based techniques tend to miss gross genomic rearrangements as well as copy number variations (CNVs) in both the coding sequence and intronic regions. Methods We have designed a custom oligonucleotide CGH array in order to investigate the presence of CNVs in the coding and non-coding regions of COL6A1, A2, A3, A5 and A6 genes and a group of genes functionally related to collagen VI. A cohort of 12 patients with UCMD/BM negative at sequencing analysis and 2 subjects carrying a single COL6 mutation whose clinical phenotype was not explicable by inheritance were selected and the occurrence of allelic and genetic heterogeneity explored. Results A deletion within intron 1A of the COL6A2 gene, occurring in compound heterozygosity with a small deletion in exon 28, previously detected by routine sequencing, was identified in a BM patient. RNA studies showed monoallelic transcription of the COL6A2 gene, thus elucidating the functional effect of the intronic deletion. No pathogenic mutations were identified in the remaining analyzed patients, either within COL6A genes, or in genes functionally related to collagen VI. Conclusions Our custom CGH array may represent a useful complementary diagnostic tool, especially in recessive forms of the disease, when only one mutant allele is detected by standard sequencing. The intronic deletion we identified represents the first example of a pure intronic mutation in COL6A genes.
Collapse
Affiliation(s)
- Matteo Bovolenta
- Department of Experimental and Diagnostic Medicine - Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Congenital Muscular Dystrophies: Toward Molecular Therapeutic Interventions. Curr Neurol Neurosci Rep 2010; 10:83-91. [DOI: 10.1007/s11910-010-0092-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Current world literature. Curr Opin Neurol 2008; 21:615-24. [PMID: 18769258 DOI: 10.1097/wco.0b013e32830fb782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|