1
|
Wu Y, Wei Q, Lin J, Shang H, Ou R. Cognitive impairment, neuroimaging abnormalities, and their correlations in myotonic dystrophy: a comprehensive review. Front Cell Neurosci 2024; 18:1369332. [PMID: 38638300 PMCID: PMC11024338 DOI: 10.3389/fncel.2024.1369332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Myotonic dystrophy (DM) encompasses a spectrum of neuromuscular diseases characterized by myotonia, muscle weakness, and wasting. Recent research has led to the recognition of DM as a neurological disorder. Cognitive impairment is a central nervous system condition that has been observed in various forms of DM. Neuroimaging studies have increasingly linked DM to alterations in white matter (WM) integrity and highlighted the relationship between cognitive impairment and abnormalities in WM structure. This review aims to summarize investigations into cognitive impairment and brain abnormalities in individuals with DM and to elucidate the correlation between these factors and the potential underlying mechanisms contributing to these abnormalities.
Collapse
Affiliation(s)
| | | | | | | | - Ruwei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Minnerop M, Gliem C, Kornblum C. Current Progress in CNS Imaging of Myotonic Dystrophy. Front Neurol 2018; 9:646. [PMID: 30186217 PMCID: PMC6110944 DOI: 10.3389/fneur.2018.00646] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/18/2018] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging in myotonic dystrophies provided a major contribution to the insight into brain involvement which is highly prevalent in these multisystemic disorders. Particular in Myotonic Dystrophy Type 1, conventional MRI first revealed hyperintense white matter lesions, predominantly localized in the anterior temporal lobe. Brain atrophy and ventricle enlargement were additional early findings already described almost 30 years ago. Since then, more advanced and sophisticated imaging methods have been applied in Myotonic Dystrophy Types 1 and 2. Involvement of actually normal appearing white matter and widespread cortical affection in PET studies were key results toward the recognition of diffuse and not only focally localized brain pathology in vivo. Later, structural abnormalities of both, gray and white matter, have been found in both forms of the disorder, albeit more prominent in myotonic dystrophy type 1. In Type 1, a consistent widespread cortical and subcortical involvement of gray and white matter affecting all lobes, brainstem and cerebellum was observed. Spectroscopy studies gave additional evidence of neuronal and glial damage in both types. Central questions regarding the origin and spatiotemporal evolution of the CNS involvement and its relevance for clinical symptoms had already been raised 30 years ago, however are still not answered. Results of correlation analyses between neuroimaging and clinical parameters are diverse and with few exceptions not well reproducible across studies. It may be related to the fact that most of the reported studies included only small numbers of subjects, sometimes even not separating Myotonic Dystrophy Type 1 from Type 2. But this heterogeneity may also support the current point of view that the clinical impairments are not simply linked to specific and regionally circumscribed structural or functional brain alterations. It seems more convincing that disturbed networks build the functional and structural substrate of clinical symptoms in these disorders as it is proposed in other neuropsychiatric diseases. Consecutively, structural and functional network analyses may provide additional information regarding the link between brain pathology and clinical symptoms. Up to now, only cross-sectional neuroimaging studies have been published. To analyze the temporal evolution of brain affection, longitudinal studies are urgently needed, and systematic natural history data would be useful to identify potential biomarkers for therapeutic studies.
Collapse
Affiliation(s)
- Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany.,Department of Neurology and Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Center for Movement Disorders and Neuromodulation, Heinrich-Heine University, Düsseldorf, Germany
| | - Carla Gliem
- Department of Neurology, University Hospital of Bonn, Bonn, Germany
| | - Cornelia Kornblum
- Department of Neurology, University Hospital of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Cabada T, Iridoy M, Jericó I, Lecumberri P, Seijas R, Gargallo A, Gomez M. Brain Involvement in Myotonic Dystrophy Type 1: A Morphometric and Diffusion Tensor Imaging Study with Neuropsychological Correlation. Arch Clin Neuropsychol 2018; 32:401-412. [PMID: 28164212 DOI: 10.1093/arclin/acx008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/13/2017] [Indexed: 11/12/2022] Open
Abstract
Objective Myotonic dystrophy type 1 (DM1), the most prevalent inherited neuromuscular disease in adults, is a genetic multisystem disorder with a well-established but not well-characterized cerebral involvement. The aim of this study was to evaluate the presence of white matter and gray matter abnormalities in DM1 patients and to investigate their relationship with neurocognitive dysfunction. Methods A total of 42 DM1 patients and 42 healthy controls were included in the study. Clinical, cognitive, and magnetic resonance imaging evaluations, including the use of structural and diffusion tensor imaging (DTI) techniques, were performed. White matter lesion (WML) load, volumetric analysis, and diffusivity changes were assessed and correlated with clinical and neuropsychological test findings. Results WMLs were significantly more frequent in DM1 patients (p < .001), and anterior temporal lobe lesions were only found in the patient group. Global and regional cortical volume loss and corpus callosum atrophy were found. Diffuse white matter DTI abnormalities, including fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were observed with sparing of the internal capsule. Subcortical structures showed volume loss and increased median diffusivity. Neuropsychological evaluation showed significant impairment in several cognitive functions, but only visuospatial impairment was correlated with white matter abnormalities and cortical atrophy. Daytime sleepiness was associated with WML and ventral diencephalon and pallidum volume loss. Conclusion DM1 produces a widespread involvement of white matter and gray matter, including cortical and subcortical structures. These structural abnormalities are involved in the progressive neuropsychological functional impairment in these patients.
Collapse
Affiliation(s)
- T Cabada
- Radiology Department, Complejo Hospitalario De Navarra,Spain
| | - M Iridoy
- Neurology Department, Complejo Hospitalario De Navarra, Spain
| | - I Jericó
- Neurology Department, Complejo Hospitalario De Navarra, Spain
| | - P Lecumberri
- Mathematics Department, Universidad Publica De Navarra, Spain
| | - R Seijas
- Neurology Department, Complejo Hospitalario De Navarra, Spain
| | - A Gargallo
- Radiology Department, Complejo Hospitalario De Navarra,Spain
| | - M Gomez
- Mathematics Department, Universidad Publica De Navarra, Spain
| |
Collapse
|
4
|
Okkersen K, Monckton DG, Le N, Tuladhar AM, Raaphorst J, van Engelen BGM. Brain imaging in myotonic dystrophy type 1: A systematic review. Neurology 2017; 89:960-969. [PMID: 28768849 DOI: 10.1212/wnl.0000000000004300] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/30/2017] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To systematically review brain imaging studies in myotonic dystrophy type 1 (DM1). METHODS We searched Embase (index period 1974-2016) and MEDLINE (index period 1946-2016) for studies in patients with DM1 using MRI, magnetic resonance spectroscopy (MRS), functional MRI (fMRI), CT, ultrasound, PET, or SPECT. From 81 studies, we extracted clinical characteristics, primary outcomes, clinical-genetic correlations, and information on potential risk of bias. Results were summarized and pooled prevalence of imaging abnormalities was calculated, where possible. RESULTS In DM1, various imaging changes are widely dispersed throughout the brain, with apparently little anatomical specificity. We found general atrophy and widespread gray matter volume reductions in all 4 cortical lobes, the basal ganglia, and cerebellum. The pooled prevalence of white matter hyperintensities is 70% (95% CI 64-77), compared with 6% (95% CI 3-12) in unaffected controls. DTI shows increased mean diffusivity in all 4 lobes and reduced fractional anisotropy in virtually all major association, projection, and commissural white matter tracts. Functional studies demonstrate reduced glucose uptake and cerebral perfusion in frontal, parietal, and temporal lobes, and abnormal fMRI connectivity patterns that correlate with personality traits. There is significant between-study heterogeneity in terms of imaging methods, which together with the established clinical variability of DM1 may explain divergent results. Longitudinal studies are remarkably scarce. CONCLUSIONS DM1 brains show widespread white and gray matter involvement throughout the brain, which is supported by abnormal resting-state network, PET/SPECT, and MRS parameters. Longitudinal studies evaluating spatiotemporal imaging changes are essential.
Collapse
Affiliation(s)
- Kees Okkersen
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Darren G Monckton
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Nhu Le
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Anil M Tuladhar
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Joost Raaphorst
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Baziel G M van Engelen
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
5
|
Conforti R, de Cristofaro M, Cristofano A, Brogna B, Sardaro A, Tedeschi G, Cirillo S, Di Costanzo A. Brain MRI abnormalities in the adult form of myotonic dystrophy type 1: A longitudinal case series study. Neuroradiol J 2016; 29:36-45. [PMID: 26755488 DOI: 10.1177/1971400915621325] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This study aimed to verify whether brain abnormalities, previously described in patients with myotonic dystrophy type 1 (DM1) by magnetic resonance imaging (MRI), progressed over time and, if so, to characterize their progression. Thirteen DM1 patients, who had at least two MRI examinations, were retrospectively evaluated and included in the study. The mean duration (± standard deviation) of follow-up was 13.4 (±3.8) years, over a range of 7-20 years. White matter lesions (WMLs) were rated by semi-quantitative method, the signal intensity of white matter poster-superior to trigones (WMPST) by reference to standard images and brain atrophy by ventricular/brain ratio (VBR). At the end of MRI follow-up, the scores relative to lobar, temporal and periventricular WMLs, to WMPST signal intensity and to VBR were significantly increased compared to baseline, and MRI changes were more evident in some families than in others. No correlation was found between the MRI changes and age, onset, disease duration, muscular involvement, CTG repetition and follow-up duration. These results demonstrated that white matter involvement and brain atrophy were progressive in DM1 and suggested that progression rate varied from patient to patient, regardless of age, disease duration and genetic defect.
Collapse
Affiliation(s)
- Renata Conforti
- Institute for Diagnosis and Care "Hermitage Capodimonte", Italy; Department of Clinical and Experimental Medicine, Second University of Naples, Italy
| | | | - Adriana Cristofano
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Italy
| | - Barbara Brogna
- Institute for Diagnosis and Care "Hermitage Capodimonte", Italy; Department of Clinical and Experimental Medicine, Second University of Naples, Italy
| | - Angela Sardaro
- Institute for Diagnosis and Care "Hermitage Capodimonte", Italy; Department of Clinical and Experimental Medicine, Second University of Naples, Italy
| | | | - Sossio Cirillo
- Institute for Diagnosis and Care "Hermitage Capodimonte", Italy; Department of Clinical and Experimental Medicine, Second University of Naples, Italy
| | - Alfonso Di Costanzo
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Italy
| |
Collapse
|
6
|
Cognitive impairment in myotonic dystrophy type 1 is associated with white matter damage. PLoS One 2014; 9:e104697. [PMID: 25115999 PMCID: PMC4130603 DOI: 10.1371/journal.pone.0104697] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/11/2014] [Indexed: 11/19/2022] Open
Abstract
Objective To investigate grey (GM) and white matter (WM) abnormalities and their effects on cognitive and behavioral deficits in a large, phenotypically and genotypically well-characterized cohort of classic adult (aDM1, age at onset ≥20 years) or juvenile (jDM1, age at onset <20 years) patients with myotonic dystrophy type 1 (DM1). Methods A case-control study including 51 DM1 patients (17 jDM1 and 34 aDM1) and 34 controls was conducted at an academic medical center. Clinical, cognitive and structural MRI evaluations were obtained. Quantitative assessments of regional GM volumes, WM hyperintensities (WMHs), and microstructural WM tract damage were performed. The association between structural brain damage and clinical and cognitive findings was assessed. Results DM1 patients showed a high prevalence of WMHs, severe regional GM atrophy including the key nodes of the sensorimotor and main cognitive brain networks, and WM microstructural damage of the interhemispheric, corticospinal, limbic and associative pathways. WM tract damage extends well beyond the focal WMHs. While aDM1 patients had severe patterns of GM atrophy and WM tract damage, in jDM1 patients WM abnormalities exceeded GM involvement. In DM1, WMHs and microstructural damage, but not GM atrophy, correlated with cognitive deficits. Conclusions WM damage, through a disconnection between GM structures, is likely to be the major contributor to cognitive impairment in DM1. Our MRI findings in aDM1 and jDM1 patients support the hypothesis of a degenerative (premature aging) origin of the GM abnormalities and of developmental changes as the principal substrates of microstructural WM alterations in DM1.
Collapse
|
7
|
Wozniak JR, Mueller BA, Lim KO, Hemmy LS, Day JW. Tractography reveals diffuse white matter abnormalities in Myotonic Dystrophy Type 1. J Neurol Sci 2014; 341:73-8. [PMID: 24768314 DOI: 10.1016/j.jns.2014.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 11/25/2022]
Abstract
Cerebral involvement in Myotonic Dystrophy Type 1 (DM1) is well-established but not well characterized. This study applied new Diffusion Tensor Imaging (DTI) tractography to characterize white matter disturbance in adults with DM1. Forty-five participants with DM1 and 44 control participants had MRIs on a Siemens 3T TIM Trio scanner. Data were processed with TRActs Constrained by UnderLying Anatomy (TRACULA) and 7 tracts were evaluated. Bilateral disturbances in white matter integrity were seen in all tracts in participants with DM1 compared to controls. There were no right-left hemisphere differences. The resulting DTI metrics were correlated with cognitive functioning, particularly working memory and processing speed. Motor speed was not significantly correlated with white matter microstructural integrity and, thus, was not the core explanation for the working memory and processing speed findings. White matter integrity was correlated with important clinical variables including the muscular impairment rating scale (MIRS). CTG repeat length was moderately associated with white matter status in corticospinal tract and cingulum. Sleepiness (Epworth Sleepiness Scale) was moderately associated with white matter status in the superior longitudinal fasciculus and cingulum. Overall, the results add to an emerging literature showing widespread white matter disturbances in both early-onset and adult-onset DM1. Results suggest that further investigation of white matter pathology is warranted in DM1 and that non-invasive measures such as DTI have a potentially important clinical value in characterizing the status of individuals with DM1.
Collapse
Affiliation(s)
- Jeffrey R Wozniak
- Department of Psychiatry, University of Minnesota-Twin Cities, F256/2B West, 2450 Riverside Ave., Minneapolis, MN 55454, United States.
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota-Twin Cities, F256/2B West, 2450 Riverside Ave., Minneapolis, MN 55454, United States
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota-Twin Cities, F256/2B West, 2450 Riverside Ave., Minneapolis, MN 55454, United States
| | - Laura S Hemmy
- Department of Psychiatry, University of Minnesota-Twin Cities, F256/2B West, 2450 Riverside Ave., Minneapolis, MN 55454, United States
| | - John W Day
- Department of Neurology, Stanford University, 300 Pasteur Drive, Room A301, MC 5325, Stanford, CA 94305, United States
| |
Collapse
|
8
|
Abstract
Myotonic dystrophy (DM) encompasses two gene defects, DM1 (myotonic dystrophy type 1) being currently the sole disorder leading to a childhood form of the disease. As consequence of the non coding unstable CTG repeat expansion mutation, DM1 presents as an extremely wide and diverse clinical continuum ranging from antenatal to late adult forms, the complexity of the disease being reinforced by multisystemic involvement. The congenital form appears as the most severe end of the phenotypic spectrum and may include marked neonatal hypotonia, respiratory failure, facial diplegia, contractures, and mental retardation. Brain involvement is the hallmark of childhood-onset DM1, distinguished by a normal neonatal period, with learning difficulties as the main presenting symptom, resulting from various degrees of mental delay, psychopathological manifestations, speech defects, hypersomnolence, and fatigue. In contrast, muscle weakness remains usually moderate in childhood, limited to facial weakness, ptosis, and dysarthria, until a decline from the second decade. Orthopedic manifestations including kyphoscoliosis and equinovarus may require surgery. Other organs involvement includes frequent abdominal symptoms, whereas endocrine disturbance is rare. Symptomatic cardiac arrhythmia, mainly exercise-induced, can be observed. While current treatment is mainly symptomatic, future clinical trials are expected following significant progress in pathophysiology and the recent development of molecular therapy approaches.
Collapse
|
9
|
Sleep-Wake Cycle and Daytime Sleepiness in the Myotonic Dystrophies. JOURNAL OF NEURODEGENERATIVE DISEASES 2013; 2013:692026. [PMID: 26316996 PMCID: PMC4437277 DOI: 10.1155/2013/692026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/19/2013] [Accepted: 08/03/2013] [Indexed: 01/19/2023]
Abstract
Myotonic dystrophy is the most common type of muscular dystrophy in adults and is characterized by progressive myopathy, myotonia, and multiorgan involvement. Two genetically distinct entities have been identified, myotonic dystrophy type 1 (DM1 or Steinert's Disease) and myotonic dystrophy type 2 (DM2). Myotonic dystrophies are strongly associated with sleep dysfunction. Sleep disturbances in DM1 are common and include sleep-disordered breathing (SDB), periodic limb movements (PLMS), central hypersomnia, and REM sleep dysregulation (high REM density and narcoleptic-like phenotype). Interestingly, drowsiness in DM1 seems to be due to a central dysfunction of sleep-wake regulation more than SDB. To date, little is known regarding the occurrence of sleep disorders in DM2. SDB (obstructive and central apnoea), REM sleep without atonia, and restless legs syndrome have been described. Further polysomnographic, controlled studies are strongly needed, particularly in DM2, in order to clarify the role of sleep disorders in the myotonic dystrophies.
Collapse
|
10
|
Vlasova-St Louis I, Dickson AM, Bohjanen PR, Wilusz CJ. CELFish ways to modulate mRNA decay. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:695-707. [PMID: 23328451 DOI: 10.1016/j.bbagrm.2013.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 12/14/2022]
Abstract
The CELF family of RNA-binding proteins regulates many steps of mRNA metabolism. Although their best characterized function is in pre-mRNA splice site choice, CELF family members are also powerful modulators of mRNA decay. In this review we focus on the different modes of regulation that CELF proteins employ to mediate mRNA decay by binding to GU-rich elements. After starting with an overview of the importance of CELF proteins during development and disease pathogenesis, we then review the mRNA networks and cellular pathways these proteins regulate and the mechanisms by which they influence mRNA decay. Finally, we discuss how CELF protein activity is modulated during development and in response to cellular signals. We conclude by highlighting the priorities for new experiments in this field. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
11
|
Daniele A, De Rosa A, De Cristofaro M, Monaco ML, Masullo M, Porcile C, Capasso M, Tedeschi G, Oriani G, Di Costanzo A. Decreased concentration of adiponectin together with a selective reduction of its high molecular weight oligomers is involved in metabolic complications of myotonic dystrophy type 1. Eur J Endocrinol 2011; 165:969-75. [PMID: 21964963 DOI: 10.1530/eje-11-0537] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The hormone adiponectin exerts beneficial pleiotropic effects on biological and metabolic processes. Although a well-recognized insulin sensitizer, its characteristic has yet to be clearly defined. Myotonic dystrophy type 1 (DM1) is a rare genetic disorder that features muscle wasting and metabolic comorbidity, and patients have an increased risk of developing type 2 diabetes. We analyzed circulating levels of adiponectin and its oligomers to determine whether their expression correlates with metabolic alterations in DM1 patients. DESIGN AND METHODS We measured the anthropometric and biochemical features and three insulin resistance (IR) indices (homeostasis model assessment, quantitative insulin sensitivity check index, and McAuley) of 21 DM1 patients and of 82 age-, sex-, and weight-matched controls. In the blood samples of patients and controls, adiponectin levels were measured by ELISA, and its oligomers were characterized by using western blotting and gel filtration. The adiponectin gene was molecularly analyzed in patients. RESULTS DM1 patients had significantly higher body mass index, waist circumference, triglycerides (TGs), glucose, tumor necrosis factor α, and IR; conversely, they had significantly lower concentrations of total serum adiponectin with a selective, pronounced decrease of its high molecular weight (HMW) oligomers. There was a strong negative correlation between adiponectin and TGs in DM1 patients. CONCLUSIONS Our results endorse the hypothesis that decreased expression of adiponectin together with a selective reduction of its HMW oligomers contributes to the worsening of IR and its metabolic complications in DM1 patients. These findings suggest that adiponectin and HMW oligomers may serve as biomarkers and are promising therapeutic agents for IR and its consequences in DM1.
Collapse
Affiliation(s)
- Aurora Daniele
- CEINGE Biotecnologie Avanzate Scarl, Via Gaetano Salvatore 486, Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Minnerop M, Weber B, Schoene-Bake JC, Roeske S, Mirbach S, Anspach C, Schneider-Gold C, Betz RC, Helmstaedter C, Tittgemeyer M, Klockgether T, Kornblum C. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease. ACTA ACUST UNITED AC 2011; 134:3530-46. [PMID: 22131273 PMCID: PMC3235566 DOI: 10.1093/brain/awr299] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Myotonic dystrophy types 1 and 2 are progressive multisystemic disorders with potential brain involvement. We compared 22 myotonic dystrophy type 1 and 22 myotonic dystrophy type 2 clinically and neuropsychologically well-characterized patients and a corresponding healthy control group using structural brain magnetic resonance imaging at 3 T (T1/T2/diffusion-weighted). Voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics were applied for voxel-wise analysis of cerebral grey and white matter affection (Pcorrected < 0.05). We further examined the association of structural brain changes with clinical and neuropsychological data. White matter lesions rated visually were more prevalent and severe in myotonic dystrophy type 1 compared with controls, with frontal white matter most prominently affected in both disorders, and temporal lesions restricted to myotonic dystrophy type 1. Voxel-based morphometry analyses demonstrated extensive white matter involvement in all cerebral lobes, brainstem and corpus callosum in myotonic dystrophy types 1 and 2, while grey matter decrease (cortical areas, thalamus, putamen) was restricted to myotonic dystrophy type 1. Accordingly, we found more prominent white matter affection in myotonic dystrophy type 1 than myotonic dystrophy type 2 by diffusion tensor imaging. Association fibres throughout the whole brain, limbic system fibre tracts, the callosal body and projection fibres (e.g. internal/external capsules) were affected in myotonic dystrophy types 1 and 2. Central motor pathways were exclusively impaired in myotonic dystrophy type 1. We found mild executive and attentional deficits in our patients when neuropsychological tests were corrected for manual motor dysfunctioning. Regression analyses revealed associations of white matter affection with several clinical parameters in both disease entities, but not with neuropsychological performance. We showed that depressed mood and fatigue were more prominent in patients with myotonic dystrophy type 1 with less white matter affection (early disease stages), contrary to patients with myotonic dystrophy type 2. Thus, depression in myotonic dystrophies might be a reactive adjustment disorder rather than a direct consequence of structural brain damage. Associations of white matter affection with age/disease duration as well as patterns of cerebral water diffusion parameters pointed towards an ongoing process of myelin destruction and/or axonal loss in our cross-sectional study design. Our data suggest that both myotonic dystrophy types 1 and 2 are serious white matter diseases with prominent callosal body and limbic system affection. White matter changes dominated the extent of grey matter changes, which might argue against Wallerian degeneration as the major cause of white matter affection in myotonic dystrophies.
Collapse
Affiliation(s)
- Martina Minnerop
- Department of Neurology, University Hospital of Bonn, 53105 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Myotonic dystrophies (dystrophia myotonica, or DM) are inherited disorders characterized by myotonia and progressive muscle degeneration, which are variably associated with a multisystemic phenotype. To date, two types of myotonic dystrophy, type 1 (DM1) and type 2 (DM2), are known to exist; both are autosomal dominant disorders caused by expansion of an untranslated short tandem repeat DNA sequence (CTG)(n) and (CCTG)(n), respectively. These expanded repeats in DM1 and DM2 show different patterns of repeat-size instability. Phenotypes of DM1 and DM2 are similar but there are some important differences, most conspicuously in the severity of the disease (including the presence or absence of the congenital form), muscles primarily affected (distal versus proximal), involved muscle fiber types (type 1 versus type 2 fibers), and some associated multisystemic phenotypes. The pathogenic mechanism of DM1 and DM2 is thought to be mediated by the mutant RNA transcripts containing expanded CUG and CCUG repeats. Strong evidence supports the hypothesis that sequestration of muscle-blind like (MBNL) proteins by these expanded repeats leads to misregulated splicing of many gene transcripts in corroboration with the raised level of CUG-binding protein 1. However, additional mechanisms, such as changes in the chromatin structure involving CTCN-binding site and gene expression dysregulations, are emerging. Although treatment of DM1 and DM2 is currently limited to supportive therapies, new therapeutic approaches based on pathogenic mechanisms may become feasible in the near future.
Collapse
Affiliation(s)
- Tetsuo Ashizawa
- Department of Neurology, McKnight Brain Institute, The University of Texas Medical Branch, Galveston, TX, USA.
| | | |
Collapse
|
14
|
Romeo V, Pegoraro E, Ferrati C, Squarzanti F, Sorarù G, Palmieri A, Zucchetta P, Antunovic L, Bonifazi E, Novelli G, Trevisan CP, Ermani M, Manara R, Angelini C. Brain involvement in myotonic dystrophies: neuroimaging and neuropsychological comparative study in DM1 and DM2. J Neurol 2010; 257:1246-55. [PMID: 20221771 DOI: 10.1007/s00415-010-5498-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 01/16/2010] [Accepted: 02/04/2010] [Indexed: 01/18/2023]
Abstract
The objective of this study was to determine the degree of brain involvement in a cohort of myotonic dystrophy type 1 and type 2 (DM1, DM2) patients by brain studies and functional tests and to compare the results of the two groups. DM1, DM2 are multisystemic disorders due to polynucleotide expansions. Previous studies on brain involvement by neuroimaging and functional methods have led to contradictory results. Fifty molecularly defined DM1 patients and 14 DM2 patients, were recruited for the study. Age at recruitment, age at disease onset, disease duration and educational level were recorded. Neuromuscular assessment was done by MIRS. An extensive neuropsychological battery was performed in 48/50 DM1 and in a control group of 44 healthy matched subjects. Forty six of 50 DM1 and 12/14 DM2 underwent brain MRI; 21/50 DM1 and 9/14 DM2 underwent brain perfusion SPECT, with semiquantitative analysis of the results. MRI images were classified by ARWMC (age-related white matter changes) score, in order to quantify recurrence, localization and patterns of distribution of white matter hyperintense lesions (WMHLs) in our two cohorts. MRI results were matched to SPECT and to neuropsychological results. Thirty-seven of 46 DM1 and 10/12 DM2 had abnormal MRI imaging, showing scattered supratentorial, bilateral, symmetrical focal or diffuse WMHLs. A typical temporo-insular diffuse subcortical pattern was seen in DM1 subjects only, with no correlation with cognitive involvement. Major cognitive involvement was seen in the case of diffuse frontal lesions. A relationship with CTG expansion size was documented for DM1 subjects. SPECT showed minimal hypoperfusion in the posterior cortex planes in DM1 and, to a lesser extent, in DM2. Very mild degrees of involvement in the DM2 cohort were seen. Neuroimaging and functional investigations confirmed a more severe involvement of the brain in DM1 compared to DM2. A temporo-insular diffuse lesional pattern, specific for DM1, was found on MRI. This confirms greater expansion size as a risk factor for more extensive brain involvement in DM1.
Collapse
Affiliation(s)
- Vincenzo Romeo
- Department of Neurosciences, School of Medicine, University of Padova, via Giustiniani, 5, 35128 Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|