1
|
Rosow L, Lomen-Hoerth C. Treatment and Management of Adult Motor Neuron Diseases. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Karpukhina A, Tiukacheva E, Dib C, Vassetzky YS. Control of DUX4 Expression in Facioscapulohumeral Muscular Dystrophy and Cancer. Trends Mol Med 2021; 27:588-601. [PMID: 33863674 DOI: 10.1016/j.molmed.2021.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
DUX4, a gene encoding a transcription factor involved in early embryogenesis, is located within the D4Z4 subtelomeric repeat on chromosome 4q35. In most healthy somatic tissues, DUX4 is heavily repressed by multiple genetic and epigenetic mechanisms, and its aberrant expression is linked to facioscapulohumeral muscular dystrophy (FSHD) where it has been extensively studied. Recently, DUX4 expression has been implicated in oncogenesis, although this is much less explored. In this review, we discuss multiple levels of control of DUX4 expression, including enhancer-promoter interactions, DNA methylation, histone modifications, noncoding RNAs, and telomere positioning effect. We also connect disparate data on intrachromosomal contacts involving DUX4 and emphasize the feedback loops in DUX4 regulation. Finally, we bridge data on DUX4 in FSHD and cancer and discuss prospective approaches for future FSHD therapies and the potential outcomes of DUX4 inhibition in cancer.
Collapse
Affiliation(s)
- Anna Karpukhina
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France; Koltzov Institute of Developmental Biology, Moscow 117334, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Eugenia Tiukacheva
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France
| | - Carla Dib
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France; Stanford University School of Medicine, Stanford, CA 94305-510, USA
| | - Yegor S Vassetzky
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France; Koltzov Institute of Developmental Biology, Moscow 117334, Russia.
| |
Collapse
|
3
|
Bou Saada Y, Zakharova V, Chernyak B, Dib C, Carnac G, Dokudovskaya S, Vassetzky YS. Control of DNA integrity in skeletal muscle under physiological and pathological conditions. Cell Mol Life Sci 2017; 74:3439-3449. [PMID: 28444416 PMCID: PMC11107590 DOI: 10.1007/s00018-017-2530-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/03/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
Skeletal muscle is a highly oxygen-consuming tissue that ensures body support and movement, as well as nutrient and temperature regulation. DNA damage induced by reactive oxygen species is present in muscles and tends to accumulate with age. Here, we present a summary of data obtained on DNA damage and its implication in muscle homeostasis, myogenic differentiation and neuromuscular disorders. Controlled and transient DNA damage appears to be essential for muscular homeostasis and differentiation while uncontrolled and chronic DNA damage negatively affects muscle health.
Collapse
Affiliation(s)
- Yara Bou Saada
- UMR 8126, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut de Cancérologie Gustave-Roussy, 94805, Villejuif, France
| | - Vlada Zakharova
- UMR 8126, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut de Cancérologie Gustave-Roussy, 94805, Villejuif, France
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 117334, Russia
| | - Boris Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 117334, Russia
| | - Carla Dib
- UMR 8126, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut de Cancérologie Gustave-Roussy, 94805, Villejuif, France
| | - Gilles Carnac
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, 34295, Montpellier Cedex 5, France
| | - Svetlana Dokudovskaya
- UMR 8126, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut de Cancérologie Gustave-Roussy, 94805, Villejuif, France
| | - Yegor S Vassetzky
- UMR 8126, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut de Cancérologie Gustave-Roussy, 94805, Villejuif, France.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 117334, Russia.
- Koltzov Institute of Developmental Biology, Moscow, 117334, Russia.
| |
Collapse
|
4
|
Gatica LV, Rosa AL. A complex interplay of genetic and epigenetic events leads to abnormal expression of the DUX4 gene in facioscapulohumeral muscular dystrophy. Neuromuscul Disord 2016; 26:844-852. [PMID: 27816329 DOI: 10.1016/j.nmd.2016.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 12/16/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a prevalent inherited human myopathy, develops following a complex interplay of genetic and epigenetic events. FSHD1, the more frequent genetic form, is associated with: (1) deletion of an integral number of 3.3 Kb (D4Z4) repeated elements at the chromosomal region 4q35, (2) a specific 4q35 subtelomeric haplotype denominated 4qA, and (3) decreased methylation of cytosines at the 4q35-linked D4Z4 units. FSHD2 is most often caused by mutations at the SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain 1) gene, on chromosome 18p11.32. FSHD2 individuals also carry the 4qA haplotype and decreased methylation of D4Z4 cytosines. Each D4Z4 unit contains a copy of the retrotransposed gene DUX4 (double homeobox containing protein 4). DUX4 gene functionality was questioned in the past because of its pseudogene-like structure, its location on repetitive telomeric DNA sequences (i.e. junk DNA), and the elusive nature of both the DUX4 transcript and the encoded protein, DUX4. It is now known that DUX4 is a nuclear-located transcription factor, which is normally expressed in germinal tissues. Aberrant DUX4 expression triggers a deregulation cascade inhibiting muscle differentiation, sensitizing cells to oxidative stress, and inducing muscle atrophy. A unifying pathogenic model for FSHD emerged with the recognition that the FSHD-permissive 4qA haplotype corresponds to a polyadenylation signal that stabilizes the DUX4 mRNA, allowing the toxic protein DUX4 to be expressed. This working hypothesis for FSHD pathogenesis highlights the intrinsic epigenetic nature of the molecular mechanism underlying FSHD as well as the pathogenic pathway connecting FSHD1 and FSHD2. Pharmacological control of either DUX4 gene expression or the activity of the DUX4 protein constitutes current potential rational therapeutic approaches to treat FSHD.
Collapse
Affiliation(s)
| | - Alberto Luis Rosa
- Laboratorio de Biología Celular y Molecular, Fundación Allende, Argentina; Servicio de Genética Médica y Laboratorio Diagnóstico Biología Molecular, Sanatorio Allende, Córdoba, Argentina; Laboratorio de Genética y Biología Molecular, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina.
| |
Collapse
|
5
|
Bou Saada Y, Dib C, Dmitriev P, Hamade A, Carnac G, Laoudj-Chenivesse D, Lipinski M, Vassetzky YS. Facioscapulohumeral dystrophy myoblasts efficiently repair moderate levels of oxidative DNA damage. Histochem Cell Biol 2016; 145:475-83. [PMID: 26860865 DOI: 10.1007/s00418-016-1410-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2016] [Indexed: 10/22/2022]
Abstract
Facioscapulohumeral dystrophy (FSHD) is a progressive muscular dystrophy linked to a deletion of a subset of D4Z4 macrosatellite repeats accompanied by a chromatin relaxation of the D4Z4 array on chromosome 4q. In vitro, FSHD primary myoblasts show altered expression of oxidative-related genes and are more susceptible to oxidative stress. Double homeobox 4 (DUX4) gene, encoded within each D4Z4 unit, is normally transcriptionally silenced but is found aberrantly expressed in skeletal muscles of FSHD patients. Its expression leads to a deregulation of DUX4 target genes including those implicated in redox balance. Here, we assessed DNA repair efficiency of oxidative DNA damage in FSHD myoblasts and DUX4-transfected myoblasts. We have shown that the DNA repair activity is altered neither in FSHD myoblasts nor in immortalized human myoblasts transiently expressing DUX4. DNA damage caused by moderate doses of an oxidant is efficiently repaired while FSHD myoblasts exposed for 24 h to high levels of oxidative stress accumulated more DNA damage than normal myoblasts, suggesting that FSHD myoblasts remain more vulnerable to oxidative stress at high doses of oxidants.
Collapse
Affiliation(s)
- Yara Bou Saada
- UMR 8126, CNRS, Univ. Paris-Sud, Institut de Cancérologie Gustave-Roussy, Université Paris Saclay, 94805, Villejuif, France
| | - Carla Dib
- UMR 8126, CNRS, Univ. Paris-Sud, Institut de Cancérologie Gustave-Roussy, Université Paris Saclay, 94805, Villejuif, France
| | - Petr Dmitriev
- UMR 8126, CNRS, Univ. Paris-Sud, Institut de Cancérologie Gustave-Roussy, Université Paris Saclay, 94805, Villejuif, France
| | - Aline Hamade
- ER030-EDST, Department of Life and Earth Sciences, Faculty of Sciences II, Lebanese University, Beirut, Lebanon
| | - Gilles Carnac
- INSERM U-1046, 371 Avenue du Doyen Gaston Giraud, 34295, Montpellier, France
| | | | - Marc Lipinski
- UMR 8126, CNRS, Univ. Paris-Sud, Institut de Cancérologie Gustave-Roussy, Université Paris Saclay, 94805, Villejuif, France
| | - Yegor S Vassetzky
- UMR 8126, CNRS, Univ. Paris-Sud, Institut de Cancérologie Gustave-Roussy, Université Paris Saclay, 94805, Villejuif, France. .,Koltzov Institute of Developmental Biology, Moscow, 117334, Russia.
| |
Collapse
|
6
|
Ansseau E, Eidahl JO, Lancelot C, Tassin A, Matteotti C, Yip C, Liu J, Leroy B, Hubeau C, Gerbaux C, Cloet S, Wauters A, Zorbo S, Meyer P, Pirson I, Laoudj-Chenivesse D, Wattiez R, Harper SQ, Belayew A, Coppée F. Homologous Transcription Factors DUX4 and DUX4c Associate with Cytoplasmic Proteins during Muscle Differentiation. PLoS One 2016; 11:e0146893. [PMID: 26816005 PMCID: PMC4729438 DOI: 10.1371/journal.pone.0146893] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 12/24/2015] [Indexed: 12/26/2022] Open
Abstract
Hundreds of double homeobox (DUX) genes map within 3.3-kb repeated elements dispersed in the human genome and encode DNA-binding proteins. Among these, we identified DUX4, a potent transcription factor that causes facioscapulohumeral muscular dystrophy (FSHD). In the present study, we performed yeast two-hybrid screens and protein co-purifications with HaloTag-DUX fusions or GST-DUX4 pull-down to identify protein partners of DUX4, DUX4c (which is identical to DUX4 except for the end of the carboxyl terminal domain) and DUX1 (which is limited to the double homeodomain). Unexpectedly, we identified and validated (by co-immunoprecipitation, GST pull-down, co-immunofluorescence and in situ Proximal Ligation Assay) the interaction of DUX4, DUX4c and DUX1 with type III intermediate filament protein desmin in the cytoplasm and at the nuclear periphery. Desmin filaments link adjacent sarcomere at the Z-discs, connect them to sarcolemma proteins and interact with mitochondria. These intermediate filament also contact the nuclear lamina and contribute to positioning of the nuclei. Another Z-disc protein, LMCD1 that contains a LIM domain was also validated as a DUX4 partner. The functionality of DUX4 or DUX4c interactions with cytoplasmic proteins is underscored by the cytoplasmic detection of DUX4/DUX4c upon myoblast fusion. In addition, we identified and validated (by co-immunoprecipitation, co-immunofluorescence and in situ Proximal Ligation Assay) as DUX4/4c partners several RNA-binding proteins such as C1QBP, SRSF9, RBM3, FUS/TLS and SFPQ that are involved in mRNA splicing and translation. FUS and SFPQ are nuclear proteins, however their cytoplasmic translocation was reported in neuronal cells where they associated with ribonucleoparticles (RNPs). Several other validated or identified DUX4/DUX4c partners are also contained in mRNP granules, and the co-localizations with cytoplasmic DAPI-positive spots is in keeping with such an association. Large muscle RNPs were recently shown to exit the nucleus via a novel mechanism of nuclear envelope budding. Following DUX4 or DUX4c overexpression in muscle cell cultures, we observed their association with similar nuclear buds. In conclusion, our study demonstrated unexpected interactions of DUX4/4c with cytoplasmic proteins playing major roles during muscle differentiation. Further investigations are on-going to evaluate whether these interactions play roles during muscle regeneration as previously suggested for DUX4c.
Collapse
Affiliation(s)
- Eugénie Ansseau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Jocelyn O. Eidahl
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Céline Lancelot
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Christel Matteotti
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Cassandre Yip
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Jian Liu
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Baptiste Leroy
- Laboratory of Proteomic and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Céline Hubeau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Cécile Gerbaux
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Samuel Cloet
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Armelle Wauters
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Sabrina Zorbo
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Pierre Meyer
- Pediatric Department, CHRU Montpellier, Montpellier, France
| | - Isabelle Pirson
- I.R.I.B.H.M., Free University of Brussels, Brussels, Belgium
| | | | - Ruddy Wattiez
- Laboratory of Proteomic and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Scott Q. Harper
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Frédérique Coppée
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
- * E-mail:
| |
Collapse
|
7
|
Erokhin M, Vassetzky Y, Georgiev P, Chetverina D. Eukaryotic enhancers: common features, regulation, and participation in diseases. Cell Mol Life Sci 2015; 72:2361-75. [PMID: 25715743 PMCID: PMC11114076 DOI: 10.1007/s00018-015-1871-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/07/2015] [Accepted: 02/20/2015] [Indexed: 01/01/2023]
Abstract
Enhancers are positive DNA regulatory sequences controlling temporal and tissue-specific gene expression. These elements act independently of their orientation and distance relative to the promoters of target genes. Enhancers act through a variety of transcription factors that ensure their correct match with target promoters and consequent gene activation. There is a growing body of evidence on association of enhancers with transcription factors, co-activators, histone chromatin marks, and lncRNAs. Alterations in enhancers lead to misregulation of gene expression, causing a number of human diseases. In this review, we focus on the common characteristics of enhancers required for transcription stimulation.
Collapse
Affiliation(s)
- Maksim Erokhin
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334 Russia
- LIA 1066, Laboratoire Franco-Russe de recherche en oncologie, 119334 Moscow, Russia
| | - Yegor Vassetzky
- LIA 1066, Laboratoire Franco-Russe de recherche en oncologie, 119334 Moscow, Russia
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334 Russia
- LIA 1066, Laboratoire Franco-Russe de recherche en oncologie, 119334 Moscow, Russia
| | - Darya Chetverina
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334 Russia
| |
Collapse
|
8
|
Kirby TJ, Chaillou T, McCarthy JJ. The role of microRNAs in skeletal muscle health and disease. Front Biosci (Landmark Ed) 2015; 20:37-77. [PMID: 25553440 DOI: 10.2741/4298] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last decade non-coding RNAs have emerged as importance regulators of gene expression. In particular, microRNAs are a class of small RNAs of ∼ 22 nucleotides that repress gene expression through a post-transcriptional mechanism. MicroRNAs have been shown to be involved in a broader range of biological processes, both physiological and pathological, including myogenesis, adaptation to exercise and various myopathies. The purpose of this review is to provide a comprehensive summary of what is currently known about the role of microRNAs in skeletal muscle health and disease.
Collapse
Affiliation(s)
- Tyler J Kirby
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Thomas Chaillou
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
9
|
DNA polymorphism and epigenetic marks modulate the affinity of a scaffold/matrix attachment region to the nuclear matrix. Eur J Hum Genet 2014; 22:1117-23. [PMID: 24448543 DOI: 10.1038/ejhg.2013.306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 12/05/2013] [Accepted: 12/11/2013] [Indexed: 12/22/2022] Open
Abstract
Mechanisms that regulate attachment of the scaffold/matrix attachment regions (S/MARs) to the nuclear matrix remain largely unknown. We have studied the effect of simple sequence length polymorphism (SSLP), DNA methylation and chromatin organization in an S/MAR implicated in facioscapulohumeral dystrophy (FSHD), a hereditary disease linked to a partial deletion of the D4Z4 repeat array on chromosome 4q. This FSHD-related nuclear matrix attachment region (FR-MAR) loses its efficiency in myoblasts from FSHD patients. Three criteria were found to be important for high-affinity interaction between the FR-MAR and the nuclear matrix: the presence of a specific SSLP haplotype in chromosomal DNA, the methylation of one specific CpG within the FR-MAR and the absence of histone H3 acetylated on lysine 9 in the relevant chromatin fragment.
Collapse
|
10
|
Dmitriev P, Stankevicins L, Ansseau E, Petrov A, Barat A, Dessen P, Robert T, Turki A, Lazar V, Labourer E, Belayew A, Carnac G, Laoudj-Chenivesse D, Lipinski M, Vassetzky YS. Defective regulation of microRNA target genes in myoblasts from facioscapulohumeral dystrophy patients. J Biol Chem 2013; 288:34989-5002. [PMID: 24145033 DOI: 10.1074/jbc.m113.504522] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant hereditary neuromuscular disorder linked to the deletion of an integral number of 3.3-kb-long macrosatellite repeats (D4Z4) within the subtelomeric region of chromosome 4q. Most genes identified in this region are overexpressed in FSHD myoblasts, including the double homeobox genes DUX4 and DUX4c. We have carried out a simultaneous miRNome/transcriptome analysis of FSHD and control primary myoblasts. Of 365 microRNAs (miRNAs) analyzed in this study, 29 were found to be differentially expressed between FSHD and normal myoblasts. Twenty-one microRNAs (miR-1, miR-7, miR-15a, miR-22, miR-30e, miR-32, miR-107, miR-133a, miR-133b, miR-139, miR-152, miR-206, miR-223, miR-302b, miR-331, miR-362, miR-365, miR-382, miR-496, miR-532, miR-654, and miR-660) were up-regulated, and eight were down-regulated (miR-15b, miR-20b, miR-21, miR-25, miR-100, miR-155, miR-345, and miR-594). Twelve of the miRNAs up-regulated in FHSD were also up-regulated in the cells ectopically expressing DUX4c, suggesting that this gene could regulate miRNA gene transcription. The myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206 were highly expressed in FSHD myoblasts, which nonetheless did not prematurely enter myogenic differentiation. This could be accounted for by the fact that in FSHD myoblasts, functionally important target genes, including cell cycle, DNA damage, and ubiquitination-related genes, escape myogenic microRNA-induced repression.
Collapse
Affiliation(s)
- Petr Dmitriev
- From UMR 8126, Université Paris-Sud, CNRS, Institut de Cancérologie Gustave-Roussy, F-94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Multiple protein domains contribute to nuclear import and cell toxicity of DUX4, a candidate pathogenic protein for facioscapulohumeral muscular dystrophy. PLoS One 2013; 8:e75614. [PMID: 24116060 PMCID: PMC3792938 DOI: 10.1371/journal.pone.0075614] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/15/2013] [Indexed: 12/16/2022] Open
Abstract
DUX4 (Double Homeobox Protein 4) is a nuclear transcription factor encoded at each D4Z4 unit of a tandem-repeat array at human chromosome 4q35. DUX4 constitutes a major candidate pathogenic protein for facioscapulohumeral muscular dystrophy (FSHD), the third most common form of inherited myopathy. A low-level expression of DUX4 compromises cell differentiation in myoblasts and its overexpression induces apoptosis in cultured cells and living organisms. In this work we explore potential molecular determinants of DUX4 mediating nuclear import and cell toxicity. Deletion of the hypothetical monopartite nuclear localization sequences RRRR23, RRKR98 and RRAR148 (i.e. NLS1, NLS2 and NLS3, respectively) only partially delocalizes DUX4 from the cell nuclei. Nuclear entrance guided by NLS1, NLS2 and NLS3 does not follow the classical nuclear import pathway mediated by α/β importins. NLS and homeodomain mutants from DUX4 are dramatically less cell-toxic than the wild type molecule, independently of their subcellular localization. A triple ΔNLS1-2-3 deletion mutant is still partially localized in the nuclei, indicating that additional sequences in DUX4 contribute to nuclear import. Deletion of ≥111 amino acids from the C-terminal of DUX4, on a ΔNLS1-2-3 background, almost completely re-localizes DUX4 to the cytoplasm, indicating that the C-ter tail contributes to subcellular trafficking of DUX4. Also, C-terminal deletion mutants of DUX4 on a NLS wild type background are less toxic than wild type DUX4. Results reported here indicate that DUX4 possesses redundant mechanisms to assure nuclear entrance and that its various transcription-factor associated domains play an essential role in cell toxicity.
Collapse
|
12
|
Pakula A, Schneider J, Janke J, Zacharias U, Schulz H, Hübner N, Mähler A, Spuler A, Spuler S, Carlier P, Boschmann M. Altered expression of cyclin A 1 in muscle of patients with facioscapulohumeral muscle dystrophy (FSHD-1). PLoS One 2013; 8:e73573. [PMID: 24019929 PMCID: PMC3760810 DOI: 10.1371/journal.pone.0073573] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 07/24/2013] [Indexed: 11/19/2022] Open
Abstract
Objectives Cyclin A1 regulates cell cycle activity and proliferation in somatic and germ-line cells. Its expression increases in G1/S phase and reaches a maximum in G2 and M phases. Altered cyclin A1 expression might contribute to clinical symptoms in facioscapulohumeral muscular dystrophy (FSHD). Methods Muscle biopsies were taken from the Vastus lateralis muscle for cDNA microarray, RT-PCR, immunohistochemistry and Western blot analyses to assess RNA and protein expression of cyclin A1 in human muscle cell lines and muscle tissue. Muscle fibers diameter was calculated on cryosections to test for hypertrophy. Results cDNA microarray data showed specifically elevated cyclin A1 levels in FSHD vs. other muscular disorders such as caveolinopathy, dysferlinopathy, four and a half LIM domains protein 1 deficiency and healthy controls. Data could be confirmed with RT-PCR and Western blot analysis showing up-regulated cyclin A1 levels also at protein level. We found also clear signs of hypertrophy within the Vastus lateralis muscle in FSHD-1 patients. Conclusions In most somatic human cell lines, cyclin A1 levels are low. Overexpression of cyclin A1 in FSHD indicates cell cycle dysregulation in FSHD and might contribute to clinical symptoms of this disease.
Collapse
Affiliation(s)
- Anna Pakula
- Experimental and Clinical Research Center, a joint co-operation of Charité University Medicine and Max-Delbrück Center for Molecular Medicine, Franz-Volhard Center for Clinical Research, Berlin, Germany
| | - Joanna Schneider
- Experimental and Clinical Research Center, a joint co-operation of Charité University Medicine and Max-Delbrück Center for Molecular Medicine, Muscle Research Unit, Berlin, Germany
| | - Jürgen Janke
- Max-Delbrück Center for Molecular Medicine, Department of Molecular Epidemiology, Berlin, Germany
| | - Ute Zacharias
- Experimental and Clinical Research Center, a joint co-operation of Charité University Medicine and Max-Delbrück Center for Molecular Medicine, Muscle Research Unit, Berlin, Germany
| | - Herbert Schulz
- Max-Delbrück Center for Molecular Medicine, Department of Experimental Genetics of Cardiovascular Diseases, Berlin, Germany
| | - Norbert Hübner
- Max-Delbrück Center for Molecular Medicine, Department of Experimental Genetics of Cardiovascular Diseases, Berlin, Germany
| | - Anja Mähler
- Experimental and Clinical Research Center, a joint co-operation of Charité University Medicine and Max-Delbrück Center for Molecular Medicine, Franz-Volhard Center for Clinical Research, Berlin, Germany
| | - Andreas Spuler
- Klinik für Neurochirurgie, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Simone Spuler
- Experimental and Clinical Research Center, a joint co-operation of Charité University Medicine and Max-Delbrück Center for Molecular Medicine, Muscle Research Unit, Berlin, Germany
| | - Pierre Carlier
- Institut de Myologie, AIM-CEA NMR Laboratory, Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France
| | - Michael Boschmann
- Experimental and Clinical Research Center, a joint co-operation of Charité University Medicine and Max-Delbrück Center for Molecular Medicine, Franz-Volhard Center for Clinical Research, Berlin, Germany
- * E-mail:
| |
Collapse
|
13
|
Caruso N, Herberth B, Bartoli M, Puppo F, Dumonceaux J, Zimmermann A, Denadai S, Lebossé M, Roche S, Geng L, Magdinier F, Attarian S, Bernard R, Maina F, Levy N, Helmbacher F. Deregulation of the protocadherin gene FAT1 alters muscle shapes: implications for the pathogenesis of facioscapulohumeral dystrophy. PLoS Genet 2013; 9:e1003550. [PMID: 23785297 PMCID: PMC3681729 DOI: 10.1371/journal.pgen.1003550] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 04/23/2013] [Indexed: 01/01/2023] Open
Abstract
Generation of skeletal muscles with forms adapted to their function is essential for normal movement. Muscle shape is patterned by the coordinated polarity of collectively migrating myoblasts. Constitutive inactivation of the protocadherin gene Fat1 uncoupled individual myoblast polarity within chains, altering the shape of selective groups of muscles in the shoulder and face. These shape abnormalities were followed by early onset regionalised muscle defects in adult Fat1-deficient mice. Tissue-specific ablation of Fat1 driven by Pax3-cre reproduced muscle shape defects in limb but not face muscles, indicating a cell-autonomous contribution of Fat1 in migrating muscle precursors. Strikingly, the topography of muscle abnormalities caused by Fat1 loss-of-function resembles that of human patients with facioscapulohumeral dystrophy (FSHD). FAT1 lies near the critical locus involved in causing FSHD, and Fat1 mutant mice also show retinal vasculopathy, mimicking another symptom of FSHD, and showed abnormal inner ear patterning, predictive of deafness, reminiscent of another burden of FSHD. Muscle-specific reduction of FAT1 expression and promoter silencing was observed in foetal FSHD1 cases. CGH array-based studies identified deletion polymorphisms within a putative regulatory enhancer of FAT1, predictive of tissue-specific depletion of FAT1 expression, which preferentially segregate with FSHD. Our study identifies FAT1 as a critical determinant of muscle form, misregulation of which associates with FSHD.
Collapse
Affiliation(s)
- Nathalie Caruso
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Balàzs Herberth
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Marc Bartoli
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
| | - Francesca Puppo
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
| | - Julie Dumonceaux
- INSERM U974, UMR 7215 CNRS, Institut de Myologie, UM 76 Université Pierre et Marie Curie, Paris, France
| | - Angela Zimmermann
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Simon Denadai
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Marie Lebossé
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Stephane Roche
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
| | - Linda Geng
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Frederique Magdinier
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
| | - Shahram Attarian
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
- AP-HM, Neurologie, maladies neuro-musculaires, Hôpital de la Timone, Marseille, France
| | - Rafaelle Bernard
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
- AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, Marseille, France
| | - Flavio Maina
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Nicolas Levy
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
- AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, Marseille, France
| | - Françoise Helmbacher
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| |
Collapse
|
14
|
Tassin A, Laoudj-Chenivesse D, Vanderplanck C, Barro M, Charron S, Ansseau E, Chen YW, Mercier J, Coppée F, Belayew A. DUX4 expression in FSHD muscle cells: how could such a rare protein cause a myopathy? J Cell Mol Med 2012. [PMID: 23206257 PMCID: PMC3823138 DOI: 10.1111/j.1582-4934.2012.01647.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most frequent hereditary muscle disorders. It is linked to contractions of the D4Z4 repeat array in 4q35. We have characterized the double homeobox 4 (DUX4) gene in D4Z4 and its mRNA transcribed from the distal D4Z4 unit to a polyadenylation signal in the flanking pLAM region. It encodes a transcription factor expressed in FSHD but not healthy muscle cells which initiates a gene deregulation cascade causing differentiation defects, muscle atrophy and oxidative stress. PITX1 was the first identified DUX4 target and encodes a transcription factor involved in muscle atrophy. DUX4 was found expressed in only 1/1000 FSHD myoblasts. We have now shown it was induced upon differentiation and detected in about 1/200 myotube nuclei. The DUX4 and PITX1 proteins presented staining gradients in consecutive myonuclei which suggested a diffusion as known for other muscle nuclear proteins. Both protein half-lifes were regulated by the ubiquitin-proteasome pathway. In addition, we could immunodetect the DUX4 protein in FSHD muscle extracts. As a model, we propose the DUX4 gene is stochastically activated in a small number of FSHD myonuclei. The resulting mRNAs are translated in the cytoplasm around an activated nucleus and the DUX4 proteins diffuse to adjacent nuclei where they activate target genes such as PITX1. The PITX1 protein can further diffuse to additional myonuclei and expand the transcriptional deregulation cascade initiated by DUX4. Together the diffusion and the deregulation cascade would explain how a rare protein could cause the muscle defects observed in FSHD.
Collapse
Affiliation(s)
- Alexandra Tassin
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Dmitriev P, Petrov A, Ansseau E, Stankevicins L, Charron S, Kim E, Bos TJ, Robert T, Turki A, Coppée F, Belayew A, Lazar V, Carnac G, Laoudj D, Lipinski M, Vassetzky YS. The Krüppel-like factor 15 as a molecular link between myogenic factors and a chromosome 4q transcriptional enhancer implicated in facioscapulohumeral dystrophy. J Biol Chem 2011; 286:44620-31. [PMID: 21937448 DOI: 10.1074/jbc.m111.254052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a dominant hereditary disease with a prevalence of 7 per 100,000 individuals, is associated with a partial deletion in the subtelomeric D4Z4 repeat array on chromosome 4q. The D4Z4 repeat contains a strong transcriptional enhancer that activates promoters of several FSHD-related genes. We report here that the enhancer within the D4Z4 repeat binds the Krüppel-like factor KLF15. KLF15 was found to be up-regulated during myogenic differentiation induced by serum starvation or by overexpression of the myogenic differentiation factor MYOD. When overexpressed, KLF15 activated the D4Z4 enhancer and led to overexpression of DUX4c (Double homeobox 4, centromeric) and FRG2 (FSHD region gene 2) genes, whereas its silencing caused inactivation of the D4Z4 enhancer. In immortalized human myoblasts, the D4Z4 enhancer was activated by the myogenic factor MYOD, an effect that was abolished upon KLF15 silencing or when the KLF15-binding sites within the D4Z4 enhancer were mutated, indicating that the myogenesis-related activation of the D4Z4 enhancer was mediated by KLF15. KLF15 and several myogenesis-related factors were found to be expressed at higher levels in myoblasts, myotubes, and muscle biopsies from FSHD patients than in healthy controls. We propose that KLF15 serves as a molecular link between myogenic factors and the activity of the D4Z4 enhancer, and it thus contributes to the overexpression of the DUX4c and FRG2 genes during normal myogenic differentiation and in FSHD.
Collapse
Affiliation(s)
- Petr Dmitriev
- CNRS UMR8126, Université Paris-Sud 11, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
van der Maarel SM, Tawil R, Tapscott SJ. Facioscapulohumeral muscular dystrophy and DUX4: breaking the silence. Trends Mol Med 2011; 17:252-8. [PMID: 21288772 PMCID: PMC3092836 DOI: 10.1016/j.molmed.2011.01.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/14/2010] [Accepted: 01/03/2011] [Indexed: 01/10/2023]
Abstract
Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) has an unusual pathogenic mechanism. FSHD is caused by deletion of a subset of D4Z4 macrosatellite repeat units in the subtelomere of chromosome 4q. Recent studies provide compelling evidence that a retrotransposed gene in the D4Z4 repeat, DUX4, is expressed in the human germline and then epigenetically silenced in somatic tissues. In FSHD, the combination of inefficient chromatin silencing of the D4Z4 repeat and polymorphisms on the FSHD-permissive alleles that stabilize the DUX4 mRNAs emanating from the repeat result in inappropriate DUX4 protein expression in muscle cells. FSHD is thereby the first example of a human disease caused by the inefficient repression of a retrogene in a macrosatellite repeat array.
Collapse
Affiliation(s)
- Silvère M van der Maarel
- Leiden University Medical Center, Department of Human Genetics, Albinusdreef 2, 2333 ZA, Leiden, Netherlands. Phone: +31 71 526 9480, Fax: +31 71 526 8285
| | - Rabi Tawil
- University of Rochester Medical Center, Department of Neurology, POBox 673, 601 Elmwood Avenue, Rochester, NY 14642 USA. Phone: 1-585-275-6372, FAX: 1-585-273-1255
| | - Stephen J. Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109 USA. Phone: 1-206-667-4499, FAX 1-206-667-6524
| |
Collapse
|
18
|
Abstract
The number of known mutations in human nuclear genes, underlying or associated with human inherited disease, has now exceeded 100,000 in more than 3700 different genes (Human Gene Mutation Database). However, for a variety of reasons, this figure is likely to represent only a small proportion of the clinically relevant genetic variants that remain to be identified in the human genome (the 'mutome'). With the advent of next-generation sequencing, we are currently witnessing a revolution in medical genetics. In particular, whole-genome sequencing (WGS) has the potential to identify all disease-causing or disease-associated DNA variants in a given individual. Here, we use examples of recent advances in our understanding of mutational/pathogenic mechanisms to guide our thinking about possible locations outwith gene-coding sequences for those disease-causing or disease-associated variants that are likely so often to have been overlooked because of the inadequacy of current mutation screening protocols. Such considerations are important not only for improving mutation-screening strategies but also for enhancing the interpretation of findings derived from genome-wide association studies, whole-exome sequencing and WGS. An improved understanding of the human mutome will not only lead to the development of improved diagnostic testing procedures but should also improve our understanding of human genome biology.
Collapse
Affiliation(s)
- J M Chen
- Etablissement Français du Sang (EFS) - Bretagne, Brest, France.
| | | | | |
Collapse
|
19
|
Jacqueline M. The identification of Landouzy-Dejerine disease: an investigative history. Neuromuscul Disord 2011; 21:291-7. [PMID: 21316966 DOI: 10.1016/j.nmd.2011.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Pearson CE. FSHD: a repeat contraction disease finally ready to expand (our understanding of its pathogenesis). PLoS Genet 2010; 6:e1001180. [PMID: 21060814 PMCID: PMC2965764 DOI: 10.1371/journal.pgen.1001180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
21
|
Crutchley JL, Wang XQD, Ferraiuolo MA, Dostie J. Chromatin conformation signatures: ideal human disease biomarkers? Biomark Med 2010; 4:611-29. [PMID: 20701449 DOI: 10.2217/bmm.10.68] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human health is related to information stored in our genetic code, which is highly variable even amongst healthy individuals. Gene expression is orchestrated by numerous control elements that may be located anywhere in the genome, and can regulate distal genes by physically interacting with them. These DNA contacts can be mapped with the chromosome conformation capture and related technologies. Several studies now demonstrate that gene expression patterns are associated with specific chromatin structures, and may therefore correlate with chromatin conformation signatures. Here, we present an overview of genome organization and its relationship with gene expression. We also summarize how chromatin conformation signatures can be identified and discuss why they might represent ideal biomarkers of human disease in such genetically diverse populations.
Collapse
Affiliation(s)
- Jennifer L Crutchley
- Department of Biochemistry, McGill University, 3655 Promenade Sir-William-Osler, Room 814, Montréal, Québec, Canada
| | - Xue Qing David Wang
- Department of Biochemistry, McGill University, 3655 Promenade Sir-William-Osler, Room 814, Montréal, Québec, Canada
| | - Maria A Ferraiuolo
- Department of Biochemistry, McGill University, 3655 Promenade Sir-William-Osler, Room 814, Montréal, Québec, Canada
| | | |
Collapse
|
22
|
Kumar RP, Senthilkumar R, Singh V, Mishra RK. Repeat performance: how do genome packaging and regulation depend on simple sequence repeats? Bioessays 2010; 32:165-74. [PMID: 20091758 DOI: 10.1002/bies.200900111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-coding DNA has consistently increased during evolution of higher eukaryotes. Since the number of genes has remained relatively static during the evolution of complex organisms, it is believed that increased degree of sophisticated regulation of genes has contributed to the increased complexity. A higher proportion of non-coding DNA, including repeats, is likely to provide more complex regulatory potential. Here, we propose that repeats play a regulatory role by contributing to the packaging of the genome during cellular differentiation. Repeats, and in particular the simple sequence repeats, are proposed to serve as landmarks that can target regulatory mechanisms to a large number of genomic sites with the help of very few factors and regulate the linked loci in a coordinated manner. Repeats may, therefore, function as common target sites for regulatory mechanisms involved in the packaging and dynamic compartmentalization of the chromatin into active and inactive regions during cellular differentiation.
Collapse
Affiliation(s)
- Ram Parikshan Kumar
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
23
|
Barat-Houari M, Nguyen K, Bernard R, Fernandez C, Vovan C, Bareil C, Khau Van Kien P, Thorel D, Tuffery-Giraud S, Vasseur F, Attarian S, Pouget J, Girardet A, Lévy N, Claustres M. New multiplex PCR-based protocol allowing indirect diagnosis of FSHD on single cells: can PGD be offered despite high risk of recombination? Eur J Hum Genet 2010; 18:533-8. [PMID: 19935833 PMCID: PMC2987324 DOI: 10.1038/ejhg.2009.207] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 10/01/2009] [Accepted: 10/14/2009] [Indexed: 01/23/2023] Open
Abstract
Molecular pathophysiology of facioscapulohumeral muscular dystrophy (FSHD) involves the heterozygous contraction of the number of tandemly repeated D4Z4 units at chromosome 4q35.2. FSHD is associated with a range of 1-10 D4Z4 units instead of 11-150 in normal controls. Several factors complicate FSHD molecular diagnosis, especially the cis-segregation of D4Z4 contraction with a 4qA allele, whereas D4Z4 shortening is silent both on alleles 4qB and 10q. Discrimination of pathogenic 4q-D4Z4 alleles from highly homologous 10q-D4Z4 arrays requires the use of the conventional Southern blot, which is not suitable at the single-cell level. Preimplantation genetic diagnosis (PGD) is a frequent request from FSHD families with several affected relatives. We aimed to develop a rapid and sensitive PCR-based multiplex approach on single cells to perform an indirect familial segregation study of pathogenic alleles. Among several available polymorphic markers at 4q35.2, the four most proximal (D4S2390, D4S1652, D4S2930 and D4S1523, <1.23 Mb) showing the highest heterozygote frequencies (67-91%) were selected. Five recombination events in the D4S2390-D4S1523 interval were observed among 144 meioses. In the D4S2390-D4Z4 interval, no recombination event occurred among 28 FSHD meioses. Instead, a particular haplotype segregated with both clinical and molecular status, allowing the characterization of an at-risk allele in each tested FSHD family (maximal LOD score 2.98 for theta=0.0). This indirect protocol can easily complement conventional techniques in prenatal diagnosis. Although our multiplex PCR-based approach technically fulfils guidelines for single-cell analysis, the relatively high recombination risk hampers its application to PGD.
Collapse
Affiliation(s)
- Mouna Barat-Houari
- CHU de Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Östlund C, Guan T, Figlewicz DA, Hays AP, Worman HJ, Gerace L, Schirmer EC. Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation. Biochem Biophys Res Commun 2009; 389:279-83. [PMID: 19716805 PMCID: PMC2765659 DOI: 10.1016/j.bbrc.2009.08.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 08/24/2009] [Indexed: 11/25/2022]
Abstract
Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients with FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.
Collapse
Affiliation(s)
- Cecilia Östlund
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Tinglu Guan
- Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Arthur P. Hays
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Howard J. Worman
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Larry Gerace
- Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eric C. Schirmer
- Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| |
Collapse
|
25
|
Ansseau E, Laoudj-Chenivesse D, Marcowycz A, Tassin A, Vanderplanck C, Sauvage S, Barro M, Mahieu I, Leroy A, Leclercq I, Mainfroid V, Figlewicz D, Mouly V, Butler-Browne G, Belayew A, Coppée F. DUX4c is up-regulated in FSHD. It induces the MYF5 protein and human myoblast proliferation. PLoS One 2009; 4:e7482. [PMID: 19829708 PMCID: PMC2759506 DOI: 10.1371/journal.pone.0007482] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 09/17/2009] [Indexed: 12/21/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contractions of the D4Z4 repeat array in 4q35. We have previously identified a double homeobox gene (DUX4) within each D4Z4 unit that encodes a transcription factor expressed in FSHD but not control myoblasts. DUX4 and its target genes contribute to the global dysregulation of gene expression observed in FSHD. We have now characterized the homologous DUX4c gene mapped 42 kb centromeric of the D4Z4 repeat array. It encodes a 47-kDa protein with a double homeodomain identical to DUX4 but divergent in the carboxyl-terminal region. DUX4c was detected in primary myoblast extracts by Western blot with a specific antiserum, and was induced upon differentiation. The protein was increased about 2-fold in FSHD versus control myotubes but reached 2-10-fold induction in FSHD muscle biopsies. We have shown by Western blot and by a DNA-binding assay that DUX4c over-expression induced the MYF5 myogenic regulator and its DNA-binding activity. DUX4c might stabilize the MYF5 protein as we detected their interaction by co-immunoprecipitation. In keeping with the known role of Myf5 in myoblast accumulation during mouse muscle regeneration DUX4c over-expression activated proliferation of human primary myoblasts and inhibited their differentiation. Altogether, these results suggested that DUX4c could be involved in muscle regeneration and that changes in its expression could contribute to the FSHD pathology.
Collapse
Affiliation(s)
- Eugénie Ansseau
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | | | - Aline Marcowycz
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Céline Vanderplanck
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Sébastien Sauvage
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Marietta Barro
- INSERM ERI 25 Muscle et Pathologies, CHU A. de Villeneuve, Montpellier, France
| | - Isabelle Mahieu
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Axelle Leroy
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - India Leclercq
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | | | - Denise Figlewicz
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Vincent Mouly
- Institute of Myology, Platform for human cell culture, Paris, France
| | | | - Alexandra Belayew
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Frédérique Coppée
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
- * E-mail:
| |
Collapse
|
26
|
Pirozhkova I, Petrov A, Dmitriev P, Laoudj D, Lipinski M, Vassetzky Y. A functional role for 4qA/B in the structural rearrangement of the 4q35 region and in the regulation of FRG1 and ANT1 in facioscapulohumeral dystrophy. PLoS One 2008; 3:e3389. [PMID: 18852887 PMCID: PMC2561064 DOI: 10.1371/journal.pone.0003389] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 09/17/2008] [Indexed: 01/11/2023] Open
Abstract
The number of D4Z4 repeats in the subtelomeric region of chromosome 4q is strongly reduced in patients with Facio-Scapulo-Humeral Dystrophy (FSHD). We performed chromosome conformation capture (3C) analysis to document the interactions taking place among different 4q35 markers. We found that the reduced number of D4Z4 repeats in FSHD myoblasts was associated with a global alteration of the three-dimensional structure of the 4q35 region. Indeed, differently from normal myoblasts, the 4qA/B marker interacted directly with the promoters of the FRG1 and ANT1 genes in FSHD cells. Along with the presence of a newly identified transcriptional enhancer within the 4qA allele, our demonstration of an interaction occurring between chromosomal segments located megabases away on the same chromosome 4q allows to revisit the possible mechanisms leading to FSHD.
Collapse
Affiliation(s)
- Iryna Pirozhkova
- Université Paris-Sud 11, CNRS UMR 8126, Interactions moléculaires et cancer, Institut de Cancérologie Gustave-Roussy, Villejuif, France
| | - Andrei Petrov
- Université Paris-Sud 11, CNRS UMR 8126, Interactions moléculaires et cancer, Institut de Cancérologie Gustave-Roussy, Villejuif, France
| | - Petr Dmitriev
- Université Paris-Sud 11, CNRS UMR 8126, Interactions moléculaires et cancer, Institut de Cancérologie Gustave-Roussy, Villejuif, France
| | - Dalila Laoudj
- INSERM, ERI25, F-34000, Montpellier, France, Université Montpellier 1, Montpellier, France
| | - Marc Lipinski
- Université Paris-Sud 11, CNRS UMR 8126, Interactions moléculaires et cancer, Institut de Cancérologie Gustave-Roussy, Villejuif, France
| | - Yegor Vassetzky
- Université Paris-Sud 11, CNRS UMR 8126, Interactions moléculaires et cancer, Institut de Cancérologie Gustave-Roussy, Villejuif, France
- * E-mail:
| |
Collapse
|