1
|
Darras BT, Volpe JJ. Muscle Involvement and Restricted Disorders. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:1074-1121.e18. [DOI: 10.1016/b978-0-443-10513-5.00037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Crane HM, Asher S, Conway L, Drivas TG, Kallish S. Unraveling a history of overlap: A phenotypic comparison of RBCK1-related disease and glycogen storage disease type IV. Am J Med Genet A 2024; 194:e63574. [PMID: 38436530 DOI: 10.1002/ajmg.a.63574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
RBCK1-related disease is a rare, multisystemic disorder for which our current understanding of the natural history is limited. A number of individuals initially carried clinical diagnoses of glycogen storage disease IV (GSD IV), but were later found to harbor RBCK1 pathogenic variants, demonstrating challenges of correctly diagnosing RBCK1-related disease. This study carried out a phenotypic comparison between RBCK1-related disease and GSD IV to identify features that clinically differentiate these diagnoses. Literature review and retrospective chart review identified 25 individuals with RBCK1-related disease and 36 with the neuromuscular subtype of GSD IV. Clinical features were evaluated to assess for statistically significant differences between the conditions. At a system level, any cardiac, autoinflammation, immunodeficiency, growth, or dermatologic involvement were suggestive of RBCK1, whereas any respiratory involvement suggested GSD IV. Several features warrant further exploration as predictors of RBCK1, such as generalized weakness, heart transplant, and recurrent infections, among others. Distinguishing RBCK1-related disease will facilitate correct diagnoses and pave the way for accurately identifying affected individuals, as well as for developing management recommendations, treatment, and an enhanced understanding of the natural history. This knowledge may also inform which individuals thought to have GSD IV should undergo reevaluation for RBCK1.
Collapse
Affiliation(s)
- Haley M Crane
- Master of Science in Genetic Counseling Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie Asher
- Penn Medicine, Department of Medicine, Division of Translational Medicine and Human Genetics, Philadelphia, Pennsylvania, USA
| | - Laura Conway
- Master of Science in Genetic Counseling Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Theodore G Drivas
- Penn Medicine, Department of Medicine, Division of Translational Medicine and Human Genetics, Philadelphia, Pennsylvania, USA
| | - Staci Kallish
- Penn Medicine, Department of Medicine, Division of Translational Medicine and Human Genetics, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Lefèvre CR, Collardeau-Frachon S, Streichenberger N, Berenguer-Martin S, Clémenson A, Massardier J, Prieur F, Laurichesse H, Laffargue F, Acquaviva-Bourdain C, Froissart R, Pettazzoni M. Severe neuromuscular forms of glycogen storage disease type IV: Histological, clinical, biochemical, and molecular findings in a large French case series. J Inherit Metab Dis 2024; 47:255-269. [PMID: 38012812 DOI: 10.1002/jimd.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Glycogen storage disease type IV (GSD IV), also called Andersen disease, or amylopectinosis, is a highly heterogeneous autosomal recessive disorder caused by a glycogen branching enzyme (GBE, 1,4-alpha-glucan branching enzyme) deficiency secondary to pathogenic variants on GBE1 gene. The incidence is evaluated to 1:600 000 to 1:800 000 of live births. GBE deficiency leads to an excessive deposition of structurally abnormal, amylopectin-like glycogen in affected tissues (liver, skeletal muscle, heart, nervous system, etc.). Diagnosis is often guided by histological findings and confirmed by GBE activity deficiency and molecular studies. Severe neuromuscular forms of GSD IV are very rare and of disastrous prognosis. Identification and characterization of these forms are important for genetic counseling for further pregnancies. Here we describe clinical, histological, enzymatic, and molecular findings of 10 cases from 8 families, the largest case series reported so far, of severe neuromuscular forms of GSD IV along with a literature review. Main antenatal features are: fetal akinesia deformation sequence or arthrogryposis/joint contractures often associated with muscle atrophy, decreased fetal movement, cystic hygroma, and/or hydrops fetalis. If pregnancy is carried to term, the main clinical features observed at birth are severe hypotonia and/or muscle atrophy, with the need for mechanical ventilation, cardiomyopathy, retrognathism, and arthrogryposis. All our patients were stillborn or died within 1 month of life. In addition, we identified five novel GBE1 variants.
Collapse
Affiliation(s)
- Charles R Lefèvre
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Bron, France
- Department of Biochemistry and Toxicology, University Hospital, Rennes, France
| | - Sophie Collardeau-Frachon
- Department of Pathology, Hospices Civils de Lyon and Soffoet (Société Française de Fœtopathologie), Bron, France
| | - Nathalie Streichenberger
- Department of Pathology, Hospices Civils de Lyon - Université Claude Bernard Lyon1 - Institut NeuroMyogène CNRS UMR 5261 - INSERM U1315, France
| | | | - Alix Clémenson
- Department of Pathology, University Hospital, Saint-Etienne, France
| | - Jérôme Massardier
- Multidisciplinary Center for Prenatal Diagnosis, Department of Obstetrics and Gynecology, Hospices Civils de Lyon, Femme Mere Enfant University Hospital, Bron, France
| | - Fabienne Prieur
- Department of Clinical, Chromosomal and Molecular Genetics, University Hospital, Saint-Etienne, France
| | | | - Fanny Laffargue
- Department of Genetics, University Hospital, Clermont-Ferrand, France
| | | | - Roseline Froissart
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Bron, France
| | - Magali Pettazzoni
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
4
|
Oliwa A, Langlands G, Sarkozy A, Munot P, Stewart W, Phadke R, Topf A, Straub V, Duncan R, Wigley R, Petty R, Longman C, Farrugia ME. Glycogen storage disease type IV without detectable polyglucosan bodies: importance of broad gene panels. Neuromuscul Disord 2023; 33:98-105. [PMID: 37598009 DOI: 10.1016/j.nmd.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/21/2023]
Abstract
Glycogen storage disease type IV (GSD IV) is caused by mutations in the glycogen branching enzyme 1 (GBE1) gene and is characterized by accumulation of polyglucosan bodies in liver, muscle and other tissues. We report three cases with neuromuscular forms of GSD IV, none of whom had polyglucosan bodies on muscle biopsy. The first case had no neonatal problems and presented with delayed walking. The other cases presented at birth: one with arthrogryposis, hypotonia, and respiratory distress, the other with talipes and feeding problems. All developed a similar pattern of axial weakness, proximal upper limb weakness and scapular winging, and much milder proximal lower limb weakness. Our cases expand the phenotypic spectrum of neuromuscular GSD IV, highlight that congenital myopathy and limb girdle weakness can be caused by mutations in GBE1, and emphasize that GSD IV should be considered even in the absence of characteristic polyglucosan bodies on muscle biopsy.
Collapse
Affiliation(s)
- Agata Oliwa
- Undergraduate Medical School, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Gavin Langlands
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Anna Sarkozy
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Pinki Munot
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Willie Stewart
- Department of Neuropathology, Laboratory Medicine Building, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Rahul Phadke
- Department of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Ana Topf
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Roderick Duncan
- Department of Orthopaedics, Royal Hospital for Sick Children, Glasgow, G51 4TF, UK
| | - Ralph Wigley
- Department of Chemical Pathology, Great Ormond Street Hospital Trust, London, WC1N 3JH, UK
| | - Richard Petty
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Cheryl Longman
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| |
Collapse
|
5
|
Bezirganoglu H, Adanur Saglam K. An Unusual Case of Neonatal Hypotonia and Femur Fracture: Neuromuscular Variant of Glycogen Storage Disease Type IV. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1375. [PMID: 37628374 PMCID: PMC10453659 DOI: 10.3390/children10081375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Glycogen storage disease type IV (GSD IV) (OMIM #232500) is an autosomal recessive disorder caused by deficiency of the glycogen-branching enzyme. Here, we report a patient presenting with prematurity and severe hypotonia resulting from a complicated pregnancy with polyhydramnios. During her stay in the neonatal unit, the infant remained dependent on a ventilator, and her movements were mostly absent, except for occasional small movements of her fingers. A spontaneous fracture of femur shaft occurred in the postnatal fourth week. Whole-exome sequencing of DNA from the patient revealed a homozygous missense variant in the GBE1 gene (c.1693C>T, p.Arg565Trp). The variation detected in the index case was also confirmed by Sanger sequencing in the patient and respective parents. This study showed that the neuromuscular subtypes of GSD-IV should be considered as a possible differential diagnosis in severe neonatal hypotonia cases.
Collapse
Affiliation(s)
- Handan Bezirganoglu
- Division of Neonatology, Trabzon Kanuni Training and Research Hospital, Trabzon 61080, Türkiye
| | - Kubra Adanur Saglam
- Department of Medical Genetics, Karadeniz Technical University Medical Faculty, Trabzon 61080, Türkiye
| |
Collapse
|
6
|
Koch RL, Soler-Alfonso C, Kiely BT, Asai A, Smith AL, Bali DS, Kang PB, Landstrom AP, Akman HO, Burrow TA, Orthmann-Murphy JL, Goldman DS, Pendyal S, El-Gharbawy AH, Austin SL, Case LE, Schiffmann R, Hirano M, Kishnani PS. Diagnosis and management of glycogen storage disease type IV, including adult polyglucosan body disease: A clinical practice resource. Mol Genet Metab 2023; 138:107525. [PMID: 36796138 DOI: 10.1016/j.ymgme.2023.107525] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Glycogen storage disease type IV (GSD IV) is an ultra-rare autosomal recessive disorder caused by pathogenic variants in GBE1 which results in reduced or deficient glycogen branching enzyme activity. Consequently, glycogen synthesis is impaired and leads to accumulation of poorly branched glycogen known as polyglucosan. GSD IV is characterized by a remarkable degree of phenotypic heterogeneity with presentations in utero, during infancy, early childhood, adolescence, or middle to late adulthood. The clinical continuum encompasses hepatic, cardiac, muscular, and neurologic manifestations that range in severity. The adult-onset form of GSD IV, referred to as adult polyglucosan body disease (APBD), is a neurodegenerative disease characterized by neurogenic bladder, spastic paraparesis, and peripheral neuropathy. There are currently no consensus guidelines for the diagnosis and management of these patients, resulting in high rates of misdiagnosis, delayed diagnosis, and lack of standardized clinical care. To address this, a group of experts from the United States developed a set of recommendations for the diagnosis and management of all clinical phenotypes of GSD IV, including APBD, to support clinicians and caregivers who provide long-term care for individuals with GSD IV. The educational resource includes practical steps to confirm a GSD IV diagnosis and best practices for medical management, including (a) imaging of the liver, heart, skeletal muscle, brain, and spine, (b) functional and neuromusculoskeletal assessments, (c) laboratory investigations, (d) liver and heart transplantation, and (e) long-term follow-up care. Remaining knowledge gaps are detailed to emphasize areas for improvement and future research.
Collapse
Affiliation(s)
- Rebecca L Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Bridget T Kiely
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Akihiro Asai
- Department of Pediatrics, University of Cincinnati Medical Center, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ariana L Smith
- Division of Urology, Department of Surgery, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Deeksha S Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Peter B Kang
- Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Andrew P Landstrom
- Division of Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - H Orhan Akman
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - T Andrew Burrow
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | | | - Deberah S Goldman
- Adult Polyglucosan Body Disease Research Foundation, Brooklyn, NY, USA
| | - Surekha Pendyal
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Areeg H El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Stephanie L Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Laura E Case
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA; Doctor of Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
7
|
Laforêt P, Oldfors A, Malfatti E, Vissing J. 251st ENMC international workshop: Polyglucosan storage myopathies 13-15 December 2019, Hoofddorp, the Netherlands. Neuromuscul Disord 2021; 31:466-477. [PMID: 33602551 DOI: 10.1016/j.nmd.2021.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Pascal Laforêt
- Neurology Unit, Raymond Poincaré Hospital, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Anders Oldfors
- Department of Laboratory Medicine, Sahlgrenska University Hospital, Institute of Biomedicine, University of Gothenburg, Sweden.
| | - Edoardo Malfatti
- Neuromuscular Reference Center, Henri Mondor University Hospital, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | | |
Collapse
|
8
|
Liu M, Sun LY. Liver Transplantation for Glycogen Storage Disease Type IV. Front Pediatr 2021; 9:633822. [PMID: 33681109 PMCID: PMC7933444 DOI: 10.3389/fped.2021.633822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/02/2021] [Indexed: 11/24/2022] Open
Abstract
Glycogen storage disease type IV (GSD IV) is a rare autosomal recessive disorder caused by glycogen-branching enzyme (GBE) deficiency, leading to accumulation of amylopectin-like glycogen that may damage affected tissues. The clinical manifestations of GSD IV are heterogeneous; one of which is the classic manifestation of progressive hepatic fibrosis. There is no specific treatment available for GSD IV. Currently, liver transplantation is an option. It is crucial to evaluate long-term outcomes of liver transplantation. We reviewed the published literature for GSD IV patients undergoing liver transplantation. To date, some successful liver transplantations have increased the quantity and quality of life in patients. Although the extrahepatic manifestations of GSD IV may still progress after transplantation, especially cardiomyopathy. Patients with cardiac involvement are candidates for cardiac transplantation. Liver transplantation remains the only effective therapeutic option for treatment of GSD IV. However, liver transplantation may not alter the extrahepatic progression of GSD IV. Patients should be carefully assessed before liver transplantation.
Collapse
Affiliation(s)
- Min Liu
- Department of Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Centre for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li-Ying Sun
- Department of Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Centre for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Cenacchi G, Papa V, Costa R, Pegoraro V, Marozzo R, Fanin M, Angelini C. Update on polyglucosan storage diseases. Virchows Arch 2019; 475:671-686. [DOI: 10.1007/s00428-019-02633-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 11/27/2022]
|
10
|
Novel pathogenic variants in GBE1 causing fetal akinesia deformation sequence and severe neuromuscular form of glycogen storage disease type IV. Clin Dysmorphol 2019; 28:17-21. [PMID: 30303820 DOI: 10.1097/mcd.0000000000000248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glycogen storage disease IV (GSD IV), caused by a defect in GBE1, is a clinically heterogeneous disorder. A classical hepatic form and a neuromuscular form have been described. The severe neuromuscular form presents as a fetal akinesia deformation sequence or a congenital subtype. We ascertained three unrelated families with fetuses/neonates who presented with fetal akinesia deformation sequence to our clinic for genetic counseling. We performed a detailed clinical evaluation, exome sequencing, and histopathology examination of two fetuses and two neonates from three unrelated families presenting with these perinatally lethal neuromuscular forms of GSD IV. Exome sequencing in the affected fetuses/neonates identified four novel pathogenic variants (c.1459G>T, c.144-1G>A, c.1680C>G, and c.1843G>C) in GBE1 (NM_000158). Histopathology examination of tissues from the affected fetuses/neonate was consistent with the diagnosis. Here, we add three more families with the severe perinatally lethal neuromuscular forms of GSD IV to the GBE1 mutation spectrum.
Collapse
|
11
|
Yu W, Brundler MA, Wright JR. Polyglucosan Bodies in Placental Extravillious Trophoblast for the Diagnosis of Fatal Perinatal Neuromuscular-type Glycogen Storage Disease Type IV. Pediatr Dev Pathol 2018; 21:423-427. [PMID: 28497716 DOI: 10.1177/1093526617707852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fatal infantile neuromuscular type is the most severe form of glycogen storage disease type IV (GSD IV). We report a case of a 22-day-old female neonate born at 34 weeks gestation with polyhyramnios, fetal hydrops, and severe hypotonia. Placental examination revealed numerous periodic acid schiff-positive diastase-resistant polyglucosan bodies in the cytoplasm of extravillous trophoblast predominantly in the placental basal plate. Muscle biopsy and autopsy findings supported a diagnosis of neuromuscular-type glycogen storage disease type IV with extensive involvement of skeletal muscle, heart, and liver. The diagnosis was confirmed by molecular genetic testing. We could only find 1 prior report in the English literature that describes placental pathological changes. Our findings suggest that placental examination can be a useful adjunct for early diagnosis, as placentas are often received for pathological examination shortly after birth and usually before a diagnostic muscle biopsy can be performed. Pathologists need to be aware of characteristic placental features.
Collapse
Affiliation(s)
- Weiming Yu
- 1 Departments of Pathology & Laboratory Medicine and Paediatrics, University of Calgary Cumming School of Medicine and Calgary Laboratory Services, Calgary, Alberta, Canada
| | - Marie-Anne Brundler
- 1 Departments of Pathology & Laboratory Medicine and Paediatrics, University of Calgary Cumming School of Medicine and Calgary Laboratory Services, Calgary, Alberta, Canada
| | - James R Wright
- 1 Departments of Pathology & Laboratory Medicine and Paediatrics, University of Calgary Cumming School of Medicine and Calgary Laboratory Services, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Darras BT, Volpe JJ. Muscle Involvement and Restricted Disorders. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:922-970.e15. [DOI: 10.1016/b978-0-323-42876-7.00033-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Malfatti E, Barnerias C, Hedberg-Oldfors C, Gitiaux C, Benezit A, Oldfors A, Carlier RY, Quijano-Roy S, Romero NB. A novel neuromuscular form of glycogen storage disease type IV with arthrogryposis, spinal stiffness and rare polyglucosan bodies in muscle. Neuromuscul Disord 2016; 26:681-687. [PMID: 27546458 DOI: 10.1016/j.nmd.2016.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 01/11/2023]
Abstract
Glycogen storage disease type IV (GSD IV) is an autosomal recessive disorder causing polyglucosan storage in various tissues. Neuromuscular forms present with fetal akinesia deformation sequence, lethal myopathy, or mild hypotonia and weakness. A 3-year-old boy presented with arthrogryposis, motor developmental delay, weakness, and rigid spine. Whole body MRI revealed fibroadipose muscle replacement but sparing of the sartorius, gracilis, adductor longus and vastus intermedialis muscles. Polyglucosan bodies were identified in muscle, and GBE1 gene analysis revealed two pathogenic variants. We describe a novel neuromuscular GSD IV phenotype and confirm the importance of muscle morphological studies in early onset neuromuscular disorders.
Collapse
Affiliation(s)
- Edoardo Malfatti
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, GHU La Pitié-Salpêtrière, 47 Boulevard de l'hôpital, 75013 Paris, France; Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France
| | - Christine Barnerias
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; AP-HP, Service de Neuropédiatrie, Hôpital Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France
| | - Carola Hedberg-Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cyril Gitiaux
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France; AP-HP Service des Explorations Foctionnelles Neurologiques, Höpital Universitaire Necker-Enfants Malades, Paris, France
| | - Audrey Benezit
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; AP-HP, Service de Neuropédiatrie, Hôpital Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France
| | - Anders Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Robert-Yves Carlier
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France; U1179 INSERM-UVSQ, Université Versailles Saint-Quentin en Yvelines, Montigny, France; AP-HP, Service de Pédiatrie, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Paris, France
| | - Susana Quijano-Roy
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France; AP-HP, Service de Pédiatrie, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Paris, France
| | - Norma B Romero
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, GHU La Pitié-Salpêtrière, 47 Boulevard de l'hôpital, 75013 Paris, France; Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France.
| |
Collapse
|
14
|
|
15
|
Byers SL, Ficicioglu C. Infant with cardiomyopathy: When to suspect inborn errors of metabolism? World J Cardiol 2014; 6:1149-1155. [PMID: 25429327 PMCID: PMC4244612 DOI: 10.4330/wjc.v6.i11.1149] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/21/2014] [Accepted: 09/10/2014] [Indexed: 02/07/2023] Open
Abstract
Inborn errors of metabolism are identified in 5%-26% of infants and children with cardiomyopathy. Although fatty acid oxidation disorders, lysosomal and glycogen storage disorders and organic acidurias are well-known to be associated with cardiomyopathies, emerging reports suggest that mitochondrial dysfunction and congenital disorders of glycosylation may also account for a proportion of cardiomyopathies. This review article clarifies when primary care physicians and cardiologists should suspect inborn errors of metabolism in a patient with cardiomyopathy, and refer the patient to a metabolic specialist for a further metabolic work up, with specific discussions of “red flags” which should prompt additional evaluation.
Collapse
|
16
|
Abstract
Disorders of glycogen metabolism are inborn errors of energy homeostasis affecting primarily skeletal muscle, heart, liver, and, less frequently, the central nervous system. These rare diseases are quite variable in age of onset, symptoms, morbidity, and mortality. This review provides an update on disorders of glycogen metabolism affecting skeletal muscle exclusively or predominantly. From a pathogenetic perspective, we classify these diseases as primary, if the defective enzyme is directly involved in glycogen/glucose metabolism, or secondary, if the genetic mutation affects proteins which indirectly regulate glycogen or glucose processing. In addition to summarizing the most recent clinical reports in this field, we briefly describe animal models of human glycogen disorders. These experimental models are greatly improving the understanding of the pathogenetic mechanisms underlying the muscle degenerative process associated to these diseases and provide in vivo platforms to test new therapeutic strategies.
Collapse
|
17
|
Ravenscroft G, Thompson EM, Todd EJ, Yau KS, Kresoje N, Sivadorai P, Friend K, Riley K, Manton ND, Blumbergs P, Fietz M, Duff RM, Davis MR, Allcock RJ, Laing NG. Whole exome sequencing in foetal akinesia expands the genotype-phenotype spectrum of GBE1 glycogen storage disease mutations. Neuromuscul Disord 2012; 23:165-9. [PMID: 23218673 DOI: 10.1016/j.nmd.2012.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
Abstract
The clinically and genetically heterogenous foetal akinesias have low rates of genetic diagnosis. Exome sequencing of two siblings with phenotypic lethal multiple pterygium syndrome identified compound heterozygozity for a known splice site mutation (c.691+2T>C) and a novel missense mutation (c.956A>G; p.His319Arg) in glycogen branching enzyme 1 (GBE1). GBE1 mutations cause glycogen storage disease IV (GSD IV), including a severe foetal akinesia sub-phenotype. Re-investigating the muscle pathology identified storage material, consistent with GSD IV, which was confirmed biochemically. This study highlights the power of exome sequencing in genetically heterogeneous diseases and adds multiple pterygium syndrome to the phenotypic spectrum of GBE1 mutation.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Western Australian Institute for Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Malfatti E, Birouk N, Romero NB, Piraud M, Petit FM, Hogrel JY, Laforêt P. Juvenile-onset permanent weakness in muscle phosphofructokinase deficiency. J Neurol Sci 2012; 316:173-7. [PMID: 22364848 DOI: 10.1016/j.jns.2012.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/20/2012] [Accepted: 01/26/2012] [Indexed: 10/28/2022]
Abstract
We describe a 41-year-old Moroccan woman with phosphofructokinase (PFK) deficiency who presented slowly progressive muscular weakness since childhood, without rhabdomyolysis episode or hemolytic anemia. Deltoid biopsy revealed massive glycogen storage in the majority of muscle fibers and polysaccharide deposits. PFK activity in muscle was totally absent. A novel homozygous non-sense mutation was detected in PFKM gene. Our observation suggests that juvenile-onset fixed muscle weakness may be a predominant clinical feature of PFK deficiency. Vacuolar myopathy with polyglucosan deposits remains an important morphological hallmark of this rare muscle glycogenosis.
Collapse
Affiliation(s)
- Edoardo Malfatti
- Unité de Morphologie Neuromusculaire Institut de Myologie, GH Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Li SC, Hwu WL, Lin JL, Bali DS, Yang C, Chu SM, Chien YH, Chou HC, Chen CY, Hsieh WS, Tsao PN, Chen YT, Lee NC. Association of the congenital neuromuscular form of glycogen storage disease type IV with a large deletion and recurrent frameshift mutation. J Child Neurol 2012; 27:204-208. [PMID: 21917543 DOI: 10.1177/0883073811415107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anderson disease, also known as glycogen storage disease type IV (MIM 232500), is a rare autosomal recessive disorder caused by a deficiency of glycogen branching enzyme. Glycogen storage disease type IV has a broad clinical spectrum ranging from a perinatal lethal form to a nonprogressive later-onset disease in adults. Here, we report 2 unrelated infants who were born small for their gestational age and who had profound hypotonia at birth and thus needed mechanical ventilation. Both of these patients shared the same frameshift mutation (c.288delA, pGly97GlufsX46) in the GBE1 gene. In addition, both of these patients were found to have 2 different large deletions in the GBE1 gene; exon 7 and exons 2 to 7, respectively, on the other alleles. This case report also highlights the need for a more comprehensive search for large deletion mutations associated with glycogen storage disease type IV, especially if routine GBE1 gene sequencing results are equivocal.
Collapse
Affiliation(s)
- Sing-Chung Li
- School of Nutrition and Health Science, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Akman HO, Sheiko T, Tay SKH, Finegold MJ, Dimauro S, Craigen WJ. Generation of a novel mouse model that recapitulates early and adult onset glycogenosis type IV. Hum Mol Genet 2011; 20:4430-9. [PMID: 21856731 DOI: 10.1093/hmg/ddr371] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glycogen storage disease type IV (GSD IV) is a rare autosomal recessive disorder caused by deficiency of the glycogen branching enzyme (GBE). The diagnostic feature of the disease is the accumulation of a poorly branched form of glycogen known as polyglucosan (PG). The disease is clinically heterogeneous, with variable tissue involvement and age of disease onset. Absence of enzyme activity is lethal in utero or in infancy affecting primarily muscle and liver. However, residual enzyme activity (5-20%) leads to juvenile or adult onset of a disorder that primarily affects muscle as well as central and peripheral nervous system. Here, we describe two mouse models of GSD IV that reflect this spectrum of disease. Homologous recombination was used to insert flippase recognition target recombination sites around exon 7 of the Gbe1 gene and a phosphoglycerate kinase-Neomycin cassette within intron 7, leading to a reduced synthesis of GBE. Mice bearing this mutation (Gbe1(neo/neo)) exhibit a phenotype similar to juvenile onset GSD IV, with wide spread accumulation of PG. Meanwhile, FLPe-mediated homozygous deletion of exon 7 completely eliminated GBE activity (Gbe1(-/-)), leading to a phenotype of lethal early onset GSD IV, with significant in utero accumulation of PG. Adult mice with residual GBE exhibit progressive neuromuscular dysfunction and die prematurely. Differently from muscle, PG in liver is a degradable source of glucose and readily depleted by fasting, emphasizing that there are structural and regulatory differences in glycogen metabolism among tissues. Both mouse models recapitulate typical histological and physiological features of two human variants of branching enzyme deficiency.
Collapse
Affiliation(s)
- H Orhan Akman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Dimauro S, Garone C. Metabolic disorders of fetal life: glycogenoses and mitochondrial defects of the mitochondrial respiratory chain. Semin Fetal Neonatal Med 2011; 16:181-9. [PMID: 21620786 DOI: 10.1016/j.siny.2011.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two major groups of inborn errors of energy metabolism are reviewed -glycogenoses and defects of the mitochondrial respiratory chain - to see how often these disorders present in fetal life or neonatally. After some general considerations on energy metabolism in the pre- and postnatal development of the human infant, different glycogen storage diseases and mitochondrial encephalomyopathies are surveyed. General conclusions are that: (i) disorders of glycogen metabolism are more likely to cause 'fetal disease' than defects of the respiratory chain; (ii) mitochondrial encephalomyopathies, especially those due to defects of the nuclear genome, are frequent causes of neonatal or infantile diseases, typically Leigh syndrome, but usually do not cause fetal distress; (iii) notable exceptions include mutations in the complex III assembly gene BCS1L resulting in the GRACILE syndrome (growth retardation, aminoaciduria, cholestasis, iron overload, lactic acidosis, and early death), and defects of mitochondrial protein synthesis, which are the 'new frontier' in mitochondrial translational research.
Collapse
Affiliation(s)
- S Dimauro
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| | | |
Collapse
|
22
|
Mancuso M, Orsucci D, Volterrani D, Siciliano G. Cognitive impairment and McArdle disease: Is there a link? Neuromuscul Disord 2011; 21:356-8. [DOI: 10.1016/j.nmd.2011.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/23/2010] [Accepted: 02/14/2011] [Indexed: 11/26/2022]
|