1
|
Paprad T, Amornvit J, Pobsuk T, Santananukarn M, Taychargumpoo C, Sirichana W, Ittiwut C, Ittiwut R, Suphapeetiporn K, Pasutharnchat N, Numkarunarunrote N. Two distinct phenotypes and a novel mutation in limb-girdle muscular dystrophy R7 telethonin-related patients from Thai neuromuscular center. Neurol Sci 2025:10.1007/s10072-025-08158-y. [PMID: 40195250 DOI: 10.1007/s10072-025-08158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025]
Abstract
Limb-girdle muscular dystrophy R7 telethonin-related (LGMDR7) is a rare autosomal recessive disorder caused by TCAP gene mutations. This study described the phenotypic spectrum, genetic characteristics, and muscle magnetic resonance imaging (MRI) findings of patients with LGMDR7. Five patients from three unrelated families with TCAP mutations were retrospectively identified at the Neuromuscular Center at King Chulalongkorn Memorial Hospital. Demographic, clinical, laboratory, and muscle MRI data were collected and analyzed. We observed a mild phenotype associated with asymptomatic/paucisymptomatic hyperCKemia in one family and a classic limb-girdle muscular dystrophy phenotype in two unrelated patients. The novel deletion variant c.136_137del was identified in a compound heterozygous state with c.26_33dup in a family with a mild phenotype. Muscle MRI of four patients revealed consistent sparing of the sartorius muscle in all patients. This study expands the clinical and genetic spectrum of LGMDR7 by demonstrating an asymptomatic/paucisymptomatic hyperCKemia phenotype and identifying the novel c.136_137del variant. The muscle MRI findings highlight a characteristic pattern in which the sartorius muscle is consistently uninvolved. These findings contribute to a better understanding of the disease and assist in developing future diagnostic strategies for affected individuals, specifically by using clinical profiles in conjunction with the characteristics of muscle MRI.
Collapse
Affiliation(s)
- Tanitnun Paprad
- Division of Neurology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bhumisiri Mangkhalanusorn Building, 7th Floor Zone C, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Jakkrit Amornvit
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bhumisiri Mangkhalanusorn Building, 7th Floor Zone C, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bhumisiri Mangkhalanusorn Building, 7th Floor Zone C, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Thippamas Pobsuk
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bhumisiri Mangkhalanusorn Building, 7th Floor Zone C, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
- Division of Neurology, Department of Medicine, Chonburi Hospital, Chonburi, Thailand
| | - Manasawan Santananukarn
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bhumisiri Mangkhalanusorn Building, 7th Floor Zone C, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chamaiporn Taychargumpoo
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bhumisiri Mangkhalanusorn Building, 7th Floor Zone C, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
- Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Worawan Sirichana
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bhumisiri Mangkhalanusorn Building, 7th Floor Zone C, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chupong Ittiwut
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
- Division of Medical Genetic and Metabolism, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rungnapa Ittiwut
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
- Division of Medical Genetic and Metabolism, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
- Division of Medical Genetic and Metabolism, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nath Pasutharnchat
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bhumisiri Mangkhalanusorn Building, 7th Floor Zone C, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bhumisiri Mangkhalanusorn Building, 7th Floor Zone C, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | | |
Collapse
|
2
|
Zhao Y, Liang J, Liu X, Li H, Chang C, Gao P, Du F, Zhang R. Tcap deficiency impedes striated muscle function and heart regeneration with elevated ROS and autophagy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167485. [PMID: 39226992 DOI: 10.1016/j.bbadis.2024.167485] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Telethonin/titin-cap (TCAP) encodes a Z-disc protein that plays important roles in sarcomere/T-tubule interactions, stretch-sensing and signaling. Mutations in TCAP are associated with muscular dystrophy and cardiomyopathy; however, the complete etiology and its roles in myocardial infarction and regeneration are not fully understood. Here, we generated tcap gene knockout zebrafish with CRISPR/Cas9 technology and observed muscular dystrophy-like phenotypes and abnormal mitochondria in skeletal muscles. The stretch-sensing ability was inhibited in tcap-/- mutants. Moreover, Tcap deficiency led to alterations in cardiac morphology and function as well as increases in reactive oxygen species (ROS) and mitophagy. In addition, the cardiac regeneration and cardiomyocyte proliferation ability of tcap-/- mutants were impaired, but these impairments could be rescued by supplementation with ROS scavengers or autophagy inhibitors. Overall, our study demonstrates the essential roles of Tcap in striated muscle function and heart regeneration. Additionally, elevations in ROS and autophagy may account for the phenotypes resulting from Tcap deficiency and could serve as novel therapeutic targets for muscular dystrophy and cardiomyopathy.
Collapse
Affiliation(s)
- Yan Zhao
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China.
| | - Jieling Liang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Xuan Liu
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Huicong Li
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Cheng Chang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Peng Gao
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Fen Du
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| | - Ruilin Zhang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
3
|
Bolano-Díaz C, Verdú-Díaz J, Díaz-Manera J. MRI for the diagnosis of limb girdle muscular dystrophies. Curr Opin Neurol 2024; 37:536-548. [PMID: 39132784 DOI: 10.1097/wco.0000000000001305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
PURPOSE OF REVIEW In the last 30 years, there have many publications describing the pattern of muscle involvement of different neuromuscular diseases leading to an increase in the information available for diagnosis. A high degree of expertise is needed to remember all the patterns described. Some attempts to use artificial intelligence or analysing muscle MRIs have been developed. We review the main patterns of involvement in limb girdle muscular dystrophies (LGMDs) and summarize the strategies for using artificial intelligence tools in this field. RECENT FINDINGS The most frequent LGMDs have a widely described pattern of muscle involvement; however, for those rarer diseases, there is still not too much information available. patients. Most of the articles still include only pelvic and lower limbs muscles, which provide an incomplete picture of the diseases. AI tools have efficiently demonstrated to predict diagnosis of a limited number of disease with high accuracy. SUMMARY Muscle MRI continues being a useful tool supporting the diagnosis of patients with LGMD and other neuromuscular diseases. However, the huge variety of patterns described makes their use in clinics a complicated task. Artificial intelligence tools are helping in that regard and there are already some accessible machine learning algorithms that can be used by the global medical community.
Collapse
Affiliation(s)
- Carla Bolano-Díaz
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - José Verdú-Díaz
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jordi Díaz-Manera
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Neuromuscular Diseases Laboratory, Insitut de Recerca de l'Hospital de la Santa Creu i Sant Pau
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
4
|
Niu Y, Zhang X, Men S, Xu T, Zhang H, Li X, Storey KB, Chen Q. Effects of hibernation on two important contractile tissues in tibetan frogs, Nanorana parkeri: a perspective from transcriptomics and metabolomics approaches. BMC Genomics 2024; 25:454. [PMID: 38720264 PMCID: PMC11080311 DOI: 10.1186/s12864-024-10357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND In response to seasonal cold and food shortage, the Xizang plateau frogs, Nanorana parkeri (Anura: Dicroglossidae), enter a reversible hypometabolic state where heart rate and oxygen consumption in skeletal muscle are strongly suppressed. However, the effect of winter hibernation on gene expression and metabolic profiling in these two tissues remains unknown. In the present study, we conducted transcriptomic and metabolomic analyses of heart and skeletal muscle from summer- and winter-collected N. parkeri to explore mechanisms involved in seasonal hibernation. RESULTS We identified 2407 differentially expressed genes (DEGs) in heart and 2938 DEGs in skeletal muscle. Enrichment analysis showed that shared DEGs in both tissues were enriched mainly in translation and metabolic processes. Of these, the expression of genes functionally categorized as "response to stress", "defense mechanisms", or "muscle contraction" were particularly associated with hibernation. Metabolomic analysis identified 24 and 22 differentially expressed metabolites (DEMs) in myocardium and skeletal muscle, respectively. In particular, pathway analysis showed that DEMs in myocardium were involved in the pentose phosphate pathway, glycerolipid metabolism, pyruvate metabolism, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis. By contrast, DEMs in skeletal muscle were mainly involved in amino acid metabolism. CONCLUSIONS In summary, natural adaptations of myocardium and skeletal muscle in hibernating N. parkeri involved transcriptional alterations in translation, stress response, protective mechanisms, and muscle contraction processes as well as metabolic remodeling. This study provides new insights into the transcriptional and metabolic adjustments that aid winter survival of high-altitude frogs N. parkeri.
Collapse
Affiliation(s)
- Yonggang Niu
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China.
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Xuejing Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Shengkang Men
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Tisen Xu
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China
| | - Haiying Zhang
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China
| | - Xiangyong Li
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Qiang Chen
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
5
|
Alaei Z, Zamani N, Rabbani B, Mahdieh N. TCAP gene is not a common cause of cardiomyopathy in Iranian patients. Eur J Med Res 2023; 28:376. [PMID: 37752589 PMCID: PMC10523715 DOI: 10.1186/s40001-023-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are the most frequent cardiomyopathies that cause acute heart failure and sudden cardiac death. Previous genetic reports have shown that pathogenic variants of genes encoding Z-disc components such as telethonin protein (TCAP) are the primary cause of DCM and HCM. METHODS This study was the first investigation on the TCAP gene among the Iranian cardiomyopathies population wherein the TCAP gene was analyzed in 40 unrelated patients (17 females and 23 males) who were clinically diagnosed with HCM and DCM. In addition, we conducted a thorough review of all published articles and the databases that were the first to report novel pathogenic or likely pathogenic variants the in TCAP gene. RESULTS In the cohort of this study, we identified only one intronic variant c.111-42G > A in one of the HCM patients that were predicted as polymorphism by in-silico analysis. Moreover, a total of 44 variants were reported for the TCAP gene in the literature where a majority of mutations were found to be missense. Pathogenic mutations in TCAP may cause diseases including limb-girdle muscular dystrophy 2G (LGMD-2G), DCM, HCM, intestinal pseudo-obstruction, and telethonin deficiency. However, a large number of affected patients were clinically diagnosed with limb-girdle 2G compared to other presenting phenotypes. DISCUSSION These findings suggest that the TCAP gene pathogenic mutations might not be a common cause of cardiomyopathies among Iranian patients. These gene disease-causing mutations may cause various manifestations, but it has a high prevalence among LGMD-2G, HCM, and DCM patients.
Collapse
Affiliation(s)
- Zahra Alaei
- Faculty of Basic Sciences, Islamic Azad University, East Tehran Branch, Tehran, Iran
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Zamani
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Genetics Laboratory, Rajaie Cardiovascular Medical and Research Center, Vali-E-Asr Avenue, Tehran, 1996911151, Iran.
| |
Collapse
|
6
|
Changes in the Mechanical Properties of Fast and Slow Skeletal Muscle after 7 and 21 Days of Restricted Activity in Rats. Int J Mol Sci 2023; 24:ijms24044141. [PMID: 36835551 PMCID: PMC9966780 DOI: 10.3390/ijms24044141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Disuse muscle atrophy is usually accompanied by changes in skeletal muscle structure, signaling, and contractile potential. Different models of muscle unloading can provide valuable information, but the protocols of experiments with complete immobilization are not physiologically representative of a sedentary lifestyle, which is highly prevalent among humans now. In the current study, we investigated the potential effects of restricted activity on the mechanical characteristics of rat postural (soleus) and locomotor (extensor digitorum longus, EDL) muscles. The restricted-activity rats were kept in small Plexiglas cages (17.0 × 9.6 × 13.0 cm) for 7 and 21 days. After this, soleus and EDL muscles were collected for ex vivo mechanical measurements and biochemical analysis. We demonstrated that while a 21-day movement restriction affected the weight of both muscles, in soleus muscle we observed a greater decrease. The maximum isometric force and passive tension in both muscles also significantly changed after 21 days of movement restriction, along with a decrease in the level of collagen 1 and 3 mRNA expression. Furthermore, the collagen content itself changed only in soleus after 7 and 21 days of movement restriction. With regard to cytoskeletal proteins, in our experiment we observed a significant decrease in telethonin in soleus, and a similar decrease in desmin and telethonin in EDL. We also observed a shift towards fast-type myosin heavy chain expression in soleus, but not in EDL. In summary, in this study we showed that movement restriction leads to profound specific changes in the mechanical properties of fast and slow skeletal muscles. Future studies may include evaluation of signaling mechanisms regulating the synthesis, degradation, and mRNA expression of the extracellular matrix and scaffold proteins of myofibers.
Collapse
|
7
|
Chen Z, Saini M, Koh JS, Prasad K, Koh SH, Tay KSS, Lee M, Tan YJ, Ng ASL, Tay SKH, Tan KB, Tandon A, Tan JMM, Chai JYH. Unique Clinical, Radiological and Histopathological Characteristics of a Southeast Asian Cohort of Patients with Limb-Girdle Muscular Dystrophy 2G/LGMD-R7-Telethonin-Related. J Neuromuscul Dis 2023; 10:91-106. [PMID: 36463458 DOI: 10.3233/jnd-221517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM We describe a cohort of five patients with limb-girdle muscular dystrophy (LGMD) 2G/LGMD-R7 in a South-east Asian cohort. BACKGROUND LGMD2G/LGMD-R7-telethonin-related is caused by mutations in the TCAP gene that encodes for telethonin. METHODS We identified consecutive patients with LGMD2G/LGMD-R7-telethonin-related, diagnosed at the National Neuroscience Institute (NNI) and National University Hospital (NUH) between January 2000 and June 2021. RESULTS At onset, three patients presented with proximal lower limb weakness, one patient presented with Achilles tendon contractures, and one patient presented with delayed gross motor milestones. At last follow up, three patients had a limb girdle pattern of muscle weakness and two had a facioscapular humeral pattern of weakness. Whole body muscle MRI performed for one patient with a facioscapular-humeral pattern of weakness showed a pattern of muscle atrophy similar to facioscapular-humeral dystrophy. One patient had histological features consistent with myofibrillar myopathy; electron microscopy confirmed the disruption of myofibrillar architecture. One patients also had reduced staining to telethonin antibody on immunohistochemistry. CONCLUSION We report the unique clinical and histological features of a Southeast Asian cohort of five patients with LGMD2G/LGMD-R7-telethonin-related muscular dystrophy and further expand its clinical and histopathological spectrum.
Collapse
Affiliation(s)
- Zhiyong Chen
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Monica Saini
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Jasmine S Koh
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Kalpana Prasad
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Swee Hoon Koh
- Neuromuscular Laboratory, National Neuroscience Institute, Singapore
| | - Karine S S Tay
- Neuromuscular Laboratory, National Neuroscience Institute, Singapore
| | - Ming Lee
- Department of Pathology, Singapore General Hospital, Singapore
| | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Singapore.,Duke NUS Graduate Medical School, Singapore
| | - Stacey Kiat Hong Tay
- Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kong Bing Tan
- Department of Pathology, National University Hospital, Singapore
| | - Ankit Tandon
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore
| | - Jeane M M Tan
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Josiah Y H Chai
- Department of Neurology, National Neuroscience Institute, Singapore.,Neuromuscular Laboratory, National Neuroscience Institute, Singapore
| |
Collapse
|
8
|
Scripture-Adams DD, Chesmore KN, Barthélémy F, Wang RT, Nieves-Rodriguez S, Wang DW, Mokhonova EI, Douine ED, Wan J, Little I, Rabichow LN, Nelson SF, Miceli MC. Single nuclei transcriptomics of muscle reveals intra-muscular cell dynamics linked to dystrophin loss and rescue. Commun Biol 2022; 5:989. [PMID: 36123393 PMCID: PMC9485160 DOI: 10.1038/s42003-022-03938-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/01/2022] [Indexed: 02/05/2023] Open
Abstract
In Duchenne muscular dystrophy, dystrophin loss leads to chronic muscle damage, dysregulation of repair, fibro-fatty replacement, and weakness. We develop methodology to efficiently isolate individual nuclei from minute quantities of frozen skeletal muscle, allowing single nuclei sequencing of irreplaceable archival samples and from very small samples. We apply this method to identify cell and gene expression dynamics within human DMD and mdx mouse muscle, characterizing effects of dystrophin rescue by exon skipping therapy at single nuclei resolution. DMD exon 23 skipping events are directly observed and increased in myonuclei from treated mice. We describe partial rescue of type IIa and IIx myofibers, expansion of an MDSC-like myeloid population, recovery of repair/remodeling M2-macrophage, and repression of inflammatory POSTN1 + fibroblasts in response to exon skipping and partial dystrophin restoration. Use of this method enables exploration of cellular and transcriptomic mechanisms of dystrophin loss and repair within an intact muscle environment. Our initial findings will scaffold our future work to more directly examine muscular dystrophies and putative recovery pathways.
Collapse
Affiliation(s)
- Deirdre D Scripture-Adams
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kevin N Chesmore
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Florian Barthélémy
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard T Wang
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shirley Nieves-Rodriguez
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Derek W Wang
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, USA
- Amgen, Thousand Oaks, CA, USA
| | - Ekaterina I Mokhonova
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emilie D Douine
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jijun Wan
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Isaiah Little
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laura N Rabichow
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stanley F Nelson
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - M Carrie Miceli
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Findings of limb-girdle muscular dystrophy R7 telethonin-related patients from a Chinese neuromuscular center. Neurogenetics 2022; 23:37-44. [PMID: 34982307 DOI: 10.1007/s10048-021-00681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/23/2021] [Indexed: 12/29/2022]
Abstract
Limb-girdle muscular dystrophy (LGMD) is a group of clinically and genetically heterogeneous neuromuscular disorders. LGMD-R7, which is caused by telethonin gene (TCAP) mutations, is one of the rarest forms of LGMD, and only a small number of LGMD-R7 cases have been described and mostly include patients from Brazil. A total of two LGMD-R7 patients were enrolled at a Chinese neuromuscular center. Demographic and clinical data were collected. Laboratory investigations and electromyography were performed. Routine and immunohistochemistry staining of muscle specimens was performed, and a next-generation sequencing panel array for genes associated with hereditary neuromuscular disorders was used for analysis. The patients exhibited predominant muscle weakness. Electromyography revealed myopathic changes. The muscle biopsy showed myopathic features, such as increased fiber size variation, muscle fiber atrophy and regeneration, slight hyperplasia of the connective tissue, and disarray of the myofibrillar network. Two patients were confirmed to have mutations in the open reading frame of TCAP by next-generation sequencing. One patient had compound heterozygous mutations, and the other patient harbored a novel homozygous mutation. Western blotting analysis of the skeletal muscle lysate confirmed the absence of telethonin in the patients. We described two LGMD-R7 patients presenting a classical LGMD phenotype and a novel homozygous TCAP mutation. Our research expands the spectrum of LGMD-R7 due to TCAP mutations based on patients from a Chinese neuromuscular center.
Collapse
|
10
|
Cotta A, Carvalho E, da-Cunha-Júnior AL, Valicek J, Navarro MM, Junior SB, da Silveira EB, Lima MI, Cordeiro BA, Cauhi AF, Menezes MM, Nunes SV, Vargas AP, Neto RX, Paim JF. Muscle biopsy essential diagnostic advice for pathologists. SURGICAL AND EXPERIMENTAL PATHOLOGY 2021. [DOI: 10.1186/s42047-020-00085-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Muscle biopsies are important diagnostic procedures in neuromuscular practice. Recent advances in genetic analysis have profoundly modified Myopathology diagnosis.
Main body
The main goals of this review are: (1) to describe muscle biopsy techniques for non specialists; (2) to provide practical information for the team involved in the diagnosis of muscle diseases; (3) to report fundamental rules for muscle biopsy site choice and adequacy; (4) to highlight the importance of liquid nitrogen in diagnostic workup. Routine techniques include: (1) histochemical stains and reactions; (2) immunohistochemistry and immunofluorescence; (3) electron microscopy; (4) mitochondrial respiratory chain enzymatic studies; and (5) molecular studies. The diagnosis of muscle disease is a challenge, as it should integrate data from different techniques.
Conclusion
Formalin-fixed paraffin embedded muscle samples alone almost always lead to inconclusive or unspecific results. Liquid nitrogen frozen muscle sections are imperative for neuromuscular diagnosis. Muscle biopsy interpretation is possible in the context of detailed clinical, neurophysiological, and serum muscle enzymes data. Muscle imaging studies are strongly recommended in the diagnostic workup. Muscle biopsy is useful for the differential diagnosis of immune mediated myopathies, muscular dystrophies, congenital myopathies, and mitochondrial myopathies. Muscle biopsy may confirm the pathogenicity of new gene variants, guide cost-effective molecular studies, and provide phenotypic diagnosis in doubtful cases. For some patients with mitochondrial myopathies, a definite molecular diagnosis may be achieved only if performed in DNA extracted from muscle tissue due to organ specific mutation load.
Collapse
|
11
|
Chen H, Xu G, Lin F, Jin M, Cai N, Qiu L, Ye Z, Wang L, Lin M, Wang N. Clinical and genetic characterization of limb girdle muscular dystrophy R7 telethonin-related patients from three unrelated Chinese families. Neuromuscul Disord 2019; 30:137-143. [PMID: 32005491 DOI: 10.1016/j.nmd.2019.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/30/2019] [Accepted: 12/13/2019] [Indexed: 02/02/2023]
Abstract
Limb girdle muscular dystrophy LGMD R7 telethonin-related is a rare autosomal recessive muscle disorder characterized by proximal muscle weakness of pelvic and shoulder girdles. Mutation in TCAP is responsible for LGMD R7, and the disease has a wide geographic distribution in diverse populations, but genotype-phenotype relationships remain unclear. We collected 5 LGMD R7 patients from three unrelated Chinese families. The average onset age was 16 ± 1.41; the initial symptoms included progressive proximal muscle weakness in limbs, difficulty in fast running, and asymmetric muscle atrophy in calves. Muscle MR imaging showed varying severity of fatty infiltration in the pelvic girdle, thigh, and calf muscles, and the severity of muscle infiltration was related to the length of the disease course. Muscle histopathology revealed aberrantly sized muscle fibers, internal nuclei, split fibers, rimmed vacuoles, monocyte invasion, and necrotic fibers. Sequencing identified one novel and one previously reported TCAP mutation. Our study extends the known distribution of this rare muscular dystrophy and presents the first detailed clinical and genetic characterizations of LGMD R7 cases from the Chinese population. Our work expands the mutation spectrum known for LGMD R7 and emphasizes the need for clinicians to consider TCAP mutations when evaluating patients with symptoms of limb girdle muscular dystrophy.
Collapse
Affiliation(s)
- Haizhu Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China
| | - Guorong Xu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China
| | - Feng Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China
| | - Ming Jin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China
| | - Naiqing Cai
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China
| | - Liangliang Qiu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China
| | - Zhixian Ye
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China
| | - Lili Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China
| | - Minting Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China; Fujian Key Laboratory of Molecular Neurology, Fuzhou, Fujian 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China; Fujian Key Laboratory of Molecular Neurology, Fuzhou, Fujian 350005, China.
| |
Collapse
|
12
|
Blanco-Palmero VA, Hernández-Laín A, Uriarte-Pérez de Urabayen D, Cantero-Montenegro D, Olivé M, Domínguez-González C. Late onset distal myopathy: A new telethoninopathy. Neuromuscul Disord 2018; 29:80-83. [PMID: 30553702 DOI: 10.1016/j.nmd.2018.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/09/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
Affiliation(s)
| | | | | | - Diana Cantero-Montenegro
- Servicio de Neuropatología, Instituto de Investigación, Hospital Universitario 12 de Octubre, Spain
| | - Montse Olivé
- Servicio de Anatomía Patológica, Hospital Universitario de Bellvitge, Spain
| | | |
Collapse
|
13
|
Chamova T, Bichev S, Todorov T, Gospodinova M, Taneva A, Kastreva K, Zlatareva D, Krupev M, Hadjiivanov R, Guergueltcheva V, Grozdanova L, Tzoneva D, Huebner A, V der Hagen M, Schoser B, Lochmüller H, Todorova A, Tournev I. Limb girdle muscular dystrophy 2G in a religious minority of Bulgarian Muslims homozygous for the c.75G>A, p.Trp25X mutation. Neuromuscul Disord 2018; 28:625-632. [PMID: 29935994 DOI: 10.1016/j.nmd.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 10/16/2022]
Abstract
Mutations in TCAP gene cause autosomal recessive limb-girdle muscular dystrophy type 2G (LGMD2G), congenital muscular dystrophy and autosomal dominant dilated and hypertrophic cardiomyopathy. We studied 18 affected individuals from 12 pedigrees, belonging to a Bulgarian Muslim minority from the South-West of Bulgaria, homozygous for the c.75G>A, p.Trp25X mutation in TCAP gene. The heterozygous carrier rate of p.Trp25X among 100 newborns in this region was found to be 2%. The clinical features in the Bulgarian TCAP group include disease onset in the first to the third decade of life, proximal muscle weakness in the lower limbs, followed or accompanied by difficulties in ankle dorsiflexion and involvement of the proximal muscles of the upper limbs 5-9 years after the disease onset. Asymmetry between left and right was present in more than 20% of the affected. Respiratory and cardiac functions were not affected. On the MRI the muscles of the posterior pelvic area, thigh and anterior leg were predominantly affected, while sartorius, gracilis and biceps femoris muscles remained relatively spared. In conclusion, LGMD2G appears to be a common form among Bulgarian Muslims. Homozygosity for c.75G>A, p.Trp25X is associated with a homogeneous clinical presentation, but the clinical course and severity of the disease show inter- and intra-familial variation.
Collapse
Affiliation(s)
- Teodora Chamova
- Department of Neurology, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria.
| | - Stoyan Bichev
- National Genetics Laboratory, Medical University, Sofia, Bulgaria
| | - Tihomir Todorov
- Genetic Medico-Diagnostic Laboratory 'Genica", Sofia, Bulgaria
| | - Mariana Gospodinova
- Department of Cardiology, Medical Institute of Ministry of Interior Affairs, Sofia, Bulgaria
| | - Ani Taneva
- Department of Neurology, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria
| | - Kristina Kastreva
- Department of Neurology, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria
| | - Dora Zlatareva
- Department of Diagnostic Imaging, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria
| | - Martin Krupev
- Department of Diagnostic Imaging, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria
| | | | | | - Liliana Grozdanova
- Department of Medical genetic, University Hospital "St. George", Plovdiv, Bulgaria
| | - Dochka Tzoneva
- Department of Anesthesiology and Intensive Care, University Hospital "Alexandrovska", Sofia, Bulgaria
| | - Angela Huebner
- Children's Hospital Technical University Dresden, Germany
| | | | - Benedikt Schoser
- Friedrich-Baur-Institut, Neurologische Klinik, Klinikum der Universität München, München, Germany
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Albena Todorova
- Genetic Medico-Diagnostic Laboratory 'Genica", Sofia, Bulgaria; Department of Medical Chemistry and Biochemistry, Sofia, Bulgaria
| | - Ivailo Tournev
- Department of Neurology, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria; Department of Cognitive Science and Psychology, New Bulgarian University, Sofia, Bulgaria
| |
Collapse
|
14
|
Brusa R, Magri F, Papadimitriou D, Govoni A, Del Bo R, Ciscato P, Savarese M, Cinnante C, Walter MC, Abicht A, Bulst S, Corti S, Moggio M, Bresolin N, Nigro V, Comi GP. A new case of limb girdle muscular dystrophy 2G in a Greek patient, founder effect and review of the literature. Neuromuscul Disord 2018; 28:532-537. [PMID: 29759638 DOI: 10.1016/j.nmd.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/16/2018] [Accepted: 04/10/2018] [Indexed: 12/01/2022]
Abstract
Limb girdle muscular dystrophy (LGMD) type 2G is a rare form of muscle disease, described only in a few patients worldwide, caused by mutations in TCAP gene, encoding the protein telethonin. It is characterised by proximal limb muscle weakness associated with distal involvement of lower limbs, starting in the first or second decade of life. We describe the case of a 37-year-old woman of Greek origin, affected by disto-proximal lower limb weakness. No cardiac or respiratory involvement was detected. Muscle biopsy showed myopathic changes with type I fibre hypotrophy, cytoplasmic vacuoles, lipid overload, multiple central nuclei and fibre splittings; ultrastructural examination showed metabolic abnormalities. Next generation sequencing analysis detected a homozygous frameshift mutation in the TCAP gene (c.90_91del), previously described in one Turkish family. Immunostaining and Western blot analysis showed complete absence of telethonin. Interestingly, Single Nucleotide Polymorphism analysis of the 10 Mb genomic region containing the TCAP gene showed a shared homozygous haplotype of both the Greek and the Turkish patients, thus suggesting a possible founder effect of TCAP gene c.90_91del mutation in this part of the Mediterranean area.
Collapse
Affiliation(s)
- Roberta Brusa
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Magri
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Dimitra Papadimitriou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, Athens, 115 27, Greece
| | - Alessandra Govoni
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Del Bo
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Patrizia Ciscato
- Neuromuscular Unit, Department of Neurological Sciences, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, Italy
| | - Marco Savarese
- "Luigi Vanvitelli" University and Telethon Institute of Genetics and Medicine (TIGEM), Italy; Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Claudia Cinnante
- U.O. Neuroradiologia, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Angela Abicht
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany; Medical Genetic Centre, Munich, Germany
| | | | - Stefania Corti
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular Unit, Department of Neurological Sciences, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Vincenzo Nigro
- "Luigi Vanvitelli" University and Telethon Institute of Genetics and Medicine (TIGEM), Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
15
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
16
|
Ikenberg E, Karin I, Ertl-Wagner B, Abicht A, Bulst S, Krause S, Schoser B, Reilich P, Walter MC. Rare diagnosis of telethoninopathy (LGMD2G) in a Turkish patient. Neuromuscul Disord 2017; 27:856-860. [PMID: 28666572 DOI: 10.1016/j.nmd.2017.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/01/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
Telethoninopathy is one of the rarest forms of Limb-girdle muscular dystrophy (LGMD). So far, only a small number of LGMD type 2 G (LGMD2G) patients have been described, mostly patients from Brazil. Here we present a 35-year-old female patient of Turkish ethnicity with LGMD2G due to a novel homozygous frame-shift mutation c.90_91del (p.Ser31Hisfs*11) in the telethonin gene, probably leading to truncated protein or nonsense mediated decay. Myalgia and walking on tiptoes were the first symptoms starting in early childhood, around age 22 proximal, later distal leg muscles became affected. Muscle biopsy showed a degenerative myopathy with lobulated fibers, creatine kinase levels were elevated to 1200 U/l. No cardiomyopathy has been detected but ventricular extrasystoles were treated with verapamil. Even though telethoninopathy represents a rare condition, testing for LGMD2G should be included into the diagnostic work-up of mild myopathies with early toe walking and distal and proximal involvement.
Collapse
Affiliation(s)
- Elena Ikenberg
- Friedrich-Baur-Institute, Dept. of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Ivan Karin
- Friedrich-Baur-Institute, Dept. of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Birgit Ertl-Wagner
- Dept. of Radiology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Angela Abicht
- Friedrich-Baur-Institute, Dept. of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany; Medical Genetics Center - MGZ, Munich, Germany
| | | | - Sabine Krause
- Friedrich-Baur-Institute, Dept. of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Dept. of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Peter Reilich
- Friedrich-Baur-Institute, Dept. of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute, Dept. of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany.
| |
Collapse
|
17
|
Affiliation(s)
- Ana Cotta
- Department of Pathology, Rede SARAH de Hospitais de Reabilitação, Belo Horizonte, Brazil
| | - Julia Filardi Paim
- Department of Pathology, Rede SARAH de Hospitais de Reabilitação, Belo Horizonte, Brazil
| |
Collapse
|
18
|
Ravenscroft G, Davis MR, Lamont P, Forrest A, Laing NG. New era in genetics of early-onset muscle disease: Breakthroughs and challenges. Semin Cell Dev Biol 2016; 64:160-170. [PMID: 27519468 DOI: 10.1016/j.semcdb.2016.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Early-onset muscle disease includes three major entities that present generally at or before birth: congenital myopathies, congenital muscular dystrophies and congenital myasthenic syndromes. Almost exclusively there is weakness and hypotonia, although cases manifesting hypertonia are increasingly being recognised. These diseases display a wide phenotypic and genetic heterogeneity, with the uptake of next generation sequencing resulting in an unparalleled extension of the phenotype-genotype correlations and "diagnosis by sequencing" due to unbiased sequencing. Perhaps now more than ever, detailed clinical evaluations are necessary to guide the genetic diagnosis; with arrival at a molecular diagnosis frequently occurring following dialogue between the molecular geneticist, the referring clinician and the pathologist. There is an ever-increasing blurring of the boundaries between the congenital myopathies, dystrophies and myasthenic syndromes. In addition, many novel disease genes have been described and new insights have been gained into skeletal muscle development and function. Despite the advances made, a significant percentage of patients remain without a molecular diagnosis, suggesting that there are many more human disease genes and mechanisms to identify. It is now technically- and clinically-feasible to perform next generation sequencing for severe diseases on a population-wide scale, such that preconception-carrier screening can occur. Newborn screening for selected early-onset muscle diseases is also technically and ethically-achievable, with benefits to the patient and family from early management of these diseases and should also be implemented. The need for world-wide Reference Centres to meticulously curate polymorphisms and mutations within a particular gene is becoming increasingly apparent, particularly for interpretation of variants in the large genes which cause early-onset myopathies: NEB, RYR1 and TTN. Functional validation of candidate disease variants is crucial for accurate interpretation of next generation sequencing and appropriate genetic counseling. Many published "pathogenic" variants are too frequent in control populations and are thus likely rare polymorphisms. Mechanisms need to be put in place to systematically update the classification of variants such that accurate interpretation of variants occurs. In this review, we highlight the recent advances made and the challenges ahead for the molecular diagnosis of early-onset muscle diseases.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, Australia
| | - Phillipa Lamont
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia; Neurogenetic unit, Dept of Neurology, Royal Perth Hospital and The Perth Children's Hospital, Western Australia, Australia
| | - Alistair Forrest
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia; Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, Australia.
| |
Collapse
|
19
|
de Fuenmayor-Fernández de la Hoz CP, Hernández-Laín A, Olivé M, Fernández-Marmiesse A, Domínguez-González C. Novel mutation in TCAP manifesting with asymmetric calves and early-onset joint retractions. Neuromuscul Disord 2016; 26:749-753. [PMID: 27618135 DOI: 10.1016/j.nmd.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/18/2016] [Accepted: 07/11/2016] [Indexed: 11/28/2022]
Abstract
A 29-year-old man, born from consanguineous parents, started with toe walking and frequent falls during his second year of life. He developed weakness in lower limbs during the first decade that subsequently extended to upper limbs. On examination, the patient had weakness in proximal muscles of all four limbs and in the tibialis anterior muscle. In addition, he had bilateral Achilles and patellar contractures, bilateral scapular winging, asymmetric calves and a positive Beevor sign, an upward movement of the umbilicus on contraction of rectus femoris due to weakness in the lower part. The muscle biopsy showed dystrophic changes and lobulated fibers. Genetic analysis through a next-generation sequencing panel of genes related to neuromuscular disorders revealed a novel homozygous nonsense mutation (p.Tyr85*) in the TCAP gene. Subsequent western blot assay showed a complete telethonin deficiency. Our observation expands the phenotypic spectrum of TCAP mutations and indicates that telethonin deficiency should be considered in the differential diagnosis of patients presenting with asymmetric calves and early joint retractions.
Collapse
Affiliation(s)
| | - Aurelio Hernández-Laín
- Unidad de Neuromuscular, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de Investigación I+12, Madrid, Spain; Servicio de Neuropatología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Montse Olivé
- Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ana Fernández-Marmiesse
- Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas (UDyTEMC), Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristina Domínguez-González
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, Spain; Unidad de Neuromuscular, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de Investigación I+12, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), grupo U-723, Spain
| |
Collapse
|
20
|
Cotta A, Carvalho E, da-Cunha-Júnior AL, Paim JF, Navarro MM, Valicek J, Menezes MM, Nunes SV, Xavier Neto R, Takata RI, Vargas AP. Common recessive limb girdle muscular dystrophies differential diagnosis: why and how? ARQUIVOS DE NEURO-PSIQUIATRIA 2015; 72:721-34. [PMID: 25252238 DOI: 10.1590/0004-282x20140110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/26/2014] [Indexed: 01/27/2023]
Abstract
Limb girdle muscular dystrophies are heterogeneous autosomal hereditary neuromuscular disorders. They produce dystrophic changes on muscle biopsy and they are associated with mutations in several genes involved in muscular structure and function. Detailed clinical, laboratorial, imaging, diagnostic flowchart, photographs, tables, and illustrated diagrams are presented for the differential diagnosis of common autosomal recessive limb girdle muscular dystrophy subtypes diagnosed nowadays at one reference center in Brazil. Preoperative image studies guide muscle biopsy site selection. Muscle involvement image pattern differs depending on the limb girdle muscular dystrophy subtype. Muscle involvement is conspicuous at the posterior thigh in calpainopathy and fukutin-related proteinopathy; anterior thigh in sarcoglycanopathy; whole thigh in dysferlinopathy, and telethoninopathy. The precise differential diagnosis of limb girdle muscular dystrophies is important for genetic counseling, prognostic orientation, cardiac and respiratory management. Besides that, it may probably, in the future, provide specific genetic therapies for each subtype.
Collapse
Affiliation(s)
- Ana Cotta
- Departamento de Patologia, Rede SARAH de Hospitais de Reabilitação, Brazil
| | - Elmano Carvalho
- Departamento de Neurofisiologia, Rede SARAH de Hospitais de Reabilitação, Brazil
| | | | - Júlia Filardi Paim
- Departamento de Patologia, Rede SARAH de Hospitais de Reabilitação, Brazil
| | - Monica M Navarro
- Departamento de Pediatria, Rede SARAH de Hospitais de Reabilitação, Brazil
| | - Jaquelin Valicek
- Departamento de Neurofisiologia, Rede SARAH de Hospitais de Reabilitação, Brazil
| | | | | | - Rafael Xavier Neto
- Departamento de Neurologia, Rede SARAH de Hospitais de Reabilitação, Brazil
| | - Reinaldo Issao Takata
- Departamento de Biologia Molecular, Rede SARAH de Hospitais de Reabilitação, Brasília DF, Brazil
| | | |
Collapse
|
21
|
Barresi R, Morris C, Hudson J, Curtis E, Pickthall C, Bushby K, Davies NP, Straub V. Conserved expression of truncated telethonin in a patient with limb-girdle muscular dystrophy 2G. Neuromuscul Disord 2014; 25:349-52. [PMID: 25724973 DOI: 10.1016/j.nmd.2014.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/04/2014] [Accepted: 12/11/2014] [Indexed: 11/19/2022]
Abstract
Limb-girdle muscular dystrophy 2G is caused by mutations in the TCAP gene that encodes for telethonin. Here we describe a 49 year-old male patient of Indian descent presenting a classical LGMD phenotype. He had normal motor milestones but became noticeably slower in his early teens and was wheelchair bound by age 44. The muscle biopsy showed myopathic features and absence of labeling with an antibody to the C-terminal portion of telethonin. Sequence analysis of the TCAP gene revealed a novel homozygous mutation in exon 2, predicted to generate a truncated protein of 81 amino acids. Interestingly, an antibody for the full-length protein showed labeling on sections and a single band of ~10 kDa on Western blot. The truncated protein co-localized with filamin C at the Z-line. Our findings indicate that mutant telethonin can be incorporated into the sarcomere and that other LGMD2G patients with retention of telethonin expression may exist.
Collapse
Affiliation(s)
- Rita Barresi
- Rare Diseases Advisory Group Service for Neuromuscular Diseases, Muscle Immunoanalysis Unit, Dental Hospital, Richardson Road, Newcastle upon Tyne, UK; The JW Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | - Charlotte Morris
- Rare Diseases Advisory Group Service for Neuromuscular Diseases, Muscle Immunoanalysis Unit, Dental Hospital, Richardson Road, Newcastle upon Tyne, UK
| | - Judith Hudson
- The JW Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Elizabeth Curtis
- Department of Cellular Pathology, University Hospital of Birmingham NHS Foundation Trust, Birmingham, UK
| | - Clare Pickthall
- The JW Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Kate Bushby
- The JW Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Nicholas P Davies
- Department of Neurology, University Hospital of Birmingham NHS Foundation Trust, Birmingham, UK
| | - Volker Straub
- The JW Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Cotta A, Paim JF, da-Cunha-Junior AL, Neto RX, Nunes SV, Navarro MM, Valicek J, Carvalho E, Yamamoto LU, Almeida CF, Braz SV, Takata RI, Vainzof M. Limb girdle muscular dystrophy type 2G with myopathic-neurogenic motor unit potentials and a novel muscle image pattern. BMC Clin Pathol 2014; 14:41. [PMID: 25298746 PMCID: PMC4188961 DOI: 10.1186/1472-6890-14-41] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/24/2014] [Indexed: 11/18/2022] Open
Abstract
Background Limb girdle muscular dystrophy type 2G (LGMD2G) is a subtype of autosomal recessive muscular dystrophy caused by mutations in the telethonin gene. There are few LGMD2G patients worldwide reported, and this is the first description associated with early tibialis anterior sparing on muscle image and myopathic-neurogenic motor unit potentials. Case presentation Here we report a 31 years old caucasian male patient with progressive gait disturbance, and severe lower limb proximal weakness since the age of 20 years, associated with subtle facial muscle weakness. Computed tomography demonstrated soleus, medial gastrocnemius, and diffuse thigh muscles involvement with tibialis anterior sparing. Electromyography disclosed both neurogenic and myopathic motor unit potentials. Muscle biopsy demonstrated large groups of atrophic and hypertrophic fibers, frequent fibers with intracytoplasmic rimmed vacuoles full of autophagic membrane and sarcoplasmic debris, and a total deficiency of telethonin. Molecular investigation identified the common homozygous c.157C > T in the TCAP gene. Conclusion This report expands the phenotypic variability of telethoninopathy/ LGMD2G, including: 1) mixed neurogenic and myopathic motor unit potentials, 2) facial weakness, and 3) tibialis anterior sparing. Appropriate diagnosis in these cases is important for genetic counseling and prognosis.
Collapse
Affiliation(s)
- Ana Cotta
- Department of Pathology, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Julia Filardi Paim
- Department of Pathology, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | | | - Rafael Xavier Neto
- Department of Neurology, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Simone Vilela Nunes
- Department of Neurology, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Monica Magalhaes Navarro
- Departments of Pediatrics and Genetics, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Jaquelin Valicek
- Department of Neurophysiology, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Elmano Carvalho
- Department of Neurophysiology, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Lydia U Yamamoto
- Human Genome Research Center, University of São Paulo, São Paulo, Brazil
| | - Camila F Almeida
- Human Genome Research Center, University of São Paulo, São Paulo, Brazil
| | | | - Reinaldo Issao Takata
- Department of Molecular Biology, SARAH Network of Rehabilitation Hospitals, Brasília, Brazil
| | - Mariz Vainzof
- Human Genome Research Center, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Buyandelger B, Mansfield C, Knöll R. Mechano-signaling in heart failure. Pflugers Arch 2014; 466:1093-9. [PMID: 24531746 PMCID: PMC4033803 DOI: 10.1007/s00424-014-1468-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 02/07/2023]
Abstract
Mechanosensation and mechanotransduction are fundamental aspects of biology, but the link between physical stimuli and biological responses remains not well understood. The perception of mechanical stimuli, their conversion into biochemical signals, and the transmission of these signals are particularly important for dynamic organs such as the heart. Various concepts have been introduced to explain mechanosensation at the molecular level, including effects on signalosomes, tensegrity, or direct activation (or inactivation) of enzymes. Striated muscles, including cardiac myocytes, differ from other cells in that they contain sarcomeres which are essential for the generation of forces and which play additional roles in mechanosensation. The majority of cardiomyopathy causing candidate genes encode structural proteins among which titin probably is the most important one. Due to its elastic elements, titin is a length sensor and also plays a role as a tension sensor (i.e., stress sensation). The recent discovery of titin mutations being a major cause of dilated cardiomyopathy (DCM) also underpins the importance of mechanosensation and mechanotransduction in the pathogenesis of heart failure. Here, we focus on sarcomere-related mechanisms, discuss recent findings, and provide a link to cardiomyopathy and associated heart failure.
Collapse
Affiliation(s)
- Byambajav Buyandelger
- Imperial College, British Heart Foundation-Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | | | | |
Collapse
|
24
|
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Heart failure, which contributes significantly to the incidence and prevalence of cardiovascular-related diseases, can be the result of a myriad of diverse aetiologies including viral infections, coronary heart disease and genetic abnormalities—just to name a few. Interestingly, almost every type of heart failure is characterized by the loss of cardiac myocytes, either via necrosis, apoptosis or autophagy. While the former for a long time mainly has been characterized by passive loss of cells and only the latter two have been regarded as active processes, a new view is now emerging, whereby all three forms of cell death are regarded as different types of programmed cell death which can be induced via different stimuli and pathways, most of which are probably not well understood (Kung et al., Circulation Research 108(8):1017–1036, 2011). Here, we focus on the sarcomeric Z-disc, Z-disc transcriptional coupling and its role in pro-survival pathways as well as in striated muscle specific forms of cell death (sarcomeroptosis) and mechanically induced apoptosis or mechanoptosis.
Collapse
Affiliation(s)
- Ralph Knöll
- Myocardial Genetics, British Heart Foundation-Centre of Research Excellence, National Heart & Lung Institute, Imperial College, Hammersmith Campus, London, UK.
| | | |
Collapse
|
25
|
Foletta VC, Brown EL, Cho Y, Snow RJ, Kralli A, Russell AP. Ndrg2 is a PGC-1α/ERRα target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:3112-3123. [PMID: 24008097 DOI: 10.1016/j.bbamcr.2013.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/17/2013] [Accepted: 08/09/2013] [Indexed: 01/02/2023]
Abstract
The stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes. Here, we show that Ndrg2 is a target of a peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and estrogen-related receptor alpha (ERRα) transcriptional program and is induced in response to endurance exercise, a physiological stress known also to increase PGC-1α/ERRα activity. Analyses of global gene and protein expression profiles in C2C12 myotubes with reduced levels of NDRG2, suggest that NDRG2 affects muscle growth, contractile properties, MAPK signaling, ion and vesicle transport and oxidative phosphorylation. Indeed, suppression of NDRG2 in myotubes increased protein synthesis and the expression of fast glycolytic myosin heavy chain isoforms, while reducing the expression of embryonic myosin Myh3, other contractile-associated genes and the MAPK p90 RSK1. Conversely, enhanced expression of NDRG2 reduced protein synthesis, and furthermore, partially blocked the increased protein synthesis rates elicited by a constitutively active form of ERRα. In contrast, suppressing or increasing levels of NDRG2 did not affect mRNA expression of genes involved in mitochondrial biogenesis that are regulated by PGC-1α or ERRα. This study shows that in C2C12 myotubes Ndrg2 is a novel PGC-1α/ERRα transcriptional target, which influences protein turnover and the regulation of genes involved in muscle contraction and function.
Collapse
Affiliation(s)
- Victoria C Foletta
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia.
| | - Erin L Brown
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia
| | - Yoshitake Cho
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rod J Snow
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia
| | - Anastasia Kralli
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aaron P Russell
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia
| |
Collapse
|
26
|
Paim JF, Cotta A, Vargas AP, Navarro MM, Valicek J, Carvalho E, da-Cunha AL, Plentz E, Braz SV, Takata RI, Almeida CF, Vainzof M. Muscle phenotypic variability in limb girdle muscular dystrophy 2 G. J Mol Neurosci 2013; 50:339-44. [PMID: 23479141 DOI: 10.1007/s12031-013-9987-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/22/2013] [Indexed: 11/26/2022]
Abstract
Limb girdle muscular dystrophy type 2 G (LGMD2G) is caused by mutations in the telethonin gene. Only few families were described presenting this disease, and they are mainly Brazilians. Here, we identified one additional case carrying the same common c.157C > T mutation in the telethonin gene but with an atypical histopathological muscle pattern. In a female patient with a long duration of symptoms (46 years), muscle biopsy showed, in addition to telethonin deficiency, the presence of nemaline rods, type 1 fiber predominance, nuclear internalization, lobulated fibers, and mitochondrial paracrystalline inclusions. Her first clinical signs were identified at 8 years old, which include tiptoe walking, left lower limb deformity, and frequent falls. Ambulation loss occurred at 41 years old, and now, at 54 years old, she presented pelvic girdle atrophy, winging scapula, foot deformity with incapacity to perform ankle dorsiflexion, and absent tendon reflexes. The presence of nemaline bodies could be a secondary phenomenon, possibly associated with focal Z-line abnormalities of a long-standing disease. However, these new histopathological findings, characteristic of congenital myopathies, expand muscle phenotypic variability of telethoninopathy.
Collapse
Affiliation(s)
- Julia F Paim
- Surgical Pathology Department, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tabebordbar M, Wang ET, Wagers AJ. Skeletal muscle degenerative diseases and strategies for therapeutic muscle repair. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:441-75. [PMID: 23121053 DOI: 10.1146/annurev-pathol-011811-132450] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skeletal muscle is a highly specialized, postmitotic tissue that must withstand chronic mechanical and physiological stress throughout life to maintain proper contractile function. Muscle damage or disease leads to progressive weakness and disability, and manifests in more than 100 different human disorders. Current therapies to treat muscle degenerative diseases are limited mostly to the amelioration of symptoms, although promising new therapeutic directions are emerging. In this review, we discuss the pathological basis for the most common muscle degenerative diseases and highlight new and encouraging experimental and clinical opportunities to prevent or reverse these afflictions.
Collapse
Affiliation(s)
- Mohammadsharif Tabebordbar
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
28
|
Abstract
Current concepts of mechanosensation are general and applicable to almost every cell type. However, striated muscle cells are distinguished by their ability to generate strong forces via actin/myosin interaction, and this process is fine-tuned for optimum contractility. This aspect, unique for actively contracting cells, may be defined as "sensing of the magnitude and dynamics of contractility," as opposed to the well-known concepts of the "perception of extracellular mechanical stimuli." The acto/myosin interaction, by producing changes in ATP, ADP, Pi, and force on a millisecond timescale, may be regarded as a novel and previously unappreciated mechanosensory mechanism. In addition, sarcomeric mechanosensory structures, such as the Z-disc, are directly linked to autophagy, survival, and cell death-related pathways. One emerging example is telethonin and its ability to interfere with p53 metabolism and hence apoptosis (mechanoptosis). In this article, we introduce contractility per se as an important mechanosensory mechanism, and we differentiate extracellular from intracellular mechanosensory effects.
Collapse
Affiliation(s)
- Ralph Knöll
- Heart Science Section, National Heart & Lung Institute, Imperial College, London W12 0NN, UK.
| | | |
Collapse
|
29
|
Kojic S, Radojkovic D, Faulkner G. Muscle ankyrin repeat proteins: their role in striated muscle function in health and disease. Crit Rev Clin Lab Sci 2011; 48:269-94. [DOI: 10.3109/10408363.2011.643857] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
The sarcomeric Z-disc and Z-discopathies. J Biomed Biotechnol 2011; 2011:569628. [PMID: 22028589 PMCID: PMC3199094 DOI: 10.1155/2011/569628] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/12/2011] [Indexed: 02/06/2023] Open
Abstract
The sarcomeric Z-disc defines the lateral borders of the sarcomere and has primarily been seen as a structure important for mechanical stability. This view has changed dramatically within the last one or two decades. A multitude of novel Z-disc proteins and their interacting partners have been identified, which has led to the identification of additional functions and which have now been assigned to this structure. This includes its importance for intracellular signalling, for mechanosensation and mechanotransduction in particular, an emerging importance for protein turnover and autophagy, as well as its molecular links to the t-tubular system and the sarcoplasmic reticulum. Moreover, the discovery of mutations in a wide variety of Z-disc proteins, which lead to perturbations of several of the above-mentioned systems, gives rise to a diverse group of diseases which can be termed Z-discopathies. This paper provides a brief overview of these novel aspects as well as points to future research directions.
Collapse
|
31
|
|
32
|
Knöll R, Linke WA, Zou P, Miocic S, Kostin S, Buyandelger B, Ku CH, Neef S, Bug M, Schäfer K, Knöll G, Felkin LE, Wessels J, Toischer K, Hagn F, Kessler H, Didié M, Quentin T, Maier LS, Teucher N, Unsöld B, Schmidt A, Birks EJ, Gunkel S, Lang P, Granzier H, Zimmermann WH, Field LJ, Faulkner G, Dobbelstein M, Barton PJR, Sattler M, Wilmanns M, Chien KR. Telethonin deficiency is associated with maladaptation to biomechanical stress in the mammalian heart. Circ Res 2011; 109:758-69. [PMID: 21799151 DOI: 10.1161/circresaha.111.245787] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Telethonin (also known as titin-cap or t-cap) is a 19-kDa Z-disk protein with a unique β-sheet structure, hypothesized to assemble in a palindromic way with the N-terminal portion of titin and to constitute a signalosome participating in the process of cardiomechanosensing. In addition, a variety of telethonin mutations are associated with the development of several different diseases; however, little is known about the underlying molecular mechanisms and telethonin's in vivo function. OBJECTIVE Here we aim to investigate the role of telethonin in vivo and to identify molecular mechanisms underlying disease as a result of its mutation. METHODS AND RESULTS By using a variety of different genetically altered animal models and biophysical experiments we show that contrary to previous views, telethonin is not an indispensable component of the titin-anchoring system, nor is deletion of the gene or cardiac specific overexpression associated with a spontaneous cardiac phenotype. Rather, additional titin-anchorage sites, such as actin-titin cross-links via α-actinin, are sufficient to maintain Z-disk stability despite the loss of telethonin. We demonstrate that a main novel function of telethonin is to modulate the turnover of the proapoptotic tumor suppressor p53 after biomechanical stress in the nuclear compartment, thus linking telethonin, a protein well known to be present at the Z-disk, directly to apoptosis ("mechanoptosis"). In addition, loss of telethonin mRNA and nuclear accumulation of this protein is associated with human heart failure, an effect that may contribute to enhanced rates of apoptosis found in these hearts. CONCLUSIONS Telethonin knockout mice do not reveal defective heart development or heart function under basal conditions, but develop heart failure following biomechanical stress, owing at least in part to apoptosis of cardiomyocytes, an effect that may also play a role in human heart failure.
Collapse
Affiliation(s)
- Ralph Knöll
- Imperial College, National Heart & Lung Institute, British Heart Foundation, Centre for Research Excellence, Myocardial Genetics, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|