1
|
McDonald C, Camino E, Escandon R, Finkel RS, Fischer R, Flanigan K, Furlong P, Juhasz R, Martin AS, Villa C, Sweeney HL. Draft Guidance for Industry Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, and Related Dystrophinopathies - Developing Potential Treatments for the Entire Spectrum of Disease. J Neuromuscul Dis 2024; 11:499-523. [PMID: 38363616 DOI: 10.3233/jnd-230219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background Duchenne muscular dystrophy (DMD) and related dystrophinopathies are neuromuscular conditions with great unmet medical needs that require the development of effective medical treatments. Objective To aid sponsors in clinical development of drugs and therapeutic biological products for treating DMD across the disease spectrum by integrating advancements, patient registries, natural history studies, and more into a comprehensive guidance. Methods This guidance emerged from collaboration between the FDA, the Duchenne community, and industry stakeholders. It entailed a structured approach, involving multiple committees and boards. From its inception in 2014, the guidance underwent revisions incorporating insights from gene therapy studies, cardiac function research, and innovative clinical trial designs. Results The guidance provides a deeper understanding of DMD and its variants, focusing on patient engagement, diagnostic criteria, natural history, biomarkers, and clinical trials. It underscores patient-focused drug development, the significance of dystrophin as a biomarker, and the pivotal role of magnetic resonance imaging in assessing disease progression. Additionally, the guidance addresses cardiomyopathy's prominence in DMD and the burgeoning field of gene therapy. Conclusions The updated guidance offers a comprehensive understanding of DMD, emphasizing patient-centric approaches, innovative trial designs, and the importance of biomarkers. The focus on cardiomyopathy and gene therapy signifies the evolving realm of DMD research. It acts as a crucial roadmap for sponsors, potentially leading to improved treatments for DMD.
Collapse
Affiliation(s)
| | - Eric Camino
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rafael Escandon
- DGBI Consulting, LLC, Bainbridge Island, Washington, DC, USA
| | | | - Ryan Fischer
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Kevin Flanigan
- Center for Experimental Neurotherapeutics, Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pat Furlong
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rose Juhasz
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Ann S Martin
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Chet Villa
- Trinity Health Michigan, Grand Rapids, MI, USA
| | - H Lee Sweeney
- Cincinnati Children's Hospital Medical Center within the UC Department of Pediatrics, Cincinnati, OH, USA
| |
Collapse
|
2
|
Ishizuka T, Komaki H, Asahina Y, Nakamura H, Motohashi N, Takeshita E, Shimizu‐Motohashi Y, Ishiyama A, Yonee C, Maruyama S, Hida E, Aoki Y. Systemic administration of the antisense oligonucleotide
NS
‐089/
NCNP
‐02 for skipping of exon 44 in patients with Duchenne muscular dystrophy: Study protocol for a phase I/
II
clinical trial. Neuropsychopharmacol Rep 2023. [DOI: 10.1002/npr2.12335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Affiliation(s)
- Takami Ishizuka
- Clinical Research and Education Promotion Division National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Hirofumi Komaki
- Clinical Research and Education Promotion Division National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
- Department of Child Neurology National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Yasuko Asahina
- Clinical Research and Education Promotion Division National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Harumasa Nakamura
- Clinical Research and Education Promotion Division National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Norio Motohashi
- Department of Molecular Therapy National Institute of Neuroscience, National Center of Neurology and Psychiatry Tokyo Japan
| | - Eri Takeshita
- Department of Child Neurology National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Yuko Shimizu‐Motohashi
- Department of Child Neurology National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Akihiko Ishiyama
- Department of Child Neurology National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Chihiro Yonee
- Department of Pediatrics, Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima City Kagoshima Japan
| | - Shinsuke Maruyama
- Department of Pediatrics, Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima City Kagoshima Japan
| | - Eisuke Hida
- Department of Biostatistics and Data Science, Graduate School of Medicine Osaka University Osaka Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy National Institute of Neuroscience, National Center of Neurology and Psychiatry Tokyo Japan
| |
Collapse
|
3
|
Kiriaev L, Houweling PJ, North KN, Head SI. Loss of α-actinin-3 confers protection from eccentric contraction damage in fast-twitch EDL muscles from aged mdx dystrophic mice by reducing pathological fibre branching. Hum Mol Genet 2022; 31:1417-1429. [PMID: 34761268 PMCID: PMC9071495 DOI: 10.1093/hmg/ddab326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/14/2022] Open
Abstract
The common null polymorphism (R577X) in the ACTN3 gene is present in over 1.5 billion people worldwide and results in the absence of the protein α-actinin-3 from the Z-discs of fast-twitch skeletal muscle fibres. We have previously reported that this polymorphism is a modifier of dystrophin-deficient Duchenne Muscular Dystrophy. To investigate the mechanism underlying this, we use a double knockout (dk)Actn3KO/mdx (dKO) mouse model, which lacks both dystrophin and sarcomere α-actinin-3. We used dKO mice and mdx dystrophic mice at 12 months (aged) to investigate the correlation between morphological changes to the fast-twitch dKO EDL and the reduction in force deficit produced by an in vitro eccentric contraction protocol. In the aged dKO mouse, we found a marked reduction in fibre branching complexity that correlated with protection from eccentric contraction induced force deficit. Complex branches in the aged dKO EDL fibres (28%) were substantially reduced compared to aged mdx EDL fibres (68%), and this correlates with a graded force loss over three eccentric contractions for dKO muscles (~36% after first contraction, ~66% overall) compared to an abrupt drop in mdx upon the first eccentric contraction (~75% after first contraction, ~89% after three contractions). In dKO, protection from eccentric contraction damage was linked with a doubling of SERCA1 pump density the EDL. We propose that the increased oxidative metabolism of fast-twitch glycolytic fibres characteristic of the null polymorphism (R577X) and increase in SR Ca2+ pump proteins reduces muscle fibre branching and decreases susceptibility to eccentric injury in the dystrophinopathies.
Collapse
Affiliation(s)
- Leonit Kiriaev
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
| | - Peter J Houweling
- Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Kathryn N North
- Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Stewart I Head
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia
| |
Collapse
|
4
|
Kiriaev L, Kueh S, Morley JW, North KN, Houweling PJ, Head SI. Lifespan Analysis of Dystrophic mdx Fast-Twitch Muscle Morphology and Its Impact on Contractile Function. Front Physiol 2021; 12:771499. [PMID: 34950049 PMCID: PMC8689589 DOI: 10.3389/fphys.2021.771499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy is caused by the absence of the protein dystrophin from skeletal muscle and is characterized by progressive cycles of necrosis/regeneration. Using the dystrophin deficient mdx mouse model, we studied the morphological and contractile chronology of dystrophic skeletal muscle pathology in fast-twitch Extensor Digitorum Longus muscles from animals 4–22 months of age containing 100% regenerated muscle fibers. Catastrophically, the older age groups lost ∼80% of their maximum force after one eccentric contraction (EC) of 20% strain with the greatest loss of ∼92% recorded in senescent 22-month-old mdx mice. In old age groups, there was minimal force recovery ∼24% after 120 min, correlated with a dramatic increase in the number and complexity of branched fibers. This data supports our two-phase model where a “tipping point” is reached when branched fibers rupture irrevocably on EC. These findings have important implications for pre-clinical drug studies and genetic rescue strategies.
Collapse
Affiliation(s)
- Leonit Kiriaev
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
- *Correspondence: Leonit Kiriaev,
| | - Sindy Kueh
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - John W. Morley
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Kathryn N. North
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Peter J. Houweling
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Stewart I. Head
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Lim KRQ, Nguyen Q, Yokota T. Genotype-Phenotype Correlations in Duchenne and Becker Muscular Dystrophy Patients from the Canadian Neuromuscular Disease Registry. J Pers Med 2020; 10:E241. [PMID: 33238405 PMCID: PMC7712074 DOI: 10.3390/jpm10040241] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder generally caused by out-of-frame mutations in the DMD gene. In contrast, in-frame mutations usually give rise to the milder Becker muscular dystrophy (BMD). However, this reading frame rule does not always hold true. Therefore, an understanding of the relationships between genotype and phenotype is important for informing diagnosis and disease management, as well as the development of genetic therapies. Here, we evaluated genotype-phenotype correlations in DMD and BMD patients enrolled in the Canadian Neuromuscular Disease Registry from 2012 to 2019. Data from 342 DMD and 60 BMD patients with genetic test results were analyzed. The majority of patients had deletions (71%), followed by small mutations (17%) and duplications (10%); 2% had negative results. Two deletion hotspots were identified, exons 3-20 and exons 45-55, harboring 86% of deletions. Exceptions to the reading frame rule were found in 13% of patients with deletions. Surprisingly, C-terminal domain mutations were associated with decreased wheelchair use and increased forced vital capacity. Dp116 and Dp71 mutations were also linked with decreased wheelchair use, while Dp140 mutations significantly predicted cardiomyopathy. Finally, we found that 12.3% and 7% of DMD patients in the registry could be treated with FDA-approved exon 51- and 53-skipping therapies, respectively.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (Q.N.)
| | - Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (Q.N.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (Q.N.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada
| |
Collapse
|
6
|
Breukel A, Willmann R, Padberg G, Sterrenburg E, Meijer I. "The impact of European Neuromuscular Centre (ENMC) workshops on the neuromuscular field; 25 years on …". Neuromuscul Disord 2019; 29:330-340. [PMID: 30853171 DOI: 10.1016/j.nmd.2019.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/28/2019] [Indexed: 02/06/2023]
Abstract
Since 1992, the European Neuromuscular Centre facilitated workshops to bring experts in the field of neuromuscular disorders together. After organising more than 235 workshops, it is time to evaluate what impact these 25 years of ENMC workshops have had on the neuromuscular research field and on people affected by a neuromuscular condition. To measure this, workshop topics were retrospectively evaluated and bibliometric analyses on the citation scores of ENMC-derived publications were performed. In addition, a personalized survey was used to investigate the actual achievement and implementation of workshop deliverables. The evaluation of 25 years' workshop topics revealed a strong representation of muscular dystrophies, congenital and mitochondrial myopathies. The publications derived from ENMC workshops scored "high impact" as illustrated by the Mean Normalized Citation Score of 1.24. Also 16% of the ENMC papers belong to the top 10% best cited articles in the neuromuscular field. The main outcome of the personalised survey was that 90% of all workshop deliverables were started and either ongoing or completed. Of these deliverables, 78% were implemented in the field; bringing state-of-the-art knowledge and new collaborations to researchers and clinicians, improving designs of clinical trials and innovating tools to make accurate diagnoses.
Collapse
Affiliation(s)
- Alexandra Breukel
- European Neuromuscular Centre (ENMC), Lt. Generaal van Heutszlaan 6, Baarn 3743JN, The Netherlands.
| | - Raffaella Willmann
- Schweizerische Stiftung für die Erforschung der Muskelkrankheiten (FSRMM), Cortaillod, Switzerland
| | - George Padberg
- European Neuromuscular Centre (ENMC), Lt. Generaal van Heutszlaan 6, Baarn 3743JN, The Netherlands
| | | | | |
Collapse
|
7
|
Evaluation of serum MMP-9 as predictive biomarker for antisense therapy in Duchenne. Sci Rep 2017; 7:17888. [PMID: 29263366 PMCID: PMC5738430 DOI: 10.1038/s41598-017-17982-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a severe muscle disorder caused by lack of dystrophin. Predictive biomarkers able to anticipate response to the therapeutic treatments aiming at dystrophin re-expression are lacking. The objective of this study is to investigate Matrix Metalloproteinase-9 (MMP-9) as predictive biomarker for Duchenne. Two natural history cohorts were studied including 168 longitudinal samples belonging to 66 patients. We further studied 1536 samples obtained from 3 independent clinical trials with drisapersen, an antisense oligonucleotide targeting exon 51: an open label study including 12 patients; a phase 3 randomized, double blind, placebo controlled study involving 186 patients; an open label extension study performed after the phase 3. Analysis of natural history cohorts showed elevated MMP-9 levels in patients and a significant increase over time in longitudinal samples. MMP-9 decreased in parallel to clinical stabilization in the 12 patients involved in the open label study. The phase 3 study and subsequent extension study clarified that the decrease in MMP-9 levels was not predictive of treatment response. These data do not support the inclusion of serum MMP-9 as predictive biomarker for DMD patients.
Collapse
|
8
|
van der Wal E, Bergsma AJ, van Gestel TJM, In 't Groen SLM, Zaehres H, Araúzo-Bravo MJ, Schöler HR, van der Ploeg AT, Pijnappel WWMP. GAA Deficiency in Pompe Disease Is Alleviated by Exon Inclusion in iPSC-Derived Skeletal Muscle Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2017. [PMID: 28624186 PMCID: PMC5415960 DOI: 10.1016/j.omtn.2017.03.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pompe disease is a metabolic myopathy caused by deficiency of the acid α-glucosidase (GAA) enzyme and results in progressive wasting of skeletal muscle cells. The c.-32-13T>G (IVS1) GAA variant promotes exon 2 skipping during pre-mRNA splicing and is the most common variant for the childhood/adult disease form. We previously identified antisense oligonucleotides (AONs) that promoted GAA exon 2 inclusion in patient-derived fibroblasts. It was unknown how these AONs would affect GAA splicing in skeletal muscle cells. To test this, we expanded induced pluripotent stem cell (iPSC)-derived myogenic progenitors and differentiated these to multinucleated myotubes. AONs restored splicing in myotubes to a similar extent as in fibroblasts, suggesting that they act by modulating the action of shared splicing regulators. AONs targeted the putative polypyrimidine tract of a cryptic splice acceptor site that was part of a pseudo exon in GAA intron 1. Blocking of the cryptic splice donor of the pseudo exon with AONs likewise promoted GAA exon 2 inclusion. The simultaneous blocking of the cryptic acceptor and cryptic donor sites restored the majority of canonical splicing and alleviated GAA enzyme deficiency. These results highlight the relevance of cryptic splicing in human disease and its potential as therapeutic target for splicing modulation using AONs.
Collapse
Affiliation(s)
- Erik van der Wal
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Department of Pediatrics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Atze J Bergsma
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Department of Pediatrics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Tom J M van Gestel
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Department of Pediatrics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Stijn L M In 't Groen
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Department of Pediatrics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Holm Zaehres
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Marcos J Araúzo-Bravo
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Westphalian Wilhelms-University, Medical Faculty, 48149 Münster, Germany
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands
| | - W W M Pim Pijnappel
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Department of Pediatrics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands.
| |
Collapse
|
9
|
Bremer J, Bornert O, Nyström A, Gostynski A, Jonkman MF, Aartsma-Rus A, van den Akker PC, Pasmooij AM. Antisense Oligonucleotide-mediated Exon Skipping as a Systemic Therapeutic Approach for Recessive Dystrophic Epidermolysis Bullosa. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e379. [PMID: 27754488 DOI: 10.1038/mtna.2016.87] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/02/2016] [Indexed: 02/02/2023]
Abstract
The "generalized severe" form of recessive dystrophic epidermolysis bullosa (RDEB-gen sev) is caused by bi-allelic null mutations in COL7A1, encoding type VII collagen. The absence of type VII collagen leads to blistering of the skin and mucous membranes upon the slightest trauma. Because most patients carry exonic point mutations or small insertions/deletions, most exons of COL7A1 are in-frame, and low levels of type VII collagen already drastically improve the disease phenotype, this gene seems a perfect candidate for antisense oligonucleotide (AON)-mediated exon skipping. In this study, we examined the feasibility of AON-mediated exon skipping in vitro in primary cultured keratinocytes and fibroblasts, and systemically in vivo using a human skin-graft mouse model. We show that treatment with AONs designed against exon 105 leads to in-frame exon 105 skipping at the RNA level and restores type VII collagen protein production in vitro. Moreover, we demonstrate that systemic delivery in vivo induces de novo expression of type VII collagen in skin grafts generated from patient cells. Our data demonstrate strong proof-of-concept for AON-mediated exon skipping as a systemic therapeutic strategy for RDEB.
Collapse
Affiliation(s)
- Jeroen Bremer
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Olivier Bornert
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Antoni Gostynski
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marcel F Jonkman
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter C van den Akker
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anna Mg Pasmooij
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Scotton C, Bovolenta M, Schwartz E, Falzarano MS, Martoni E, Passarelli C, Armaroli A, Osman H, Rodolico C, Messina S, Pegoraro E, D'Amico A, Bertini E, Gualandi F, Neri M, Selvatici R, Boffi P, Maioli MA, Lochmüller H, Straub V, Bushby K, Castrignanò T, Pesole G, Sabatelli P, Merlini L, Braghetta P, Bonaldo P, Bernardi P, Foley R, Cirak S, Zaharieva I, Muntoni F, Capitanio D, Gelfi C, Kotelnikova E, Yuryev A, Lebowitz M, Zhang X, Hodge BA, Esser KA, Ferlini A. Deep RNA profiling identified CLOCK and molecular clock genes as pathophysiological signatures in collagen VI myopathy. J Cell Sci 2016; 129:1671-84. [PMID: 26945058 PMCID: PMC4852766 DOI: 10.1242/jcs.175927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/16/2016] [Indexed: 01/09/2023] Open
Abstract
Collagen VI myopathies are genetic disorders caused by mutations in collagen 6 A1, A2 and A3 genes, ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, which is recapitulated by collagen-VI-null (Col6a1(-/-)) mice. Abnormalities in mitochondria and autophagic pathway have been proposed as pathogenic causes of collagen VI myopathies, but the link between collagen VI defects and these metabolic circuits remains unknown. To unravel the expression profiling perturbation in muscles with collagen VI myopathies, we performed a deep RNA profiling in both Col6a1(-/-)mice and patients with collagen VI pathology. The interactome map identified common pathways suggesting a previously undetected connection between circadian genes and collagen VI pathology. Intriguingly, Bmal1(-/-)(also known as Arntl) mice, a well-characterized model displaying arrhythmic circadian rhythms, showed profound deregulation of the collagen VI pathway and of autophagy-related genes. The involvement of circadian rhythms in collagen VI myopathies is new and links autophagy and mitochondrial abnormalities. It also opens new avenues for therapies of hereditary myopathies to modulate the molecular clock or potential gene-environment interactions that might modify muscle damage pathogenesis.
Collapse
Affiliation(s)
- Chiara Scotton
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Matteo Bovolenta
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Elena Schwartz
- Ariadne Diagnostics, LLC, 9430 Key West Avenue, Suite 115, Rockville, MD 20850, USA
| | - Maria Sofia Falzarano
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Elena Martoni
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Chiara Passarelli
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy Bambino Gesu' Children's Research Hospital, IRCCS, Rome 00146, Italy
| | - Annarita Armaroli
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Hana Osman
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Carmelo Rodolico
- Department of Neuroscience, University of Messina and Centro Clinico Nemo Sud, Messina 98125, Italy
| | - Sonia Messina
- Department of Neuroscience, University of Messina and Centro Clinico Nemo Sud, Messina 98125, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padova 35128, Italy
| | - Adele D'Amico
- Bambino Gesu' Children's Research Hospital, IRCCS, Rome 00146, Italy
| | - Enrico Bertini
- Bambino Gesu' Children's Research Hospital, IRCCS, Rome 00146, Italy
| | - Francesca Gualandi
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Marcella Neri
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Rita Selvatici
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Patrizia Boffi
- Department of Neurology, Regina Margherita Children's Hospital Turin, Torino 10126, Italy
| | - Maria Antonietta Maioli
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari 09124, Italy
| | - Hanns Lochmüller
- Jon Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 7RU, UK
| | - Volker Straub
- Jon Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 7RU, UK
| | - Katherine Bushby
- Jon Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 7RU, UK
| | - Tiziana Castrignanò
- SCAI SuperComputing Applications and Innovation Department, Cineca, 00185 Rome, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70121, Italy
| | - Patrizia Sabatelli
- Institute of Molecular Genetics, CNR-National Research Council of Italy, Bologna 40129, Italy
| | - Luciano Merlini
- SC Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna 40136, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Padova 35128, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova 35128, Italy
| | - Paolo Bernardi
- Department of Biomedical Science, University of Padova, Padova 35128, Italy
| | - Reghan Foley
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London WC1E 6BT, UK
| | - Sebahattin Cirak
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London WC1E 6BT, UK
| | - Irina Zaharieva
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London WC1E 6BT, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London WC1E 6BT, UK
| | - Daniele Capitanio
- University of Milan, Department of Biomedical Science for Health, Milan 20090, Italy
| | - Cecilia Gelfi
- University of Milan, Department of Biomedical Science for Health, Milan 20090, Italy
| | | | - Anton Yuryev
- Ariadne Genomics, LLC, 9430 Key West Avenue, Suite 113, Rockville, MD 20850, USA
| | - Michael Lebowitz
- Ariadne Diagnostics, LLC, 9430 Key West Avenue, Suite 115, Rockville, MD 20850, USA
| | - Xiping Zhang
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Brian A Hodge
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Karyn A Esser
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London WC1E 6BT, UK
| |
Collapse
|
11
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
12
|
Abstract
Duchenne muscular dystrophy is the most common form of muscular dystrophy. Genetic and biochemical research over the years has characterized the cause, pathophysiology and development of the disease providing several potential therapeutic targets and/or biomarkers. High throughput - omic technologies have provided a comprehensive understanding of the changes occurring in dystrophic muscles. Murine and canine animal models have been a valuable source to profile muscles and body fluids, thus providing candidate biomarkers that can be evaluated in patients. This review will illustrate known circulating biomarkers that could track disease progression and response to therapy in patients affected by Duchenne muscular dystrophy. We present an overview of the transcriptomic, proteomic, metabolomics and lipidomic biomarkers described in literature. We show how studies in muscle tissue have led to the identification of serum and urine biomarkers and we highlight the importance of evaluating biomarkers as possible surrogate endpoints to facilitate regulatory processes for new medicinal products.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Le Rumeur E. Dystrophin and the two related genetic diseases, Duchenne and Becker muscular dystrophies. Bosn J Basic Med Sci 2015; 15:14-20. [PMID: 26295289 DOI: 10.17305/bjbms.2015.636] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 01/01/2023] Open
Abstract
Mutations of the dystrophin DMD gene, essentially deletions of one or several exons, are the cause of two devastating and to date incurable diseases, Duchenne (DMD) and Becker (BMD) muscular dystrophies. Depending upon the preservation or not of the reading frame, dystrophin is completely absent in DMD, or present in either a mutated or a truncated form in BMD. DMD is a severe disease which leads to a premature death of the patients. Therapy approaches are evolving with the aim to transform the severe DMD in the BMD form of the disease by restoring the expression of a mutated or truncated dystrophin. These therapies are based on the assumption that BMD is a mild disease. However, this is not completely true as BMD patients are more or less severely affected and no molecular basis of this heterogeneity of the BMD form of the disease is yet understood. The aim of this review is to report for the correlation between dystrophin structures in BMD deletions in view of this heterogeneity and to emphasize that examining BMD patients in details is highly relevant to anticipate for DMD therapy effects.
Collapse
Affiliation(s)
- Elisabeth Le Rumeur
- Institut de Génétique et Développement de Rennes (IGDR), Faculté de Médecine, Rennes Cedex.
| |
Collapse
|
14
|
Comparison of mutation profiles in the Duchenne muscular dystrophy gene among populations: implications for potential molecular therapies. Int J Mol Sci 2015; 16:5334-46. [PMID: 25761239 PMCID: PMC4394478 DOI: 10.3390/ijms16035334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/17/2015] [Accepted: 02/27/2015] [Indexed: 11/16/2022] Open
Abstract
Novel therapeutic approaches are emerging to restore dystrophin function in Duchenne Muscular Dystrophy (DMD), a severe neuromuscular disease characterized by progressive muscle wasting and weakness. Some of the molecular therapies, such as exon skipping, stop codon read-through and internal ribosome entry site-mediated translation rely on the type and location of mutations. Hence, their potential applicability worldwide depends on mutation frequencies within populations. In view of this, we compared the mutation profiles of the populations represented in the DMD Leiden Open-source Variation Database with original data from Mexican patients (n = 162) with clinical diagnosis of the disease. Our data confirm that applicability of exon 51 is high in most populations, but also show that differences in theoretical applicability of exon skipping may exist among populations; Mexico has the highest frequency of potential candidates for the skipping of exons 44 and 46, which is different from other populations (p < 0.001). To our knowledge, this is the first comprehensive comparison of theoretical applicability of exon skipping targets among specific populations.
Collapse
|
15
|
Disterer P, Kryczka A, Liu Y, Badi YE, Wong JJ, Owen JS, Khoo B. Development of therapeutic splice-switching oligonucleotides. Hum Gene Ther 2014; 25:587-98. [PMID: 24826963 DOI: 10.1089/hum.2013.234] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Synthetic splice-switching oligonucleotides (SSOs) target nuclear pre-mRNA molecules to change exon splicing and generate an alternative protein isoform. Clinical trials with two competitive SSO drugs are underway to treat Duchenne muscular dystrophy (DMD). Beyond DMD, many additional therapeutic applications are possible, with some in phase 1 clinical trials or advanced preclinical evaluation. Here, we present an overview of the central factors involved in developing therapeutic SSOs for the treatment of diseases. The selection of susceptible pre-mRNA target sequences, as well as the design and chemical modification of SSOs to increase SSO stability and effectiveness, are key initial considerations. Identification of effective SSO target sequences is still largely empirical and published guidelines are not a universal guarantee for success. Specifically, exon-targeted SSOs, which are successful in modifying dystrophin splicing, can be ineffective for splice-switching in other contexts. Chemical modifications, importantly, are associated with certain characteristic toxicities, which need to be addressed as target diseases require chronic treatment with SSOs. Moreover, SSO delivery in adequate quantities to the nucleus of target cells without toxicity can prove difficult. Last, the means by which these SSOs are administered needs to be acceptable to the patient. Engineering an efficient therapeutic SSO, therefore, necessarily entails a compromise between desirable qualities and effectiveness. Here, we describe how the application of optimal solutions may differ from case to case.
Collapse
Affiliation(s)
- Petra Disterer
- 1 Institute for Liver and Digestive Health, Division of Medicine, University College London , London, NW3 2PF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|