1
|
Delaney R, O'Halloran KD. Respiratory performance in Duchenne muscular dystrophy: Clinical manifestations and lessons from animal models. Exp Physiol 2024; 109:1426-1445. [PMID: 39023735 PMCID: PMC11363095 DOI: 10.1113/ep091967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic neuromuscular disease. Lack of dystrophin in skeletal muscles leads to intrinsic weakness, injury, subsequent degeneration and fibrosis, decreasing contractile function. Dystropathology eventually presents in all inspiratory and expiratory muscles of breathing, severely curtailing their critical function. In people with DMD, premature death is caused by respiratory or cardiac failure. There is an urgent need to develop therapies that improve quality of life and extend life expectancy in DMD. Surprisingly, there is a dearth of information on respiratory control in animal models of DMD, and respiratory outcome measures are often limited or absent in clinical trials. Characterization of respiratory performance in murine and canine models has revealed extensive remodelling of the diaphragm, the major muscle of inspiration. However, significant compensation by extradiaphragmatic muscles of breathing is evident in early disease, contributing to preservation of peak respiratory system performance. Loss of compensation afforded by accessory muscles in advanced disease is ultimately associated with compromised respiratory performance. A new and potentially more translatable murine model of DMD, the D2.mdx mouse, has recently been developed. Respiratory performance in D2.mdx mice is yet to be characterized fully. However, based on histopathological features, D2.mdx mice might serve as useful preclinical models, facilitating the testing of new therapeutics that rescue respiratory function. This review summarizes the pathophysiological mechanisms associated with DMD both in humans and in animal models, with a focus on breathing. We consider the translational value of each model to human DMD and highlight the urgent need for comprehensive characterization of breathing in representative preclinical models to better inform human trials.
Collapse
|
2
|
Lin CH, Johnson LR, Chang WT, Lo PY, Chen HW, Wu HD. Quantifiable features of a tidal breathing phenotype in dogs with severe bronchomalacia diagnosed by bronchoscopy. Vet Q 2023; 43:1-10. [PMID: 37616027 PMCID: PMC10478619 DOI: 10.1080/01652176.2023.2252518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
Dynamic lower airway obstruction is the primary component of canine bronchomalacia, but the ventilatory function remains underinvestigated. This prospective study analyzed tidal breathing characteristics in 28 dogs, comprising 14 with severe bronchomalacia diagnosed by bronchoscopy versus 14 without respiratory disease. Spirometry was conducted in all dogs. Bronchoscopy with bronchoalveolar lavage or brush under anesthesia was performed in 14 dogs with cough and expiratory effort. Severe bronchomalacia was defined by the severity of collapse and total number of bronchi affected. Ventilatory characteristics were compared between groups. Results revealed that dogs with severe bronchomalacia had lower minute volume (218 vs 338 mL/kg, p = .039) and greater expiratory-to-inspiratory time ratio (1.55 vs 1.35, p = .01) compared to control dogs. The tidal breathing pattern of dogs with bronchomalacia was different from that of normal dogs, and the pattern differed from the concave or flat expiratory curves typical of lower airway obstruction. Compared to control dogs, dogs with severe bronchomalacia had a significantly prolonged low-flow expiratory phase (p < .001) on the flow-time plot and a more exponential shape of the expiratory curve (p < .001) on the volume-time plot. Flow-time index ExpLF/Te (>0.14) and volume-time index Vt-AUCexp (≤31%) had a high ROC-AUC (1.00, 95% confidence interval 0.88 to 1.00) in predicting severe bronchomalacia. In conclusion, the tidal breathing pattern identified here indicates abnormal and complicated ventilatory mechanics in dogs with severe bronchomalacia. The role of this pulmonary functional phenotype should be investigated for disease progression and therapeutic monitoring in canine bronchomalacia.
Collapse
Affiliation(s)
- Chung-Hui Lin
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- TACS-Alliance Research Center, Taipei, Taiwan
| | - Lynelle R. Johnson
- Department of Medicine and Epidemiology, The University of California School of Veterinary Medicine, Davis, CA, USA
| | - Wei-Tao Chang
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan
- TACS-Alliance Research Center, Taipei, Taiwan
| | - Pei-Ying Lo
- TACS-Alliance Research Center, Taipei, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Huey-Dong Wu
- Section of Respiratory Therapy, Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Birch SM, Lawlor MW, Conlon TJ, Guo LJ, Crudele JM, Hawkins EC, Nghiem PP, Ahn M, Meng H, Beatka MJ, Fickau BA, Prieto JC, Styner MA, Struharik MJ, Shanks C, Brown KJ, Golebiowski D, Bettis AK, Balog-Alvarez CJ, Clement N, Coleman KE, Corti M, Pan X, Hauschka SD, Gonzalez JP, Morris CA, Schneider JS, Duan D, Chamberlain JS, Byrne BJ, Kornegay JN. Assessment of systemic AAV-microdystrophin gene therapy in the GRMD model of Duchenne muscular dystrophy. Sci Transl Med 2023; 15:eabo1815. [PMID: 36599002 PMCID: PMC11107748 DOI: 10.1126/scitranslmed.abo1815] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by the absence of dystrophin, a membrane-stabilizing protein encoded by the DMD gene. Although mouse models of DMD provide insight into the potential of a corrective therapy, data from genetically homologous large animals, such as the dystrophin-deficient golden retriever muscular dystrophy (GRMD) model, may more readily translate to humans. To evaluate the clinical translatability of an adeno-associated virus serotype 9 vector (AAV9)-microdystrophin (μDys5) construct, we performed a blinded, placebo-controlled study in which 12 GRMD dogs were divided among four dose groups [control, 1 × 1013 vector genomes per kilogram (vg/kg), 1 × 1014 vg/kg, and 2 × 1014 vg/kg; n = 3 each], treated intravenously at 3 months of age with a canine codon-optimized microdystrophin construct, rAAV9-CK8e-c-μDys5, and followed for 90 days after dosing. All dogs received prednisone (1 milligram/kilogram) for a total of 5 weeks from day -7 through day 28. We observed dose-dependent increases in tissue vector genome copy numbers; μDys5 protein in multiple appendicular muscles, the diaphragm, and heart; limb and respiratory muscle functional improvement; and reduction of histopathologic lesions. As expected, given that a truncated dystrophin protein was generated, phenotypic test results and histopathologic lesions did not fully normalize. All administrations were well tolerated, and adverse events were not seen. These data suggest that systemically administered AAV-microdystrophin may be dosed safely and could provide therapeutic benefit for patients with DMD.
Collapse
Affiliation(s)
- Sharla M. Birch
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| | | | - Thomas J. Conlon
- University of Florida, Powell Gene Therapy Center, Gainesville, FL; 32610
| | - Lee-Jae Guo
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| | | | - Eleanor C. Hawkins
- North Carolina State University, College of Veterinary Medicine, Raleigh, NC; 27606
| | - Peter P. Nghiem
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| | - Mihye Ahn
- University of Nevada-Reno, Reno, NV; 89557
| | - Hui Meng
- Medical College of Wisconsin, Milwaukee, WI; 53226
| | | | | | | | | | | | | | | | | | - Amanda K. Bettis
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| | - Cynthia J. Balog-Alvarez
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| | - Nathalie Clement
- University of Florida, Powell Gene Therapy Center, Gainesville, FL; 32610
| | - Kirsten E. Coleman
- University of Florida, Powell Gene Therapy Center, Gainesville, FL; 32610
| | - Manuela Corti
- University of Florida, Powell Gene Therapy Center, Gainesville, FL; 32610
| | - Xiufang Pan
- University of Missouri, School of Medicine, Columbia, MO 65212
| | | | | | | | | | - Dongsheng Duan
- University of Missouri, School of Medicine, Columbia, MO 65212
| | | | - Barry J. Byrne
- University of Florida, Powell Gene Therapy Center, Gainesville, FL; 32610
| | - Joe. N. Kornegay
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| |
Collapse
|
4
|
Mhandire DZ, Burns DP, Roger AL, O'Halloran KD, ElMallah MK. Breathing in Duchenne muscular dystrophy: Translation to therapy. J Physiol 2022; 600:3465-3482. [PMID: 35620971 PMCID: PMC9357048 DOI: 10.1113/jp281671] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease caused by a deficiency in dystrophin - a structural protein which stabilizes muscle during contraction. Dystrophin deficiency adversely affects the respiratory system leading to sleep-disordered breathing, hypoventilation, and weakness of the expiratory and inspiratory musculature, which culminate in severe respiratory dysfunction. Muscle degeneration associated respiratory impairment in neuromuscular disease is a result of disruptions at multiple sites of the respiratory control network, including sensory and motor pathways. As a result of this pathology, respiratory failure is a leading cause of premature death in DMD patients. Currently available treatments for DMD respiratory insufficiency attenuate respiratory symptoms without completely reversing the underlying pathophysiology. This underscores the need to develop curative therapies to improve quality of life and longevity of DMD patients. This review summarises research findings on the pathophysiology of respiratory insufficiencies in DMD disease in humans and animal models, the clinical interventions available to ameliorate symptoms, and gene-based therapeutic strategies uncovered by preclinical animal studies. Abstract figure legend: Summary of the therapeutic strategies for respiratory insufficiency in DMD (Duchenne muscular dystrophy). Treatment options currently in clinical use only attenuate respiratory symptoms without reversing the underlying pathology of DMD-associated respiratory insufficiencies. Ongoing preclinical and clinical research is aimed at developing curative therapies that both improve quality of life and longevity of DMD patients. AAV - adeno-associated virus, PPMO - Peptide-conjugated phosphorodiamidate morpholino oligomer This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Doreen Z Mhandire
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Angela L Roger
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| |
Collapse
|
5
|
Svetlove A, Albers J, Hülsmann S, Markus MA, Zschüntzsch J, Alves F, Dullin C. Non-Invasive Optical Motion Tracking Allows Monitoring of Respiratory Dynamics in Dystrophin-Deficient Mice. Cells 2022; 11:cells11050918. [PMID: 35269540 PMCID: PMC8909479 DOI: 10.3390/cells11050918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common x-chromosomal inherited dystrophinopathy which leads to progressive muscle weakness and a premature death due to cardiorespiratory dysfunction. The mdx mouse lacks functional dystrophin protein and has a comparatively human-like diaphragm phenotype. To date, diaphragm function can only be inadequately mapped in preclinical studies and a simple reliable translatable method of tracking the severity of the disease still lacks. We aimed to establish a sensitive, reliable, harmless and easy way to assess the effects of respiratory muscle weakness and subsequent irregularity in breathing pattern. Optical respiratory dynamics tracking (ORDT) was developed utilising a camera to track the movement of paper markers placed on the thoracic-abdominal region of the mouse. ORDT successfully distinguished diseased mdx phenotype from healthy controls by measuring significantly higher expiration constants (k) in mdx mice compared to wildtype (wt), which were also observed in the established X-ray based lung function (XLF). In contrast to XLF, with ORDT we were able to distinguish distinct fast and slow expiratory phases. In mdx mice, a larger part of the expiratory marker displacement was achieved in this initial fast phase as compared to wt mice. This phenomenon could not be observed in the XLF measurements. We further validated the simplicity and reliability of our approach by demonstrating that it can be performed using free-hand smartphone acquisition. We conclude that ORDT has a great preclinical potential to monitor DMD and other neuromuscular diseases based on changes in the breathing patterns with the future possibility to track therapy response.
Collapse
Affiliation(s)
- Angelika Svetlove
- Translational Molecular Imaging, Max-Planck Institute for Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany; (A.S.); (M.A.M.); (F.A.)
| | - Jonas Albers
- X-ray Based Preclinical Imaging Technologies, Institute for Diagnostic and Interventional Radiology, University Medical Center, 37075 Göttingen, Germany;
| | - Swen Hülsmann
- Central Breathing Control, Clinic for Anesthesiology, University Medical Center, 37075 Göttingen, Germany;
| | - Marietta Andrea Markus
- Translational Molecular Imaging, Max-Planck Institute for Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany; (A.S.); (M.A.M.); (F.A.)
| | - Jana Zschüntzsch
- Neuromuscular Disease Research, Clinic for Neurology, University Medical Center, 37075 Göttingen, Germany;
| | - Frauke Alves
- Translational Molecular Imaging, Max-Planck Institute for Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany; (A.S.); (M.A.M.); (F.A.)
- X-ray Based Preclinical Imaging Technologies, Institute for Diagnostic and Interventional Radiology, University Medical Center, 37075 Göttingen, Germany;
- Clinic for Haematology and Medical Oncology, University Medical Center, 37075 Göttingen, Germany
- Multiscale Bioimaging—From Molecular Machines to Networks of Excitable Cells, Cluster of Excellence (MBExC), 37075 Göttingen, Germany
| | - Christian Dullin
- X-ray Based Preclinical Imaging Technologies, Institute for Diagnostic and Interventional Radiology, University Medical Center, 37075 Göttingen, Germany;
- Institute for Diagnostic and Interventional Radiology, University Hospital, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
6
|
Hawkins EC, Bettis AK, Kornegay JN. Expiratory dysfunction in young dogs with golden retriever muscular dystrophy. Neuromuscul Disord 2020; 30:930-937. [PMID: 33071066 PMCID: PMC7680419 DOI: 10.1016/j.nmd.2020.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 11/25/2022]
Abstract
Respiratory disease is a leading cause of morbidity in people with Duchenne muscular dystrophy and also occurs in the golden retriever muscular dystrophy (GRMD) model. We have previously shown that adult GRMD dogs have elevated expiratory flow as measured non-invasively during tidal breathing. This abnormality likely results from increased chest and diaphragmatic recoil associated with fibrosis and remodeling. Treatments must reverse pathologic effects on the diaphragm and other respiratory muscles to maximally reduce disease morbidity and mortality. Here, we extended our work in adults to younger GRMD dogs to define parameters that would be helpful in preclinical trials. Tidal breathing spirometry and respiratory inductance plethysmography were performed in GRMD dogs at approximately 3 and 6 months of age, corresponding to approximately 5-10 years in DMD, when clinical trials are often conducted. Expiratory flows were markedly elevated in GRMD versus normal dogs at 6 months. Values increased in GRMD dogs between 3 and 6 months, providing a 3-month window to assess treatment efficacy. These changes in breathing mechanics have not been previously identified at such an early age. Expiratory flow measured during tidal breathing of unsedated young GRMD dogs could be a valuable marker of respiratory mechanics during preclinical trials.
Collapse
Affiliation(s)
- Eleanor C Hawkins
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
| | - Amanda K Bettis
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843-4458, USA
| | - Joe N Kornegay
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843-4458, USA
| |
Collapse
|
7
|
Barthélémy I, Calmels N, Weiss RB, Tiret L, Vulin A, Wein N, Peccate C, Drougard C, Beroud C, Deburgrave N, Thibaud JL, Escriou C, Punzón I, Garcia L, Kaplan JC, Flanigan KM, Leturcq F, Blot S. X-linked muscular dystrophy in a Labrador Retriever strain: phenotypic and molecular characterisation. Skelet Muscle 2020; 10:23. [PMID: 32767978 PMCID: PMC7412789 DOI: 10.1186/s13395-020-00239-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background Canine models of Duchenne muscular dystrophy (DMD) are a valuable tool to evaluate potential therapies because they faithfully reproduce the human disease. Several cases of dystrophinopathies have been described in canines, but the Golden Retriever muscular dystrophy (GRMD) model remains the most used in preclinical studies. Here, we report a new spontaneous dystrophinopathy in a Labrador Retriever strain, named Labrador Retriever muscular dystrophy (LRMD). Methods A colony of LRMD dogs was established from spontaneous cases. Fourteen LRMD dogs were followed-up and compared to the GRMD standard using several functional tests. The disease causing mutation was studied by several molecular techniques and identified using RNA-sequencing. Results The main clinical features of the GRMD disease were found in LRMD dogs; the functional tests provided data roughly overlapping with those measured in GRMD dogs, with similar inter-individual heterogeneity. The LRMD causal mutation was shown to be a 2.2-Mb inversion disrupting the DMD gene within intron 20 and involving the TMEM47 gene. In skeletal muscle, the Dp71 isoform was ectopically expressed, probably as a consequence of the mutation. We found no evidence of polymorphism in either of the two described modifier genes LTBP4 and Jagged1. No differences were found in Pitpna mRNA expression levels that would explain the inter-individual variability. Conclusions This study provides a full comparative description of a new spontaneous canine model of dystrophinopathy, found to be phenotypically equivalent to the GRMD model. We report a novel large DNA mutation within the DMD gene and provide evidence that LRMD is a relevant model to pinpoint additional DMD modifier genes.
Collapse
Affiliation(s)
- Inès Barthélémy
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Nadège Calmels
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, AP-HP, université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Laboratoire de Diagnostic Génétique-Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, 1 Place de L'Hôpital, 67091, Strasbourg, France
| | - Robert B Weiss
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Laurent Tiret
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Adeline Vulin
- SQY Therapeutics, Université de Versailles Saint-Quentin-en-Yvelines, Montigny le Bretonneux, France
| | - Nicolas Wein
- The Center for Gene Therapy, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Cécile Peccate
- SQY Therapeutics, Université de Versailles Saint-Quentin-en-Yvelines, Montigny le Bretonneux, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, Centre de Recherche en Myologie, Institut de Myologie, G.H. Pitié Salpêtrière, Paris, France
| | - Carole Drougard
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Christophe Beroud
- Aix Marseille Université, INSERM, MMG, Bioinformatics & Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Laboratoire de Génétique Moléculaire, Marseille, France
| | - Nathalie Deburgrave
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, AP-HP, université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Jean-Laurent Thibaud
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Catherine Escriou
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Isabel Punzón
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Luis Garcia
- Université de Versailles Saint-Quentin-en-Yvelines, U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France
| | - Jean-Claude Kaplan
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, AP-HP, université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Kevin M Flanigan
- The Center for Gene Therapy, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - France Leturcq
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, AP-HP, université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, Centre de Recherche en Myologie, Institut de Myologie, G.H. Pitié Salpêtrière, Paris, France
| | - Stéphane Blot
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France.
| |
Collapse
|
8
|
Barthélémy I, Hitte C, Tiret L. The Dog Model in the Spotlight: Legacy of a Trustful Cooperation. J Neuromuscul Dis 2020; 6:421-451. [PMID: 31450509 PMCID: PMC6918919 DOI: 10.3233/jnd-190394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dogs have long been used as a biomedical model system and in particular as a preclinical proof of concept for innovative therapies before translation to humans. A recent example of the utility of this animal model is the promising myotubularin gene delivery in boys affected by X-linked centronuclear myopathy after successful systemic, long-term efficient gene therapy in Labrador retrievers. Mostly, this is due to unique features that make dogs an optimal system. The continuous emergence of spontaneous inherited disorders enables the identification of reliable complementary molecular models for human neuromuscular disorders (NMDs). Dogs’ characteristics including size, lifespan and unprecedented medical care level allow a comprehensive longitudinal description of diseases. Moreover, the highly similar pathogenic mechanisms with human patients yield to translational robustness. Finally, interindividual phenotypic heterogeneity between dogs helps identifying modifiers and anticipates precision medicine issues. This review article summarizes the present list of molecularly characterized dog models for NMDs and provides an exhaustive list of the clinical and paraclinical assays that have been developed. This toolbox offers scientists a sensitive and reliable system to thoroughly evaluate neuromuscular function, as well as efficiency and safety of innovative therapies targeting these NMDs. This review also contextualizes the model by highlighting its unique genetic value, shaped by the long-term coevolution of humans and domesticated dogs. Because the dog is one of the most protected research animal models, there is considerable opposition to include it in preclinical projects, posing a threat to the use of this model. We thus discuss ethical issues, emphasizing that unlike many other models, the dog also benefits from its contribution to comparative biomedical research with a drastic reduction in the prevalence of morbid alleles in the breeding stock and an improvement in medical care.
Collapse
Affiliation(s)
- Inès Barthélémy
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Christophe Hitte
- CNRS, University of Rennes 1, UMR 6290, IGDR, Faculty of Medicine, SFR Biosit, Rennes, France
| | - Laurent Tiret
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|
9
|
Barraza-Flores P, Fontelonga TM, Wuebbles RD, Hermann HJ, Nunes AM, Kornegay JN, Burkin DJ. Laminin-111 protein therapy enhances muscle regeneration and repair in the GRMD dog model of Duchenne muscular dystrophy. Hum Mol Genet 2019; 28:2686-2695. [PMID: 31179490 PMCID: PMC6687953 DOI: 10.1093/hmg/ddz086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating X-linked disease affecting ~1 in 5000 males. DMD patients exhibit progressive muscle degeneration and weakness, leading to loss of ambulation and premature death from cardiopulmonary failure. We previously reported that mouse Laminin-111 (msLam-111) protein could reduce muscle pathology and improve muscle function in the mdx mouse model for DMD. In this study, we examined the ability of msLam-111 to prevent muscle disease progression in the golden retriever muscular dystrophy (GRMD) dog model of DMD. The msLam-111 protein was injected into the cranial tibial muscle compartment of GRMD dogs and muscle strength and pathology were assessed. The results showed that msLam-111 treatment increased muscle fiber regeneration and repair with improved muscle strength and reduced muscle fibrosis in the GRMD model. Together, these findings support the idea that Laminin-111 could serve as a novel protein therapy for the treatment of DMD.
Collapse
Affiliation(s)
- Pamela Barraza-Flores
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Tatiana M Fontelonga
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Ryan D Wuebbles
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Hailey J Hermann
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Andreia M Nunes
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
10
|
Thibaud JL, Matot B, Barthélémy I, Fromes Y, Blot S, Carlier PG. Anatomical and mesoscopic characterization of the dystrophic diaphragm: An in vivo nuclear magnetic resonance imaging study in the Golden retriever muscular dystrophy dog. Neuromuscul Disord 2017; 27:315-325. [PMID: 28258941 DOI: 10.1016/j.nmd.2017.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 12/31/2016] [Accepted: 02/04/2017] [Indexed: 01/28/2023]
Abstract
Because respiratory failure remains a major issue in Duchenne Muscular Dystrophy patients, respiratory muscles are a key target of systemic therapies. In the Golden Retriever Muscular Dystrophy (GRMD) dogs, the disease shows strong clinical and histological similarities with the human pathology, making it a valuable model for preclinical therapeutic trials. We report here the first nuclear magnetic resonance (NMR) imaging anatomical study of the diaphragm in GRMD dogs and healthy controls. Both T1- and T2-weighted images of the diaphragm of seven healthy and thirteen GRMD dogs, from 3 to 36 months of age, were acquired on a 3 tesla NMR scanner. Abnormalities of texture and shape were revealed and consisted of increases in signal intensity on T2-weighted images and in signal heterogeneity on both T1- and T2-weighted images of the dystrophic diaphragm. These abnormalities were associated with a significant thickening of the muscle and we identified a clear 8-mm-threshold distinguishing clinically preserved GRMD dogs from those more severely affected. In this study, we demonstrated the feasibility of NMR imaging of the diaphragm and depicted several anatomical and mesoscopic anomalies in the dystrophic diaphragm. NMR imaging of the diaphragm shows a promise as an outcome measure in preclinical trials using GRMD dogs.
Collapse
Affiliation(s)
- J L Thibaud
- NMR Laboratory, Institute of Myology, Paris, France; Inserm U955-E10, IMRB, Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort 94700, France
| | - B Matot
- NMR Laboratory, Institute of Myology, Paris, France; CEA, DRF, I(2)BM, MIRCen, NMR Laboratory, Paris, France
| | - I Barthélémy
- Inserm U955-E10, IMRB, Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort 94700, France
| | - Y Fromes
- NMR Laboratory, Institute of Myology, Paris, France; CEA, DRF, I(2)BM, MIRCen, NMR Laboratory, Paris, France
| | - S Blot
- Inserm U955-E10, IMRB, Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort 94700, France
| | - P G Carlier
- NMR Laboratory, Institute of Myology, Paris, France; CEA, DRF, I(2)BM, MIRCen, NMR Laboratory, Paris, France.
| |
Collapse
|
11
|
Canine-Inherited Dystrophinopathies and Centronuclear Myopathies. REGENERATIVE MEDICINE FOR DEGENERATIVE MUSCLE DISEASES 2016. [DOI: 10.1007/978-1-4939-3228-3_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Yu X, Bao B, Echigoya Y, Yokota T. Dystrophin-deficient large animal models: translational research and exon skipping. Am J Transl Res 2015; 7:1314-1331. [PMID: 26396664 PMCID: PMC4568789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/11/2015] [Indexed: 06/05/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder caused by mutations in the dystrophin gene. Affecting approximately 1 in 3,600-9337 boys, DMD patients exhibit progressive muscle degeneration leading to fatality as a result of heart or respiratory failure. Despite the severity and prevalence of the disease, there is no cure available. While murine models have been successfully used in illustrating the mechanisms of DMD, their utility in DMD research is limited due to their mild disease phenotypes such as lack of severe skeletal muscle and cardiac symptoms. To address the discrepancy between the severity of disease displayed by murine models and human DMD patients, dystrophin-deficient dog models with a splice site mutation in intron 6 were established. Examples of these are Golden Retriever muscular dystrophy and beagle-based Canine X-linked muscular dystrophy. These large animal models are widely employed in therapeutic DMD research due to their close resemblance to the severity of human patient symptoms. Recently, genetically tailored porcine models of DMD with deleted exon 52 were developed by our group and others, and can potentially act as a new large animal model. While therapeutic outcomes derived from these large animal models can be more reliably extrapolated to DMD patients, a comprehensive understanding of these models is still needed. This paper will discuss recent progress and future directions of DMD studies with large animal models such as canine and porcine models.
Collapse
Affiliation(s)
- Xinran Yu
- Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, AB, Canada T6G 2H7
| | - Bo Bao
- Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, AB, Canada T6G 2H7
| | - Yusuke Echigoya
- Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, AB, Canada T6G 2H7
| | - Toshifumi Yokota
- Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, AB, Canada T6G 2H7
- Muscular Dystrophy Canada Research Chair, University of AlbertaEdmonton, AB, Canada T6G 2H7
| |
Collapse
|
13
|
Kornegay JN, Spurney CF, Nghiem PP, Brinkmeyer-Langford CL, Hoffman EP, Nagaraju K. Pharmacologic management of Duchenne muscular dystrophy: target identification and preclinical trials. ILAR J 2015; 55:119-49. [PMID: 24936034 DOI: 10.1093/ilar/ilu011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked human disorder in which absence of the protein dystrophin causes degeneration of skeletal and cardiac muscle. For the sake of treatment development, over and above definitive genetic and cell-based therapies, there is considerable interest in drugs that target downstream disease mechanisms. Drug candidates have typically been chosen based on the nature of pathologic lesions and presumed underlying mechanisms and then tested in animal models. Mammalian dystrophinopathies have been characterized in mice (mdx mouse) and dogs (golden retriever muscular dystrophy [GRMD]). Despite promising results in the mdx mouse, some therapies have not shown efficacy in DMD. Although the GRMD model offers a higher hurdle for translation, dogs have primarily been used to test genetic and cellular therapies where there is greater risk. Failed translation of animal studies to DMD raises questions about the propriety of methods and models used to identify drug targets and test efficacy of pharmacologic intervention. The mdx mouse and GRMD dog are genetically homologous to DMD but not necessarily analogous. Subcellular species differences are undoubtedly magnified at the whole-body level in clinical trials. This problem is compounded by disparate cultures in clinical trials and preclinical studies, pointing to a need for greater rigor and transparency in animal experiments. Molecular assays such as mRNA arrays and genome-wide association studies allow identification of genetic drug targets more closely tied to disease pathogenesis. Genes in which polymorphisms have been directly linked to DMD disease progression, as with osteopontin, are particularly attractive targets.
Collapse
|