1
|
An Optimized Comparative Proteomic Approach as a Tool in Neurodegenerative Disease Research. Cells 2022; 11:cells11172653. [PMID: 36078061 PMCID: PMC9454658 DOI: 10.3390/cells11172653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Recent advances in proteomic technologies now allow unparalleled assessment of the molecular composition of a wide range of sample types. However, the application of such technologies and techniques should not be undertaken lightly. Here, we describe why the design of a proteomics experiment itself is only the first step in yielding high-quality, translatable results. Indeed, the effectiveness and/or impact of the majority of contemporary proteomics screens are hindered not by commonly considered technical limitations such as low proteome coverage but rather by insufficient analyses. Proteomic experimentation requires a careful methodological selection to account for variables from sample collection, through to database searches for peptide identification to standardised post-mass spectrometry options directed analysis workflow, which should be adjusted for each study, from determining when and how to filter proteomic data to choosing holistic versus trend-wise analyses for biologically relevant patterns. Finally, we highlight and discuss the difficulties inherent in the modelling and study of the majority of progressive neurodegenerative conditions. We provide evidence (in the context of neurodegenerative research) for the benefit of undertaking a comparative approach through the application of the above considerations in the alignment of publicly available pre-existing data sets to identify potential novel regulators of neuronal stability.
Collapse
|
2
|
Wadman RI, Stam M, Jansen MD, van der Weegen Y, Wijngaarde CA, Harschnitz O, Sodaar P, Braun KPJ, Dooijes D, Lemmink HH, van den Berg LH, van der Pol WL. A Comparative Study of SMN Protein and mRNA in Blood and Fibroblasts in Patients with Spinal Muscular Atrophy and Healthy Controls. PLoS One 2016; 11:e0167087. [PMID: 27893852 PMCID: PMC5125671 DOI: 10.1371/journal.pone.0167087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/07/2016] [Indexed: 11/28/2022] Open
Abstract
Background Clinical trials to test safety and efficacy of drugs for patients with spinal muscular atrophy (SMA) are currently underway. Biomarkers that document treatment-induced effects are needed because disease progression in childhood forms of SMA is slow and clinical outcome measures may lack sensitivity to detect meaningful changes in motor function in the period of 1–2 years of follow-up during randomized clinical trials. Objective To determine and compare SMN protein and mRNA levels in two cell types (i.e. PBMCs and skin-derived fibroblasts) from patients with SMA types 1–4 and healthy controls in relation to clinical characteristics and SMN2 copy numbers. Materials and methods We determined SMN1, SMN2-full length (SMN2-FL), SMN2-delta7 (SMN2-Δ7), GAPDH and 18S mRNA levels and SMN protein levels in blood and fibroblasts from a total of 150 patients with SMA and 293 healthy controls using qPCR and ELISA. We analyzed the association with clinical characteristics including disease severity and duration, and SMN2 copy number. Results SMN protein levels in PBMCs and fibroblasts were higher in controls than in patients with SMA (p<0.01). Stratification for SMA type did not show differences in SMN protein (p>0.1) or mRNA levels (p>0.05) in either cell type. SMN2 copy number was associated with SMN protein levels in fibroblasts (p = 0.01), but not in PBMCs (p = 0.06). Protein levels in PBMCs declined with age in patients (p<0.01) and controls (p<0.01)(power 1-beta = 0.7). Ratios of SMN2-Δ7/SMN2-FL showed a broad range, primarily explained by the variation in SMN2-Δ7 levels, even in patients with a comparable SMN2 copy number. Levels of SMN2 mRNA did not correlate with SMN2 copy number, SMA type or age in blood (p = 0.7) or fibroblasts (p = 0.09). Paired analysis between blood and fibroblasts did not show a correlation between the two different tissues with respect to the SMN protein or mRNA levels. Conclusions SMN protein levels differ considerably between tissues and activity is age dependent in patients and controls. SMN protein levels in fibroblasts correlate with SMN2 copy number and have potential as a biomarker for disease severity.
Collapse
Affiliation(s)
- Renske I. Wadman
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail: (RIW); (WLP)
| | - Marloes Stam
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marc D. Jansen
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Yana van der Weegen
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Camiel A. Wijngaarde
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Oliver Harschnitz
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Peter Sodaar
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Kees P. J. Braun
- Brain Centre Rudolf Magnus, Department of Neurology and Child Neurology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dennis Dooijes
- Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Henny H. Lemmink
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Leonard H. van den Berg
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - W. Ludo van der Pol
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail: (RIW); (WLP)
| |
Collapse
|
3
|
Wertz MH, Sahin M. Developing therapies for spinal muscular atrophy. Ann N Y Acad Sci 2015; 1366:5-19. [PMID: 26173388 DOI: 10.1111/nyas.12813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy is an autosomal-recessive pediatric neurodegenerative disease characterized by loss of spinal motor neurons. It is caused by mutation in the gene survival of motor neuron 1 (SMN1), leading to loss of function of the full-length SMN protein. SMN has a number of functions in neurons, including RNA splicing and snRNP biogenesis in the nucleus, and RNA trafficking in neurites. The expression level of full-length SMN protein from the SMN2 locus modifies disease severity. Increasing full-length SMN protein by a small amount can lead to significant improvements in the neurological phenotype. Currently available interventions for spinal muscular atrophy patients are physical therapy and orthopedic, nutritional, and pulmonary interventions; these are palliative or supportive measures and do not address the etiology of the disease. In the past decade, there has been a push for developing therapeutics to improve motor phenotypes and increase life span of spinal muscular atrophy patients. These therapies are aimed primarily at restoration of full-length SMN protein levels, but other neuroprotective treatments have been investigated as well. Here, we discuss recent advances in basic and clinical studies toward finding safe and effective treatments of spinal muscular atrophy using gene therapy, antisense oligonucleotides, and other small molecule modulators of SMN expression.
Collapse
Affiliation(s)
- Mary H Wertz
- The F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Mustafa Sahin
- The F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Renusch SR, Harshman S, Pi H, Workman E, Wehr A, Li X, Prior TW, Elsheikh BH, Swoboda KJ, Simard LR, Kissel JT, Battle D, Parthun MR, Freitas MA, Kolb SJ. Spinal Muscular Atrophy Biomarker Measurements from Blood Samples in a Clinical Trial of Valproic Acid in Ambulatory Adults. J Neuromuscul Dis 2015; 2:119-130. [PMID: 27858735 PMCID: PMC5271431 DOI: 10.3233/jnd-150081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Clinical trials of therapies for spinal muscular atrophy (SMA) that are designed to increase the expression the SMN protein ideally include careful assessment of relevant SMN biomarkers. Objective: In the SMA VALIANT trial, a recent double-blind placebo-controlled crossover study of valproic acid (VPA) in ambulatory adult subjects with SMA, we investigated relevant pharmacodynamic biomarkers in blood samples from SMA subjects by direct longitudinal measurement of histone acetylation and SMN mRNA and protein levels in the presence and absence of VPA treatment. Methods: Thirty-three subjects were randomized to either VPA or placebo for the first 6 months followed by crossover to the opposite arm for an additional 6 months. Outcome measures were compared between the two treatments (VPA and placebo) using a standard crossover analysis. Results: A significant increase in histone H4 acetylation was observed with VPA treatment (p = 0.005). There was insufficient evidence to suggest a treatment effect with either full length or truncated SMN mRNA transcript levels or SMN protein levels. Conclusions: These measures were consistent with the observed lack of change in the primary clinical outcome measure in the VALIANT trial. These results also highlight the added benefit of molecular and pharmacodynamic biomarker measurements in the interpretation of clinical trial outcomes.
Collapse
Affiliation(s)
- Samantha R Renusch
- Department of Molecular & Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sean Harshman
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hongyang Pi
- Department of Molecular & Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Eileen Workman
- Department of Molecular & Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Allison Wehr
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xiaobai Li
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Thomas W Prior
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bakri H Elsheikh
- Department of Neurology, Dhahran Medical Center, Dhahran, Saudi Arabia
| | - Kathryn J Swoboda
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Louise R Simard
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - John T Kissel
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Daniel Battle
- Department of Molecular & Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mark R Parthun
- Department of Molecular & Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michael A Freitas
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J Kolb
- Department of Molecular & Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|